1. 主页 > 范文大全 >

有理数的混合运算教案(精选7篇)

作为一位杰出的老师,有必要进行细致的教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。那么问题来了,教案应该怎么写?帅气的高考家长帮网小编为您分享了有理数的混合运算教案(精选7篇),希望能够给朋友们的写作带来一定的启发。

有理数的混合运算 篇一

有理数的混合运算(拓展课)

——24点游戏

上课学校:高桥-东陆学校    执教者:丁迎华       班级:预备2班

地点:预备2班             时间:3月16日

一、 背景分析:

1. 学情分析:考虑到预备班的学生年龄偏小,而且由于数学学科的特点,比较枯燥,特在教学中安排了一节24点游戏内容,以提高学生的学习兴趣,发挥学生的积极性和参与性。

2. 教材分析:本节课是在学完有理数这一章之后的研究性阅读材料,可以通过本节课的学习旨在提高学生四则运算的速度和心算的能力。

教学目标:

1. 熟练掌握运算律、提高四则运算的速度和心算的能力;

2. 培养学习数学的兴趣;

3. 通过合作解决新的问题。

二、 教学重点、难点:

1. 运算速度和心算能力;

2. 培养合作精神;

3. 体会游戏规则的变化其实是由数的范围发生了变化。

三、 教学设计:

二期课改的理念是“以学生发展为本”,充分发挥学生的主观能动性,积极参与课堂活动,在教学过程中,教师要充分发挥情感因素在教学中的作用,与学生建立平等合作的关系,确立学生在学习中的主体地位。特别是在数学教学中,由于数学学科的逻辑性和思维性很强,学习数学对于学生来说感到非常的枯燥、乏味,学生只是为了学而学,没有主动学习的兴趣,所以在新教材的编排里,编入了24点游戏一节阅读材料,因此我在上完有理数以后,利用24点游戏,通过与数的计算有关的游戏,学会从生活和游戏中体验数学,感悟数学,感受数学美,培养喜欢数学的情感,从而激发学生的学习兴趣和团队合作、参与竞争等能力。

四、 教学过程:

1. 拿出教具,扑克牌,引出课题。

2. 说出24点游戏规则。

3. 电脑随机选择8组数据,在这期间可以考察学生对运算律和运算顺序的熟练程度。

4. 教师给出1,5,5,5四个数,给出新的法则,引进分数。

5. 教师继续给出新的法则,引进负数。

6. 学生小结。

7.课后思考。

上一篇:有理数的混合运算 、近似数练习

下一篇:有理数的混合运算

有理数的混合运算 篇二

有理数的混合运算(二)

教学目标 

1.进一步熟练掌握有理数的混合运算,并会用运算律简化运算;

2.培养学生的运算能力及综合运用知识解决问题的能力。

教学重点和难点

重点:有理数的运算顺序和运算律的运用。

难点:灵活运用运算律及符号的确定。

课堂教学过程 设计

一、从学生原有认知结构提出问题

1.叙述有理数的运算顺序。

2.三分钟小测试

计算下列各题(只要求直接写出答案):

(1)32-(-2)2;(2)-32-(-2)2;(3) 32-22;(4)32×(-2)2;

(5)32÷(-2)2;(6)-22+(-3)2;(7)-22-(-3)2;(8)-22×(-3)2;

(9)-22÷(-3)2;(10)-(-3)2·(-2)3;(11)(-2)4÷(-1);

二、讲授新课

例1  当a=-3,b=-5,c=4时,求下列代数式的值:

(1)(a+b)2;  (2)a2-b2+c2;

(3)(-a+b-c)2;  (4) a2+2ab+b2.

解:(1)  (a+b)2

=(-3-5)2  (省略加号,是代数和)

=(-8)2=64;  (注意符号)

(2)  a2-b2+c2

=(-3)2-(-5)2+42  (让学生读一读)

=9-25+16  (注意-(-5)2的符号)

=0;

(3)  (-a+b-c)2

=[-(-3)+(-5)-4]2  (注意符号)

=(3-5-4)2=36;

(4)a2+2ab+b2

=(-3)2+2(-3)(-5)+(-5)2

=9+30+25=64.

