一次函数是初二数学学习内容的重难点,下面是帅气的高考家长帮网小编为您分享的初二数学一次函数教案优秀7篇,希望能够给小伙伴们的写作带来一定的启发。
一次函数 篇一
〖教学目标〗◆1、知识与技能目标:通过本节课学习,使学生进一步巩固一次函数的知识;掌握待定系数法的一般步骤,求一次函数的解析式;会用一次函数的知识来描述实际问题。 ◆2、过程与方法目标:为分散例3的教学难点,用引例作铺垫;另一方面,在解决实际问题中,选择用一次函数的知识来解决,突出建模思想。 ◆3、情感与态度目标:从沙漠蔓延是严重的自然灾害之一这个实际问题的提出,有利于激发学生的学习兴趣,养成植树造林、保护环境的好习惯。〖教学重点与难点〗◆教学重点:用待定系数法,求一次函数的解析式。◆教学难点:例3问题用待定系数法的过程比较复杂。 〖关键〗 讲解例3时通过合作学习,找出几个不变量: ①.沙漠面积每年以相同的速度增长。 ②.1995年底的沙漠面积。但它们是多少不知道。〖教学过程〗 (一)复习回顾,引入新知。我们在上一节课已学习了有关函数的概念,大家必定知道一次函数的解析式:生:函数y=kx+b (k≠0,k、b为常数)。我们称y是x的一次函数。那么要求出函数y=kx+b的解析式,必须要求出k、b这两个常数。这节课我们根据题 意,确定系数k、b,提出课题。(二)利用引例,探求新知。引例 已知y是x的一次函数,且当x=0时,y=2;当x=1时,y=-1。求y关于x的函数解析式。分析:① 由y是x的一次函数,它的解析式是什么?答:y=kx+b (k≠0,k、b为常数)。② 要求出函数y=kx+b的解析式,应求出k、b。③ 根据题意、得到关于k、b的方程组解:∵ y是x的一次函数,∴ y=kx+b (k≠0,k、b为常数),当x=0时,y=2;∴ 2=0+b当x=1时,y=-1∴ -1=k+b∴ k= - 3, b=2∴ y关于x的函数解析式是:y= -3 x+2。课内练习:p 163 做一做 1、2。通过引例和练习,我们可发现,对于已知函数的种类时,我们可以设这个函数的解析式,利用已知条件,通过列方程组的方法,来求k、b的值。这种方法称为待定系数法,下面简单小结它的解题步骤:⑴ 由y是x的一次函数,可以设所求函数的解析式为:y=kx+b (k≠0,k、b为常数),⑵ 把两对已知的变量的对应值分别代入y=kx+b ,得到关于k、b的二元一次方程组。⑶ 解这个关于k、b的二元一次方程组,求出k、b的值。⑷ 把求得k、b的值代入y=kx+b,得到所求函数的解析式。注:若题目中没有指明是哪一类函数,就要通过分析题设中所给的数量关系来判断。(三)合作学习、应用新知。例3 某地区从1995年底开始,沙漠面积几乎每年以相同的速度增长。据有关报道,到XX年底,该地区的沙漠面积已从1998年底的100.6万公顷扩大到101.2万公顷。(1) 可选用什么数学方法来描述该地区的沙漠面积的变化?(2) 如果该地区的沙漠化得不到治理,那么到2020年底,该地区的沙漠面积将增加到多少万公顷?(插入情感教育:①图片、②文字、时间不超过节分钟)
人类要生存,要推动社会向前发展,就必须同各种各样的困难作斗争,包括同自然灾害的斗争。沙漠蔓延是严重的自然灾害之一,因为它无情地吞噬土地,给人类带来极大的危害。据统计,全世界有63个国家受沙漠之害,总面积已达万平方公里,相当于两个中国,而且还在以每年5800平方公里的速度蔓延、扩大。通过学习,我们要植树造林、保护环境。(下面问题,先由学生独立思考,然后合作学习。对学生中出现的共性问题,教师分析,即以学生为主体)① 我们已经学习了那些描述量的变化的方法?答:正比例函数,一次函数。② 所给问题中有哪些量?哪些是常量?哪些是变量?答:常量: 沙漠面积几乎每年以相同的速度增长。1995年底的沙漠面积。变量: 沙漠面积随着时间的变化而不断扩大。③ 如果沙漠面积的增长速度为k万公顷/年,那么经x年增加了多少万公顷?答:kx.如果1995年底该地区的沙漠面积为b万公顷,经x年该地区的沙漠面积增加到y万公顷。