1、建立恰当的直角坐标系2、设平面法向量n=(x,y,z)3、在平面内找出两个不共线的向量,记为a=(a1,a2,a3)b=(b1,b2,b3)4、根据法向量的定义建立方程组:na=0;nb=05、解方程组,取其中一组解即可。为了加深您对于法向量的认知,下面高考家长网给大家整理了《如何求法向量》,欢迎您的阅读与参考。
法向量的主要应用
1、求斜线与平面所成的角:求出平面法向量和斜线的夹角,这个角和斜线与平面所成的角互余.利用这个原理也可以证明线面平行;
2、求二面角:求出两个平面的法向量所成的角,这个角与二面角相等或互补;
3、点到面的距离: 任一斜线(平面为一点与平面内的连线)在法向量方向的射影;
如点B到平面α的距离d=|BD·n|/|n|(等式右边全为向量,D为平面内任意一点,向量n为平面α的法向量)。
利用这个原理也可以求异面直线的距离。
上面这《如何求法向量》就是高考家长网为您整理的法向量相关知识,希望可以给予您一定的参考价值。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。