分析:此题是有理数的混合运算,有小括号可以先做小括号内的,

=1.02+6.25-12=-4.73.

在有理数混合运算中,先算乘方,再算乘除。乘除运算在一起时,统一化成乘法往往可以约分而使运算简化;遇到带分数通分时,可以写

例4  已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,试求 x2-(a+b+cd)x+(a+b)1995+(-cd)1995值。

:由题意,得a+b=0,cd=1,|x|=2,x=2或-2.

所以 x2-(a+b+cd)x+(a+b)1995+(-cd)1995

=x2-x-1.

当x=2时,原式=x2-x-1=4-2-1=1;

当x=-2时,原式=x2-x-1=4-(-2)-1=5.

三、课堂练习

1.当a=-6,b=-4,c=10时,求下列代数式的值:

2.判断下列各式是否成立(其中a是有理数,a≠0):

(1)a2+1>0;  (2)1-a2<0;

四、作业 

1.根据下列条件分别求a3-b3与(a-b)·(a2+ab+b2)的值:

2.当a=-5.4,b=6,c=48,d=-1.2时,求下列代数式的值:

3.计算:

4.按要求列出算式,并求出结果。

(2)-64的绝对值的相反数与-2的平方的差。

5*.如果|ab-2|+(b-1)2=0,试求

课堂教学设计说明

1.课前三分钟小测试中的题目,运算步骤不太多,着重考查学生运算法则、运算顺序和运算符号,三分钟内正确做完15题可算达标,否则在课后宜补充这一类训练。

2.学生完成巩固练习第1题以后,教师可引导学生发现(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2,使学生做题目的过程变成获取新知识的重要途径。

有理数的混合运算(二)

教学目标 

1.进一步熟练掌握有理数的混合运算,并会用运算律简化运算;

2.培养学生的运算能力及综合运用知识解决问题的能力。

教学重点和难点

重点:有理数的运算顺序和运算律的运用。

难点:灵活运用运算律及符号的确定。

课堂教学过程 设计

一、从学生原有认知结构提出问题

1.叙述有理数的运算顺序。

2.三分钟小测试

计算下列各题(只要求直接写出答案):

(1)32-(-2)2;(2)-32-(-2)2;(3) 32-22;(4)32×(-2)2;

(5)32÷(-2)2;(6)-22+(-3)2;(7)-22-(-3)2;(8)-22×(-3)2;

(9)-22÷(-3)2;(10)-(-3)2·(-2)3;(11)(-2)4÷(-1);

二、讲授新课

例1  当a=-3,b=-5,c=4时,求下列代数式的值:

(1)(a+b)2;  (2)a2-b2+c2;

(3)(-a+b-c)2;  (4) a2+2ab+b2.

解:(1)  (a+b)2

=(-3-5)2  (省略加号,是代数和)

=(-8)2=64;  (注意符号)

(2)  a2-b2+c2

=(-3)2-(-5)2+42  (让学生读一读)

=9-25+16  (注意-(-5)2的符号)

=0;

(3)  (-a+b-c)2

=[-(-3)+(-5)-4]2  (注意符号)

=(3-5-4)2=36;

(4)a2+2ab+b2

=(-3)2+2(-3)(-5)+(-5)2

=9+30+25=64.

分析:此题是有理数的混合运算,有小括号可以先做小括号内的,

=1.02+6.25-12=-4.73.

在有理数混合运算中,先算乘方,再算乘除。乘除运算在一起时,统一化成乘法往往可以约分而使运算简化;遇到带分数通分时,可以写

例4  已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,试求 x2-(a+b+cd)x+(a+b)1995+(-cd)1995值。

:由题意,得a+b=0,cd=1,|x|=2,x=2或-2.

所以 x2-(a+b+cd)x+(a+b)1995+(-cd)1995

=x2-x-1.