y与x之间是哪一类函数关系式?答:∵ y=kx+b ∴ 是一次函数关系式。④ 求y关于x的函数解析式,只要求出哪两个常数的值。答:k、b。⑤ 根据题设条件,能否建立关于k、b的二元一次方程组?怎样建立?答:当x=3时,y=100.6 ; 当x=6时,y=101.2 。∴解: 设从1995年底该地区的沙漠面积为b万公顷,经过x年沙漠面积增加到y万公顷。由题意,得y=kx+b,且当x=3时,y=100.6 ; 当x=6时,y=101.2 。把这两对自变量和函数的对应值分别代入y=kx+b,得解这个方程组,得这样该地区沙漠面积的变化就由一次函数y=0.2x+100来进行描述。(3) 把x=25代入y=0.2x+100,得 y=0.2╳25+100=105(万公顷)。可见,如果该地区的沙漠化得不到治理,那么到2020年底,该地区的沙漠面积将增加到105万公顷。(四)课内练习 p 164 1、2。(五)归纳小结,梳理知识。请学生谈谈自己学习本节课的收获:1、 掌握待定系数法的解题步骤。2、 如果y是x的一次函数,那么可设y=kx+b,再用待定系数法。3、 对于没有指明是哪一类函数,应首先明确,这是何种函数。分层作业: 必做题 p 164 1、2、3、4。选做题 p 165 5、6.
初二数学一次函数教案 篇二
一、创设情境
问题画出函数y=的图象,根据图象,指出:
(1)x取什么值时,函数值y等于零?
(2)x取什么值时,函数值y始终大于零?
二、探究归纳
问一元一次方程=0的解与函数y=的图象有什么关系?
答一元一次方程=0的解就是函数y=的图象上当y=0时的x的值.
问一元一次方程=0的解,不等式>0的解集与函数y=的图象有什么关系?
答不等式>0的解集就是直线y=在x轴上方部分的x的取值范围.
三、实践应用
例1画出函数y=-x-2的'图象,根据图象,指出:
(1)x取什么值时,函数值y等于零?
(2)x取什么值时,函数值y始终大于零?
解过(-2,0),(0,-2)作直线,如图.
(1)当x=-2时,y=0;
(2)当x<-2时,y>0.
例2利用图象解不等式(1)2x-5>-x+1,(2)2x-5<-x+1.
解设y1=2x-5,y2=-x+1,
在直角坐标系中画出这两条直线,如下图所示.
两条直线的交点坐标是(2,-1),由图可知:
(1)2x-5>-x+1的解集是y1>y2时x的取值范围,为x>-2;
(2)2x-5<-x+1的解集是y1<y2时x的取值范围,为x<-2.
四、交流反思
运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.
五、检测反馈
1.已知函数y=4x-3.当x取何值时,函数的图象在第四象限?
2.画出函数y=3x-6的图象,根据图象,指出:
(1)x取什么值时,函数值y等于零?
(2)x取什么值时,函数值y大于零?
(3)x取什么值时,函数值y小于零?
3.画出函数y=-0.5x-1的图象,根据图象?
一次函数 篇三
课题 一次函数的应用
教学内容:
知识与技能:巩固所学的一次函数的定义、图象和性质。能够用一次函数的知识解决实际问题。
过程与方法:掌握用待定系数法求函数解析式的一般方法。
情感态度与价值观:继续渗透数形结合的数学思想。
教学重点和难点:
重点:用待定系数法求一次函数的解析式是本节课的重点。
难点:根据解析式中待定字母的取值研究函数图象在坐标系中的位置,要进行讨论,要运用数形结合的思想,是本节课的难点。
方法:探索式
教学过程
一、复习提问
1.什么是一次函数?确定一个一次函数需要几个因素?是哪几个?
y=kx+b(k≠0)叫做关于x的一次函数,其中k和b为常数。这样在一次函数中,只要确定了k和b的值,那么这个一次函数也就随之确定了。可以说k和b是确定一次函数的两个因素。
提这个问题是为使用待定系数法确定k和b的值做准备。
2.已知一次函数y=2x+1,x取何值时,函数值y=3?
