作为一位优秀的人民教师,时常要开展教学设计的准备工作,教学设计是实现教学目标的计划性和决策性活动。那么你有了解过教学设计吗?高考家长帮为小伙伴们精心整理了圆的面积教学设计【优秀4篇】,希望能够帮助到小伙伴们。
《圆面积公式推导》优秀的教学设计 篇一
教学内容
课本第143页例2;练一练第1~6题。
教材分析
这部分内容是学生在学会了求圆的周长与直径、半径的关系以及已知圆的半径求圆面积的基础上,来学习已知圆的。周长。求圆面积的应用题。
学情分析
本班学生计算能力还可以,就是对应用题有一种害怕心理。
教学目标
1、进一步掌握圆面积公式,并能正确地计算圆面积。
2、能运用圆面积计算公式,正确地解决一些简单的实际问题。
教学重点
会熟练运用公式求圆面积。
教学难点
求出需要的条件,即圆的半径。
教学准备
作业纸、课件。
教学过程
一、复习。
课件出示:
(一)求下列各题中圆的半径。
(1)C=6.28分米,r=?;(2)d=30厘米,r=?
(3)C=15.7分米,r=?;(4)d=18.84厘米,r=?
(二)、求下列各圆的面积。
(1)r=2分米,S=?(2)d=6米,S=?
(3)r=10厘米,S=?(4)d=3分米,S=?
只要求学生进行口头表述计算公式(不求计算结果)
二、学生活动:
要求两人一小组,到室外找一个圆形物体的平面,计算出它的面积。
运用学生事先准备的工具(细绳、直尺等)
三、汇报交流
小组把作业纸上交,交流心得
姓名
准备工具
物体名称周长
半径
面积
四、巩固练习
练一练第1~6题。
《作业本》p73。
板书设计:
圆面积公式的应用
R=d÷2
R=c÷π÷2
S=πr
《圆的整理与复习》教学设计 篇二
教学目标:
1、使学生熟练掌握圆的周长、面积的计算方法,能正确的计算圆的周长和面积。
2、使学生能综合运用所学的知识和技能解决有关的问题,增强应用意识。
3、能发现存在的问题,并加以改正
教学重难点:
重点:
圆的周长和面积的计算。
难点:
应用圆的周长和面积的相关知识解决实际生活中的问题。
教学过程:
一、创设情境,导入复习
1、出示:小明家新买了一个圆形餐桌,它的直径是2m,它的周长是多少米?面积是多少平方米?如果一个人需要0.5m宽的位置就餐,这张餐桌大约能坐多少人?
提问:解决这些问题需要用到和谁有关的知识?
2、这节课我们就对圆的有关知识进行整理和复习(板书课题)
二、回顾整理,建构网络
1.自主整理。
说一说本单元你学习了有关圆的哪些知识?
(1) 学生可翻阅课本,并简要记录各节要点
(2) 小组内交流。
(3) 整理知识点:
内容
知识要点
举例
圆的认识
圆的周长
圆的面积
2.小组汇报。
学生分组汇报整理结果,汇报时其他学生认真听,完善补充。
三、重点复习,强化提高
1.基础知识
(1)圆是平面上的( )线图形。( )决定圆的位置,( )决定圆的大小。
(2)画圆时,圆规两脚间的距离就是圆的( )。
(3)圆的半径扩大3倍,它的周长扩大( )倍,面积扩大( )倍。
(4)正方形的边长是2厘米,剪下一个最大圆的半径是( )厘米,周长是( )厘米,面积是( )平方厘米。
2.判断:教材79页的6题。
学生说出判断的理由,进一步对基础知识进行巩固。
3.解决问题:
(1)79页的4题:明确场地的直径是8+1+1=10m
(2)79页的9题:仔细观察图,明确四个扇形合在一起正好是一个半径1m的圆。
(3)79页的10题:
提问:操场跑一圈是多少?
让学生明确圆的周长加上正方形两条边的长度,就是操场的周长。
四、自主检评,完善提高
1.判断题
(1)圆的直径等于半径的2倍。( )
(2)半径2厘米的圆,它的周长和面积相等。( )
(3)一个圆的半径扩大4倍,它的面积扩大8倍。( )
(4)周长相等的长方形、正方形、圆中,圆的面积最大。 ( )
(5)半圆的面积就是圆面积的一半( )
(6)半圆的周长就是圆周长的一半( )
2.解决问题:
练习十七的1、2、3、5题
小组内评价。
3.师:谁来评价一下自己这节课的表现
数学圆的面积教案 篇三
教学内容:课本第94、95页例3 、例4。
教学目的:
1、理解圆面积计算公式的推导过程,掌握圆面积的计算公式;
2、能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。
3、培养学生动手操作能力和逻辑推理能力。
教学重点:圆面积计算公式。
教学难点:圆面积计算公式的推导。
教具、学具:圆的面积演示教具,课件,每人两个大小相等的圆,分别平均分为16等份、32等份。
教学过程:
一、复习。
1.圆的有关概念
2.什么叫长方形的面积?