当x=2时,原式=x2-x-1=4-2-1=1;

当x=-2时,原式=x2-x-1=4-(-2)-1=5.

三、课堂练习

1.当a=-6,b=-4,c=10时,求下列代数式的值:

2.判断下列各式是否成立(其中a是有理数,a≠0):

(1)a2+1>0;  (2)1-a2<0;

四、作业 

1.根据下列条件分别求a3-b3与(a-b)·(a2+ab+b2)的值:

2.当a=-5.4,b=6,c=48,d=-1.2时,求下列代数式的值:

3.计算:

4.按要求列出算式,并求出结果。

(2)-64的绝对值的相反数与-2的平方的差。

5*.如果|ab-2|+(b-1)2=0,试求

课堂教学设计说明

1.课前三分钟小测试中的题目,运算步骤不太多,着重考查学生运算法则、运算顺序和运算符号,三分钟内正确做完15题可算达标,否则在课后宜补充这一类训练。

2.学生完成巩固练习第1题以后,教师可引导学生发现(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2,使学生做题目的过程变成获取新知识的重要途径。

有理数的混合运算 篇三

教学目标 

1.进一步熟练掌握有理数的混合运算,并会用运算律简化运算;

2.培养学生的运算能力及综合运用知识解决问题的能力。

教学重点和难点

重点:有理数的运算顺序和运算律的运用。

难点:灵活运用运算律及符号的确定。

课堂教学过程 设计

一、从学生原有认知结构提出问题

1.叙述有理数的运算顺序。

2.三分钟小测试

计算下列各题(只要求直接写出答案):

(1)32-(-2)2;(2)-32-(-2)2;(3) 32-22;(4)32×(-2)2;

(5)32÷(-2)2;(6)-22+(-3)2;(7)-22-(-3)2;(8)-22×(-3)2;

(9)-22÷(-3)2;(10)-(-3)2·(-2)3;(11)(-2)4÷(-1);

二、讲授新课

例1  当a=-3,b=-5,c=4时,求下列代数式的值:

(1)(a+b)2;  (2)a2-b2+c2;

(3)(-a+b-c)2;  (4) a2+2ab+b2.

解:(1)  (a+b)2

=(-3-5)2  (省略加号,是代数和)

=(-8)2=64;  (注意符号)

(2)  a2-b2+c2

=(-3)2-(-5)2+42  (让学生读一读)

=9-25+16  (注意-(-5)2的符号)

=0;

(3)  (-a+b-c)2

=[-(-3)+(-5)-4]2  (注意符号)

=(3-5-4)2=36;

(4)a2+2ab+b2

=(-3)2+2(-3)(-5)+(-5)2

=9+30+25=64.

分析:此题是有理数的混合运算,有小括号可以先做小括号内的,

=1.02+6.25-12=-4.73.

在有理数混合运算中,先算乘方,再算乘除。乘除运算在一起时,统一化成乘法往往可以约分而使运算简化;遇到带分数通分时,可以写

例4  已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,试求 x2-(a+b+cd)x+(a+b)1995+(-cd)1995值。

:由题意,得a+b=0,cd=1,|x|=2,x=2或-2.

所以 x2-(a+b+cd)x+(a+b)1995+(-cd)1995

=x2-x-1.

当x=2时,原式=x2-x-1=4-2-1=1;

当x=-2时,原式=x2-x-1=4-(-2)-1=5.

三、课堂练习

1.当a=-6,b=-4,c=10时,求下列代数式的值:

2.判断下列各式是否成立(其中a是有理数,a≠0):

(1)a2+1>0;  (2)1-a2<0;

四、作业 

1.根据下列条件分别求a3-b3与(a-b)·(a2+ab+b2)的值:

2.当a=-5.4,b=6,c=48,d=-1.2时,求下列代数式的值:

3.计算:

4.按要求列出算式,并求出结果。

(2)-64的绝对值的相反数与-2的平方的差。

5*.如果|ab-2|+(b-1)2=0,试求

课堂教学设计说明

1.课前三分钟小测试中的题目,运算步骤不太多,着重考查学生运算法则、运算顺序和运算符号,三分钟内正确做完15题可算达标,否则在课后宜补充这一类训练。

2.学生完成巩固练习第1题以后,教师可引导学生发现(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2,使学生做题目的过程变成获取新知识的重要途径。

有理数的混合运算 篇四

教学目标:  (一)知识学习点  能按照有理数的运算顺序,正确熟练地进行有理数的加、减、乘、除、乘方的混合运算。  (二)能力训练点  培养学生的观察能力和运算能力。  (三)德育渗透点  培养学生在计算前认真审题,确定运算顺序,计算中按步骤审慎进行,最后要验算的好的习惯。  (四)美育渗透点  通过本节课的学习,学生会认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识的普适性美。重点和难点:是如何按有理数的运算顺序,正确而合理地进行有理数混合计算。 教学进程 一、课前预习    1.有理数的运算顺序是什么?  2.计算:(口答)①      ②       ③        ④   ⑤                ⑥   教法说明。2题都是学生运算中容易出错的题目,学生口答后,如果答对,追问为什么?如果不对,先让他自己找错误原因,若找不出来,让其他同学纠正,使学生真正明白发生错误的原因,从而达到培养运算能力的目的。二、讲授新课  例:   1 、 计算       师生共同分析:观察题目中有乘法、除法、减法运算,还有小括号。 2 、计算:  ①          ②3  计算:   教师引导学生分析:观察题目中有乘方、乘法、除法、加法、减法运算。  4.课堂练习(板演)计算:①②③  ④  四、课后练习 a  组1.选择题  (1)下列各组数中,其值相等的是( )  a. 和   b. 和   c. 和  d. 和   (2)下列各式计算正确的是( ) a.  b.   c.  d.   (3)下列说法正确的是( )  a. 与 互为相反数  b.当 是负数时, 必为正数  c. 与 的值相等  d.5的相反数与 的倒数差大于-2.2.计算 (1)计算①   ;                  ②   ③                              ④  b  组  计算:     1 . 2 .  3. c   组已知 , 时,求下列代数式的值    五。学习小结

纠错栏

有理数的混合运算 篇五

(一)

教学目标 

1.进一步掌握有理数的运算法则和运算律;

2.使学生能够熟练地按有理数运算顺序进行混合运算;

3.注意培养学生的运算能力。

教学重点和难点

重点:.

难点:准确地掌握有理数的运算顺序和运算中的符号问题。

课堂教学过程 设计

一、从学生原有认知结构提出问题

1.计算(五分钟练习):

(5)-252;  (6)(-2)3;(7)-7+3-6;  (8)(-3)×(-8)×25;

(13)(-616)÷(-28);  (14)-100-27;  (15)(-1)101;  (16)021;

(17)(-2)4;  (18)(-4)2;  (19)-32;  (20)-23;

(24)3.4×104÷(-5).

2.说一说我们学过的有理数的运算律:

加法交换律:a+b=b+a;

加法结合律:(a+b)+c=a+(b+c);

乘法交换律:ab=ba;

乘法结合律:(ab)c=a(bc);

乘法分配律:a(b+c)=ab+ac.

二、讲授新课

前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?

1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行。

审题:(1)运算顺序如何?

(2)符号如何?

说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果。带分数分成整数部分和分数部分时的符号与原带分数的符号相同。

课堂练习

审题:运算顺序如何确定?

注意结果中的负号不能丢。

课堂练习

计算:(1)-2.5×(-4.8)×(0.09)÷(-0.27);

2.在没有括号的不同级运算中,先算乘方再算乘除,最后算加减。

例3 计算:

(1)(-3)×(-5)2;  (2)[(-3)×(-5)]2;

(3)(-3)2-(-6);  (4)(-4×32)-(-4×3)2.

审题:运算顺序如何?

解:(1)(-3)×(-5)2=(-3)×25=-75.

(2)[(-3)×(-5)]2=(15)2=225.