令y=3,代入解析式,得3=2x+1,解得x=1.
3.从“形”的角度说“直线y=3x+4经过点(-1,1)”,把它改为从“数”的角度来叙述。
提这个问题的意义在于使同学们搞清“点在图象上”与“坐标满足解析式”是从“形”与“数”两个不同角度叙述的同一内容,是“数”与“形”的相互转化,是数形结合思想的体现。
二、例题讲解
例1已知ab两地相距90千米。某人骑自行车由a地去b地,他平均时速为15千米。
(1)求骑车人与终点b之间的距离y(千米)与出发时间x(小时)之间的函数关系;
(2)画出函数图象:
分析:在这个问题中有两个已知量。一个是两地之间的距离90千米,一个是骑车人的速度。而骑车人与终点的距离y及出发时间x则都是未知量。我们能否找到这两个已知量与两个未知量之间的等量关系呢?找到后还要把它写成函数的形式,即把y写在等号的左边,其他的量则写到等号的右边。
解:y与x之间的函数关系式为y=90-15x.
分析:写到这里是否就写完了呢?还没有。我们知道一次函数的自变量取值范围是全体实数,而这个问题是实际问题,时间、距离都不会取负值,因此,有一个x的取值范围问题,请同学们想,x应在什么范围内取值?
得出x的取值范围是 0≤x≤6
然后取点画函数的图象。
取x=0,得y=90,
取x=6,得y=0.
画点a(0,90),b(6,0),然后连线段ab即为所求。
说明:由于函数图象是函数关系的反映,因此所画函数图象要与自变量取值范围相一致。本例中自变量x的取值范围是0≤x≤6,因此它的图象只是直线y=90-15x上的一条线段。
例2为了保护学生视力,课桌椅的高度都是按一定的关系配套设计的。研究表明:假设课桌的高度为ycm,椅子的高度(不含靠背)为xcm,则y应是x的一次函数。下表列出两套符合条件的课桌椅的高度:
第一套
第二套
椅子的高度x(cm)
40
37
桌子的高度y(cm)
75
70.2
(1) 写出y与x之间的函数关系式。
(2) 现有一把高42cm 的椅子和一张高为78.2cm 的课桌,它们是否配套?通过计算说明。
例3某地长途汽车客运公司规定旅客可以随身携带一定质量的行李,若超过规定,则需要购买行李票,行李票费用y(元)是行李质量x(kg)的一次函数,其图象如图所示。
(1)写出y与x之间的函数解析式。
(2)旅客最多可以携带多少免费行李。
分析:(1)根据一次函数的图象可以求出两个交点的坐标,进而可以列方程组,求出k、b的值,得出函数解析式。 (2)根据函数图象与x轴的交点求出旅客可以携带免费行李质量。
例4如图温度计上表示了摄氏温度与华氏温度之间的对应关系。
(1) 能否用函数解析式表示两者之间的关系?
(2) 若今天的气温是摄氏20度,那么华氏是多少度?
三、小结
这节课我们讲了三个例题,重点是用待定系数法求一次函数的解析式,画一次函数的图象以及数形结合的思想。
待定系数法的主要步骤是:
1.把某些未知的系数用字母表示;
2.根据已知条件列出含有待定字母的方程或方程组。一般有几个待定字母应列几个方程;
3.解方程或方程组求出待定字母的值,使问题得解。
函数的解析式与它的图象是对应的,解析式的特点会影响到图象的位置,这种“数”与“形”的对应关系应该在函数的学习中逐渐加深理解。
四、布置作业
1.画出下列一次函数的图象:
2.已知一个一次函数,当x=-4时,y=9,当x=6时,y=3.求x=1时y的值。
3.已知一次函数的图象经过(3,2)和(-3,0)两点,求这个一次函数解析式并画出在-1≤x≤3内的函数图象。
4.某工人生产一种零件,完成定额,每天收入28元,若超额生产一个零件则增加收入1.5元
(1) 写出该工人一天收入y(元)和超额生产零件x(个)之间的函数关系式
(2) 某日该工人超额生产了12个零件,这天他的实际收入是多少?