3.说出平行四边形的面积公式是怎样推导出来的?
我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。(板书课题:圆的面积)
二、新授。
1.圆的面积的含义。
问:面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)
以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)
2.圆的面积公式的推导。
怎样求圆的面积呢?如果用面积单位直接去度量显然是行不通的。但我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形——长方形。怎样分割呢?教师拿出圆的面积教具进行演示:
先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)
再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。
向学生说明:如果分的等份越多所拼的图形就越接近长方形。
教师边提问边完成圆面积公式的推导:
①拼成的图形近似于什么图形?
②原来圆的面积与这个长方形的面积是否相等?
③长方形的长相当于圆的哪部分的长?
④长方形的宽是圆的哪部分?
长方形的面积=长*宽
圆的面积=c÷2*r
=2∏r÷*r
=∏r*r
=∏r2
用S表示圆的面积,那么圆的'面积可以写成:S=∏r2
3.圆面积公式的应用。
出示例1:一个圆的半径是10厘米。它的面积是多少平方厘米?
学生读题,问:要求圆的面积的条件是否具备?怎样列式?学生回答,教师板书:
=3.14*102
=3.14*100
=314(平方厘米)
答:它的面积是314平方厘米。
例题2:一个圆的直径是40米,它的面积是多少平方米?
40÷2=20(米)
3.14*202
=3.14 *400
= 1256(平方米)
答:这个圆的面积是1256平方米。
三、巩固练习。
1.半径2分米,求圆的面积。
2、圆的周长是6.28分米,圆的面积是多少平方分米?(先提问:题目只告诉圆的周长,你能求出圆的面积吗?怎样算?)
3、绳长10米,问小狗的活动面积有多大?
四。发散思维:如下图:S正方形=3平方厘米,S圆=?
总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=∏r2计算。
五、作业。
六、课后反思:
圆的面积教案 篇四
教材分析:
初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。
学情分析:
学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。
教学目标:
1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。
2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。
3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。
4、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察曲与直的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。
教学重点:
通过观察操作,推导出圆面积公式及其应用。
教学难点:
极限思想的渗透与圆面积公式的推导过程。
教学过程:
活动一:创设情景,提出问题
1、课件出示羊吃草的动画:一个放羊娃将一只小山羊用一根绳子把它拴在木桩上。请问小山羊最多能吃到多大范围的草呢?
2、圆的面积--含义:圆所占平面的大小叫做圆的面积。
3、如果将绳子加长一点,又会出现什么情况?产生这种变化的原因是什么?这说明了什么?
活动二:猜想比较:
出示图
师:看了这两幅图形,你发现了什么?右图小正方形的面积是多少?左图大正方形的面积是多少?你能猜一猜圆的面积和大正方形面积有什么联系吗?
活动三:自主探究,验证猜想
1、引导转化:
师:回忆以前学过的平面图形,它们的面积公式是什么?分别怎么推导出来的?
以上这些图形都是通过剪拼,转化成已学过的图形,再进行推导。那么圆是否也可以把它剪拼转化成为熟悉的平面图形呢?
2、动手操作:
(1)分小组动手操作,把圆剪拼转化成其他图形,看谁拼得好,拼出的图形多。
操作引导:
A、剪--怎样剪?剪成几份?
B、拼--怎样拼?拼成什么?
(2)展示交流并介绍,选出最合理的剪法。
(3)拼成后的近似长方形和标准长方形比较,你发现了什么?能不能把边再变得直一点?
想象一下,平均分成64份、128份、256份。会是什么情形?(课件演示)
(4)小结:平均分的份数越多,边越直,拼成的图形越接近于长方形。
3、自主推导
(1)小组合作,选择喜欢的1~2个图形,尝试推导公式。
(2)学生展示、介绍自己的推导过程
(3)教师板演圆面积的推导过程
4、情景延续:
(1)如果绳长为5米,计算圆的面积和周长。
(2)将绳子加长为原来的2倍,那么羊能吃到草的面积也是原来的2倍。对吗?
5、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,你们真了不起!那么,求圆的面积需要什么条件呢?(是否只有知道半径才能求圆的面积?)
活动四:实践运用,体验生活
1、量出自己带来的圆形物体的直径,并计算出面积。
2、社区公园有一个圆形水池(中有假山),请想办算出水面面积。
活动五:全课小结
通过本节课的学习你有哪些收获?
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。