(3)(-3)2-(-6)=9-(-6)=9+6=15.

(4)(-4×32)-(-4×3)2

=(-4×9)-(-12)2

=-36-144

=-180.

注意:搞清(1),(2)的运算顺序,(1)中先乘方,再相乘,(2)中先计算括号内的,然后再乘方。(3)中先乘方,再相减,(4)中的运算顺序要分清,第一项(-4×32)里,先乘方再相乘,第二项(-4×3)2中,小括号里先相乘,再乘方,最后相减。

课堂练习

计算:

(1)-72;                 (2)(-7)2;                (3)-(-7)2;

(7)(-8÷23)-(-8÷2)3.

例4 计算

(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4.

审题:(1)存在哪几级运算?

(2)运算顺序如何确定?

:  (-2)2-(-52)×(-1)5+87÷(-3)×(-1)4

=4-(-25)×(-1)+87÷(-3)×1(先乘方)

=4-25-29(再乘除)

=-50.(最后相加)

注意:(-2)2=4,-52=-25,(-1)5=-1,(-1)4=1.

课堂练习

计算:

(1)-9+5×(-6)-(-4)2÷(-8);

(2)2×(-3)3-4×(-3)+15.

3.在带有括号的运算中,先算小括号,再算中括号,最后算大括号。

课堂练习

计算:

三、小结

教师引导学生一起总结有理数混合运算的规律。

1.先乘方,再乘除,最后加减;

2.同级运算从左到右按顺序运算;

3.若有括号,先小再中最后大,依次计算。

四、作业 

1.计算:

2.计算:

(1)-8+4÷(-2);                            (2)6-(-12)÷(-3);

(3)3·(-4)+(-28)÷7;                  (4)(-7)(-5)-90÷(-15);

3.计算:

4.计算:

(7)1÷(-1)+0÷4-(-4)(-1);(8)18+32÷(-2)3-(-4)2×5.

5*.计算(题中的字母均为自然数):

(1)(-12)2÷(-4)3-2×(-1)2n-1;

(4)[(-2)4+(-4)2·(-1)7]2m·(53+35).

有理数的混合运算 篇六

一、素质教育目标

(一)知识教学点

能按照有理数的运算顺序,正确熟练地进行有理数的加、减、乘、除、乘方的混合运算。

(二)能力训练点

培养学生的观察能力和运算能力。

(三)德育渗透点

培养学生在计算前认真审题,确定运算顺序,计算中按步骤审慎进行,最后要验算的好的习惯。

(四)美育渗透点

通过本节课的学习,学生会认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识的普适性美。

二、学法引导

1.教学方法:尝试指导法,以学生为主体,以训练为主线。

2.学生学法:

三、重点、难点、疑点及解决办法

重点和难点是如何按有理数的运算顺序,正确而合理地进行有理数混合计算。

四、课时安排

1课时

五、教具学具准备

投影仪、自制胶片。

六、师生互动活动设计

教师用投影出示练习题,学生用多种形式完成。

七、教学步骤

(一)复习提问

(出示投影1)

1.有理数的运算顺序是什么?

2.计算:(口答)

① , ② , ③ , ④ ,⑤ , ⑥ .

【教法说明】2题都是学生运算中容易出错的题目,学生口答后,如果答对,追问为什么?如果不对,先让他自己找错误原因,若找不出来,让其他同学纠正,使学生真正明白发生错误的原因,从而达到培养运算能力的目的。

(二)讲授新课

1.例2  计算

师生共同分析:观察题目中有乘法、除法、减法运算,还有小括号。

思考:首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了。带分数进行乘除运算时,必须化成假分数。

动笔:按思考的步骤进行计算,在计算时不要“跳步”太多,最后再检查这个计算结果是否正确。

一个学生板演,其他学生做在练习本上,教师巡回指导,然后师生共同订正。

【教法说明】通过此题的分析,引导学生在进行有理数混合运算时,遵循“观察—思考—动笔—检查”的程序进行计算,有助于培养学生严谨的学风和良好的学习习惯。

2.尝试反馈,巩固练习(出示投影2)

计算:

① ;

② .