5. 全国每年都有大量的土地被沙漠吞没,改造沙漠保护土地资源已经成为一项十分重要和急迫的任务。某地区现在有土地面积100万km2,沙漠面积200万km2,土地沙漠化的变化情况如下图所示。
(i)如果不采取任何措施,那么到第5年底?该地区的沙漠面积将新增加多少万km2?
(ii)如果该地区沙漠面积继续按此形式发展那么从现在开始几年底后,该地区将丧失土地资源?
(iii)如果从现在开始采取植树造林措施,每年改造沙漠4万km2那么几年底该地区的沙漠面积能减少到176万km2?
一次函数的图象教案 篇四
一、学生起点分析
八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系。
二、教学任务分析
《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节。本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质。本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识。
为此本节课的教学目标是:
1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象。
2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线。
3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力。
4.理解一次函数的代数表达式与图象之间的一一对应关系。
教学重点是:
初步了解作函数图象的一般步骤:列表、描点、连线。
教学难点是:
理解一次函数的代数表达式与图象之间的一一对应关系。
三、教学过程设计
本节课设计了七个教学环节:
第一环节:创设情境引入课题;
第二环节:画一次函数的图象;
第三环节:动手操作,深化探索;
第四环节:巩固练习,深化理解;
第五环节:课时小结;
第六环节:拓展探究;
第七环节:作业布置。
第一环节:创设情境引入课题
内容:
一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗? S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?
我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。
目的:通过学生比较熟悉的生活情景,让学生在写函数关系式和认识图象的过程中,初步感受函数与图象的联系,激发其学习的欲望。
效果:学生通过对上述情景的分析,初步感受到函数与图象的联系,激发了学生的学习欲望。
第二环节:画正比例函数的图象
内容:首先我们来学习什么是函数的图象?
把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph).
例1请作出正比例函数y=2x的图象。
第三环节:动手操作,深化探索
内容:做一做
(1)作出正比例函数y= 3x的图象。
(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y= 3x.
请同学们以小组为单位,讨论下面的问题,把得出的结论写出来。
(1)满足关系式y= 3x的x,y所对应的点(x,y)都在正比例函数y= 3x的图象上吗?
(2)正比例函数y= 3x的图象上的点(x,y)都满足关系式y= 3x吗?
(3)正比例函数y=kx的图象有什么特点?
明晰
由上面的讨论我们知道:正比例函数的代数表达式与图象是一一对应的`,即满足正比例函数的代数表达式的x,y所对应的点(x,y)都在正比例函数的图象上;正比例函数的图象上的点(x,y)都满足正比例函数的代数表达式。正比例函数y=kx的图象是一条直线,以后可以称正比例函数y=kx的图象为直线y=kx.
议一议
既然我们得出正比例函数y=kx的图象是一条直线。那么在画正比例函数图象时有没有什么简单的方法呢?
因为“两点确定一条直线”,所以画正比例函数y=kx的图象时可以只描出两个点就可以了。因为正比例函数的图象是一条过原点(0,0)的直线,所以只需再确定一个点就可以了,通常过(0,0),(1,k)作直线。
4.3一次函数的图象:同步测试
14若直线经过第一。二。四象限,则k.b的取值范围是( ).
A.k>0,b>0 B.k>0,b<0
C.k<0,b>0 D. k<0,b<0
2.已知一次函数y=3-2x
(1)求图像与两条坐标轴的交点坐标,并在下面的直角坐标系中画出它的图像;
(2)从图像看,y随着x的增大而增大,还是随x的增大而减小?
(3)x取何值时,y>0?
3.已知一次函数y=-2x+4
(1)画出函数的图象。
(2)求图象与x轴、y轴的交点A、B的坐标。
(3)求A、B两点间的距离。
(4)求△AOB的面积。
(5)利用图象求当x为何值时,y≥0.
