复合函数求导公式:设u=g(x),对f(u)求导得:f'(x)=f'(u)*g'(x);设u=g(x),a=p(u),对f(a)求导得:f'(x)=f'(a)*p'(u)*g'(x);为了帮助大家更好的了解高中复合函数求导相关内容,高考家长网精心整编分享了这篇《复合函数求导公式 复合函数怎么求导》,感谢您的阅读。
什么是复合函数
设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数。
复合函数怎么求导
总的公式f'[g(x)]=f'(g)×g'(x)
比如说:求ln(x+2)的导函数
[ln(x+2)]'=[1/(x+2)] 【注:此时将(x+2)看成一个整体的未知数x'】 ×1【注:1即为(x+2)的导数】
主要方法:先对该函数进行分解,分解成简单函数,然后对各个简单函数求导,最后将求导后的结果相乘,并将中间变量还原为对应的自变量。
以上这篇《复合函数求导公式 复合函数怎么求导》是来自于高考家长网的高中复合函数求导的相关内容,希望能够解决您的问题。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。