【教法说明】让学生仿照例题的形式,自己动脑进行分析,然后做在练习本上,两个学生板演。由于此两题涉及负数较多,应提醒学生注意符号问题。教师根据学生练习情况,作适当评价,并对学生普遍出现的错误,及时进行变式训练。

3.例3  计算: .

教师引导学生分析:观察题目中有乘方、乘法、除法、加法、减法运算。

思考:容易看到 , 是彼此独立的,可以首先分别计算,然后再进行加减运算。

动笔:按思考的步骤进行计算,在计算时强调不要“跳步”太多。

检查计算结果是否正确。

一个学生口述解题过程,教师予以指正并板书做示范,强调解题的规范性。

4.尝试反馈,巩固练习(出示投影3)

计算:① ;

② ;

③ ;

④ .

首先要求学生观察思考上述题目考查的知识点有哪些?然后再动笔完成解题过程。四个学生板演,其他同学做在练习本上。

说明:1小题主要考查乘方、除法、减法运算法则及运算顺序等知识,学生容易出现 的错误。通过此题让学生注意运算顺序。3题主要考查:相反数、负数的奇次幂、偶次幂运算法则及运算顺序等知识点。让学生搞清 与 的区别; , .计算此题要特别注意符号问题;4题主要考查相反数运算法则及运算顺序等知识。本题要特别注意运算顺序。

【教法说明】习题的设计分层次,由易到难,循序渐进,符合学生的认知规律。注重培养学生的观察分析能力和运算能力{SHUBAOC.COM}。通过变式训练,也培养学生的思维能力。学生做练习时,教师巡回指导,及时获得反馈信息,对学生出现错误较多的问题,教师要进行回授讲解,然后再出一些变式训练进行巩固。

(三)归纳小结

师:今天我们学习了有理数的混合运算,要求大家做题时必须遵循“观察—分析—动笔—检查”的程序进行计算。

【教法说明】小结起到“画龙点睛”的作用,教给学生运算的方法、步骤,培养学生良好的学习习惯,提高运算的准确率。

(四)反馈检测(出示投影4)

(1)计算① ; ②

③ ; ④ ;

⑤ .

(2)已知 , 时,求下列代数式的值

① ;          ② .

以小组为单位计分,积分最高的组为优胜组。

【教法说明】通过反馈检测,既锻炼学生综合应用所学知识的能力,又调动学生学习的积极性和主动性,增强学生积极参与教学活动的意识和集体荣誉感。

八、随堂练习

1.选择题

(1)下列各组数中,其值相等的是( )

a. 和   b. 和

c. 和  d. 和

(2)下列各式计算正确的是( )

a.  b.

c.  d.

(4)下列说法正确的是( )

a. 与 互为相反数

b.当 是负数时, 必为正数

c. 与 的值相等

d.5的相反数与 的倒数差大于-2.

2.计算

(1) ;

(2) .

九、布置作业

(一)必做题:课本第118页3.(4)、(5);4.(6)、(7)、(8).

(二)选做题:课本第119页b组1.