《函数的图象》课后练习
1.一根弹簧原长12cm,它所挂物体的质量不超过10kg,并且每挂重物1kg就伸长1.5cm,挂重物后弹簧长度y(cm)与挂重物x(kg)之间的函数关系式是()
A.y=1.5(x+12)(0≤x≤10)
B.y= 1.5x+12(0≤x≤10)
C.y=1.5x+10(x≥0)
D.y=1.5(x-12)(0≤x≤10)
一次函数的图象教案 篇五
教学目标
1、知识与技能
能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”、
2、过程与方法
经历探索一次函数的应用问题,发展抽象思维、
3、情感、态度与价值观
培养变量与对应的,形成良好的函数观点,体会一次函数的应用价值、
重、难点与关键
1、重点:一次函数的应用、
2、难点:一次函数的应用、
3、关键:从数形结合分析思路入手,提升应用思维、
教学方法
采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的。应用、
教学过程
一、范例点击,应用所学
例5小芳以米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象、
y=
例6A城有肥料吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡、从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?
解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(-x)吨、B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨、y与x的关系式为:y=20x+25(-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤)、
由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元、
拓展:若A城有肥料300吨,B城有肥料吨,其他条件不变,又应怎样调运?
二、随堂练习,巩固深化
课本P119练习、
三、课堂,发展潜能
由学生自我本节课的表现、
四、布置作业,专题突破
课本P120习题14、2第9,10,11题、
板书设计
14.2.2一次函数(4)
1、一次函数的应用例:
练习:
一次函数 篇六
九江市永修县城丰中学 杨经文教学目标 1、经历一般规律的探索过程,发展学生的抽象思维能力。 2、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展学生的数学应用能力。教学重点 1、 一次函数、正比例函数的概念及两者之间的关系。 2、 会根据已知信息写出一次函数的表达式。教学难点一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、课件教学过程一、创设问题情境,引入新课 1、 简单复习函数的概念(设在某一变化过程中有两个变量x和y,如果 ,那么我们称y是x的函数,其中x是自变量,y是因变量) 2、 演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么? 3、 汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?二、新课学习 1、 做一做。让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。 2、 一次函数、正比例函数的概念学习讨论:刚才写出的两个关系式y=3+0.5x、y=100-0.18x在形式上有什么相同之处?让学生分析出他们的共同点:①左边都是因变量,右边都是含自变量的代数式;②自变量x与因变量y的次数都是1;③从形式上看,形式都为y=kx+b,k,b为常数。问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。 3、 例题学习例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进行口答。例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的能力。其中第三问严格地讲应先判断出工资的范围是800<x<1300,应将此情况提出让学生讨论。三、随堂练习1、找出下面的一次函数,并指出其中k、b的值。若不是一次函数,请说明理由。a、y= +x b、y=-0.8x c、y=0.3+2x2 d、y=6- 2、已知函数y=(m+1)x+(m2-1),当m ,y是x的一次函数;当m ,y是x的正比例函数。四、拓展应用 学校组织部分学生去井岗山体验革命历史。出行方面准备从甲、乙两家旅行社中选择一家代办,已知两家旅行社报价相同,都是每人200元。不过,甲旅行社开出的团体(15人以上)优惠办法是返还现金500元作为门票费,乙旅行社的团体优惠是,所有人员费用均打9折。设学生人数为x人,两家旅行社的收费分别为y甲、y乙,解答下列问题:(1)分别写出两家旅行社收费y(元)与学生人数x(人)之间的函数关系式;该关系式是什么函数?(y甲=200x-500,y乙=180x)(2)如果学生为20人,分别计算两家旅行社收费。到哪家合算?(y甲=200×20-500=3500(元);y乙=180×20=3600(元);y甲< y乙,所以到甲旅行社合算。)(3)在什么情况下,选择乙旅行社?(依题意得, y甲- y乙>0,即(200x-500) -180x>0,解不等式得,x>25,所以当学生多于25人时,到乙旅行社合算。)五、课堂小结 让学生归纳本节课学习内容:1、一次函数、正比例函数概念以及它们之间的关系。2、会根据已知信息写出一次函数的关系式。六、作业读一读:中国古代漏刻必做题:161页习题6.2第1、2、3题选做题:161页试一试
一次函数 篇七
学习目标:
1. 知道一次函数和正比例函数的概念,能根据所给的信息确定一次函数的表达式。
2.自主经历一次函数概念的抽象概括过程,努力拓展自己的抽象思维能力。
3.感知生活与数学间的联系,增强自己的数学应用能力。
学习重点:
1. 一次函数与正比例函数的概念
2. 确定一次函数的表达式
学习难点:
用一次函数解决实际问题
学习过程:
一。学前准备
1. 自学课本157页到161页,写下疑惑摘要:
2. 试写出下列各题中y与x之间的关系式,判断y是否为x的函数?
