1. 主页 > 高考复习 > 数学 >

函数连续和可导的关系

函数连续和可导的关系:如果函数y=f(x)在点x处可导,则函数y=f(x)在点X处连续,反之,函数y=f(x)在点x处连续,但函数y=f(x)处不一定可导。高考家长网整理了《函数连续和可导的关系》,仅供参考,以便您更好的了解连续和可导的关系相关知识。

关于函数的可导导数和连续的关系

1、连续的函数不一定可导。

2、可导的函数是连续的函数。

3、越是高阶可导函数曲线越是光滑。

4、存在处处连续但处处不可导的函数。

左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在)。连续是函数的取值,可导是函数的变化率,当然可导是更高一个层次。

上面就是高考家长网给大家整理的《函数连续和可导的关系》,希望可以在连续和可导的关系方面为您解惑。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。