十、板书设计

上一篇:有理数的加减混合运算

下一篇:有理数的混合运算(1)说课教案

有理数的混合运算 篇七

有理数的混合运算(1)淮安市涟水县药材学校  凌庆 课    题:第二章第7节  有理数的混合运算(1)教学目标:1、 知识目标:(1)了解有理数的混合运算的意义。(2)掌握有理数的混合运算顺序,并会进行简单的有理数的混合运算。2、 能力目标:培养学生的运算能力;提高学生的灵活解题能力。3、 情感目标:体会游戏中蕴涵的数学知识,体验生活中处处存在着数学。教学重点:如何按有理数的运算顺序,正确而合理地进行有理数混合运算。教学难点:熟练准确地进行有理数的混合运算。设计思路:通过学生已有的认知结构,向学生提供充分从事数学活动的机会,使学生经过猜测、交流、反思等活动获得数学知识和技能,进一步发展思维能力,激发学生学习兴趣,增强学生学好数学的信心。教学过程:一、      创设情境,导入新课1、      王阿姨想买2袋米(每袋35元),14.5元的羊肉,5.7元的蔬菜和12.5元的鱼,还想给女儿买2米彩带(每米4.5元),如果王阿姨带了200元去超市,问够不够?若不够,还少多少?若够,剩下多少钱?   (为了回答这个问题,学生将会进行必要的计算,从而体会到计算的必要性,为引入新课做准备。)2、      经过前一阶段的学习,我们已经学习了有理数的加、减、乘、除、乘方这五种运算,今天我们将学习有理数的混合运算。(板书课题:有理数的混合运算)二、      师生互动,课堂探究1、 提出问题,引发讨论算式8-23÷(—4)×(—7+5)里有哪几种运算?(从学生已有的认知结构出发,激发学生主动参与,把学生的注意力和思维活动调节到积极状态,培养学生思维的灵活性。)2、导入知识,解释疑难 (1)由此引出有理数的混合运算概念 含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算。 (2)有理数的混合运算顺序:先乘方,再乘除,最后加减。如果有括号,先进行括号内的运算。 (3)例题分析① 知道了运算顺序后,我们看刚才那道题:8-23÷(—4)×(—7+5)先让学生说出运算顺序,再解答:解:8-23÷(—4)×(—7+5) =8-23÷(—4)×(—2)  =8-8÷(—4)×(—2)  =8-(-2)×(—2) =8-4  =4② 下面我们通过例题来熟悉有理数的混合运算的法则。例1、       计算:    (- )×3÷3×(- )师生共同分析后,让学生完成例题,请一名同学到黑板上板演。题目较为简单,注重学生的参与程度,给一些基础差的学生多一些表现,让他们看到自己的进步,感受成功的喜悦,从而激发学习兴趣。   例2、计算   (-5)3×[2-(-6)]-300÷5  先让学生说出运算顺序,然后师生共同完成。   解:(-5)3×[2-(-6)]-300÷5    =(-5)3×8-300÷5    =(-125)×8-300÷5    =-1000-60    =-1060三、巩固练习,及时反馈1、计算:(课本p61,练一练)  (1)18-6÷(-3)×(-2)  (2)24+16÷(-2)2÷(-10)    (3)(-3)3÷(6-32)       (4)(5+3÷ )÷(-2)+(-3)2(教师巡视指导,考查学生掌握有理数混合运算顺序的情况)2、做游戏请同学们给2、7、8、13这四个数之间加上适当的运算符号,并按一定的顺序进行运算,使其结果为24。(小组竞赛,看看哪组最先凑成24,看看哪组方法多。)(1)   8÷2+7+13=24    (2)   (13-7)×8÷2=24(3)   [13-(8-7)]×2=24 ……    由于学生思考的角度不同,使用的方法必然是多样化,教师应尊重学生的想法,鼓励学生独立思考,提倡计算方法多样化。 (由于学生大多数玩过“24点游戏”,所以一方面可以使学生觉得数学不枯燥乏味,另一方面让学生感到生活中处处都有数学,处处用到数学,认识到数学的价值所在,增强学好数学的信心。)四、归纳总结,知识回顾让学生谈出自己的体会与收获,教师进一步总结、补充。(1)本节主要学习了有理数加、减、乘、除、乘方的混合运算,进行有理数的混合运算的关键是熟练掌握其混合运算的运算顺序。(2)本节还通过玩游戏,进一步加深理解了有理数混合运算顺序,积累了运算技巧,提高了运算速度。五、双基练习,课后拓展1、书本p63习题2.7第1题(1)(2)(4)  第2题(1)(3)2、与你的爸爸、妈妈玩“24点”的游戏。3、自选一些适当的练习巩固题。

上一篇:有理数的乘方 案例

下一篇:有理数的加减混合运算

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。