(1) 一棵树现高50cm,每个月长高2cm,x个月后这棵树的高度为y(cm)
(2)王大妈买了30元面粉,又买了某种大米,单价是2.6元,购买x千克大米时,一共花费y元。
(3)某种出租车的起步价是7元(3千米内),以后每走1千米(不足1千米按1千米计算)付2.4元。某人乘出租车x千米(x>3),付费y元。
二。自学、合作探究
(一)自学、相信自己
1.某弹簧的自然长度为3cm,在弹性限度内,所挂物体的质量x每增加1kg,弹簧长度y增加0.5cm。
(1)计算所挂物体质量分别为1kg、2kg、3kg、4kg、5kg时弹簧长度,填表:
x/kg
0
1
2
3
4
5
y/cm
(2)请写出y与x之间的关系式。
2.某汽车油箱中原有汽油100l,汽车每行驶50km耗油9l。
(1)完成下表
行驶x/km
0
50
100
150
200
300
剩油量y/l
(2)请写出y与x之间的关系式。
(二)思索、交流
1.观察上面各题结果,关系式有什么特点?能否用自己的话说说可以表示成什么样的形式?
2.练习
写出下列各题中x与y之间的关系式。判断y是否为x的一次函数?是否为正比例函数?
(1) 汽车以60km/h的速度匀速行驶,行驶路程y(km)与行驶时间x(h)间的关系。
(2) 圆的面积y(cm2)与它的半径x(cm)之间的关系。
(3)如图,甲、乙两地相距100千米,现有一列火车从乙地出发,以80千米/时的速度向丙地行驶。设x(时)表示行驶时间,y(千米)表示火车与甲地的距离。甲 乙 丙
(三)应用、探究
1.我国现行个人工资、薪金所得税征收办法规定:月收入低于1000元的部分不收税;月收入超过1000元但低于1300元的部分征收5%的所得税……
(1)当月收入大于1000元而小于1300元时,写出应缴所得税y(元)与月收入x(元)之间的关系式。
(2)某人月收入1260元,应缴纳所得税多少元?
(3)如某人本月缴所得税12元,则此人本月工资多少元?
2.某联通公司的手机收费标准如下:每部手机每月缴纳月租费25元,另每通话1分钟交费0.18元。
(1)写出每月应缴费用y(元)与通话时间x(分)之间的关系式。
(2)自己提出一个问题并解决。
3.某电信公司的手机收费标准如下:没有月租费,但通话1分钟交费0.6元。请完成上题中的问题。
思考:你能结合2、3两题提一个问题吗?试试看,并解决。
三。学习体会
1. 体会一次函数与正比例函数的概念以及两者之间的关系。
2. -高考家长帮§www.kaoyantv.com 知道一次函数的表达式是什么?
四。自我测试
1. 选择
(1)下列各式中,表示y是x的正比例函数的是( )
a.y=x+1 b.y= c.y=x2 d.y=
(2)等腰三角形的周长为12,腰为x,底边为y,则底边y与腰x之间的关系式为
a.y=12-2x b.y=6-x c.y= d.y=
2. 填空
从a地向b地打长途电话,按时收费,3分钟内收费2.4元,每加1分,加收1.2元,如时间t≥3时,电话费y(元)与t(分)之间的关系是 ,
是 函数。
3.解决问题
有一种电脑的收费方式如下:第一次付费XX元就把电脑搬回家,但每月需向厂家付250元。
(1)若分期付款需x月,写出共付费y(元)与x(月)之间的关系式
(2)如需交6个月的分期付款,共付费多少元?
(3)如这个电脑共付费4900元,那么需交多少个月的分期付款?
五。自我提高
某批发商欲将一批海产品委托汽车运输公司由a地运往到b地,路程为120千米,汽车的速度为60千米/时,货运公司的收费项目及收费标准如下表:
运输量单价 (元/吨·千米)
冷藏费单价 (元/吨·时)
过路费(元)
2
5
200
1、设该批发商待运的海产品有x吨,货运公司要收取的费用为y元,试写出y与x之间的关系式。
2、如该批发商想运送5吨的海产品,付出运费1400元,运输公司愿意吗?假如你是公司的经理,你接受吗?
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。