1. 主页 > 高考复习 > 数学 >

切线方程公式 常见切线方程证明过程

以P为切点的切线方程:y-f(a)=f'(a)(x-a);若过P另有曲线C的切线,切点为Q(b,f(b)),则切线为y-f(a)=f'(b)(x-a),也可y-f(b)=f'(b)(x-b),并且[f(b)-f(a)]/(b-a)=f'(b)。为了加深您对于切线方程公式的认知,下面高考家长网给大家整理了《切线方程公式 常见切线方程证明过程》,欢迎您的阅读与参考。

切线方程

切线方程是研究切线以及切线的斜率方程,涉及几何、代数、物理向量、量子力学等内容。是关于几何图形的切线坐标向量关系的研究。分析方法有向量法和解析法。

例题解析

Y=X2-2X-3在(0,3)的切线方程

解:因为点(0,3)处切线的斜率为函数在(0,3)的导数值,函数的倒数为:y=2x-2,

所以点(0,3)斜率为:k=2x-2=-2

所以切线方程为:y-3=-2(x-0)(点斜式)

即2x+y-3=0

所以y=x^2-2x-3在(0,3)的切线方程为2x+y-3=0。

常见切线方程证明过程

若点M(x0,y0)在圆x^2+y^2+Dx+Ey+F=0上,,

则过点M的切线方程为

x0x+y0y+D*(x+x0)/2+E*(y+y0)/2+F=0

或表述为:

若点M(x0,y0)在圆(x-a)^2+(y-b)^2=r^2上,

则过点M的切线方程为

(x-a)(x0-a)+(y-b)(y0-b)=r^2

若已知点M(x0,y0)在圆(x-a)^2+(y-b)^2=r^2外,

则切点AB的直线方程也为

(x-a)(x0-a)+(y-b)(y0-b)=r^2

椭圆

若椭圆的方程为x^2/a^2+y^2/b^2=1,点P(x0,y0)在椭圆上,

则过点P椭圆的切线方程为

(x·x0)/a^2+(y·y0)/b^2=1.

证明:

椭圆为x^2/a^2+y^2/b^2=1,切点为(x0,y0),则x0^2/a^2+y0^2/b^2=1...(1)

对椭圆求导得y'=-b^2·x/a^2·y,即切线斜率k=-b^2·x0/a^2·y0,

故切线方程是y-y0=-b^2·x0/a^2·y0*(x-x0),将(1)代入并化简得切线方程为x0·x/a^2+y0·y/b^2=1。

双曲线

若双曲线的方程为x^2/a^2-y^2/b^2=1,点P(x0,y0)在双曲线上,

则过点P双曲线的切线方程为

(x·x0)/a^2-(y·y0)/b^2=1..

此命题的证明方法与椭圆的类似,故此处略之。

以上就是高考家长网给大家分享的《切线方程公式 常见切线方程证明过程》,希望在您阅读之后,会更好的了解切线方程公式相关知识。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。