作为一名默默奉献的教育工作者,常常要写一份优秀的教案,教案是教学活动的总的组织纲领和行动方案。那么优秀的教案是什么样的呢?高考家长帮小编精心为大家分享了等腰三角形(优秀10篇),希望能够为您的写作带来一些参考。
等腰三角形 篇一
§14.3.1.1 (二)
教学目标
1、 理解并掌握等腰三角形的判定定理及推论
2、 能利用其性质与判定证明线段或角的相等关系。
教学重点
等腰三角形的判定定理及推论的运用
教学难点
正确区分等腰三角形的判定与性质。
能够利用等腰三角形的判定定理证明线段的相等关系。
教学过程:
一、复习等腰三角形的性质
二、新授:
i提出问题,创设情境
出示投影片。某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(b点)为b标,然后在这棵树的正南方(南岸a点抽一小旗作标志)沿南偏东60°方向走一段距离到c处时,测得∠acb为30°,这时,地质专家测得ac的长度就可知河流宽度。
学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”。
ii引入新课
1.由性质定理的题设和结论的变化,引出研究的内容——在△abc中,苦∠b=∠c,则ab= ac吗?
作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?
2.引导学生根据图形,写出已知、求证。
2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).
强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”。
4.引导学生说出引例中地质专家的测量方法的根据。
iii例题与练习
1.如图2
其中△abc是等腰三角形的是 [ ]
2.①如图3,已知△abc中,ab=ac.∠a=36°,则∠c______(根据什么?).
②如图4,已知△abc中,∠a=36°,∠c=72°,△abc是______三角形(根据什么?).
③若已知∠a=36°,∠c=72°,bd平分∠abc交ac于d,判断图5中等腰三角形有______.
④若已知 ad=4cm,则bc______cm.
3.以问题形式引出推论l______.
4.以问题形式引出推论2______.
例: 如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形。
分析:引导学生根据题意作出图形,写出已知、求证,并分析证明。
练习:5.(l)如图6,在△abc中,ab=ac,∠abc、∠acb的平分线相交于点f,过f作de//bc,交ab于点d,交ac于e.问图中哪些三角形是等腰三角形?
(2)上题中,若去掉条件ab=ac,其他条件不变,图6中还有等腰三角形吗?
iv课堂小结
1.判定一个三角形是等腰三角形有几种方法?
2.判定一个三角形是等边三角形有几种方法?
3.等腰三角形的性质定理与判定定理有何关系?
4.现在证明线段相等问题,一般应从几方面考虑?
v布置作业
1.阅读教材
2.书面作业:教材第150页第12题
3、《课堂感悟与探究》
初中数学等腰三角形的性质教案 篇二
一、教学目标:
1.使学生掌握等腰三角形的判定定理及其推论;
2.掌握等腰三角形判定定理的运用;
3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;
4.通过自主学习的发展体验获取数学知识的感受;
5.通过知识的纵横迁移感受数学的辩证特征。
二、教学重点:
等腰三角形的判定定理
三、教学难点
性质与判定的区别
四、教学流程
1、新课背景知识复习
(1)请同学们说出互逆命题和互逆定理的概念
估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?
启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:
1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(简称“等角对等边”).
由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法。
已知:如图,△ABC中,∠B=∠C.
求证:AB=AC.
教师可引导学生分析:
联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形。因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起。再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.
注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆。
(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形。
(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系。2.推论1:三个角都相等的三角形是等边三角形。 推论2:有一个角等于60°的等腰三角形是等边三角形。
要让学生自己推证这两条推论。
小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理。
证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.
3.应用举例
例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。
分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和。要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠
1、∠2的关系。
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.
求证:AB=AC.
证明:(略)由学生板演即可。
补充例题:(投影展示)
1.已知:如图,AB=AD,∠B=∠D.
求证:CB=CD.
分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.
证明:连结BD,在
中,
(已知)
(等边对等角)
(已知)
即
(等角对等边)
小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系。
2.已知,在 中,
的平分线与
的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.
分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论。
证明: DE//BC(已知)
,
BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结:
(1)等腰三角形判定定理及推论。
(2)等腰三角形和等边三角形的证法。
七。练习
教材 P.75
《等腰三角形》教学反思 篇三
等腰三角形作为特殊三角形的典范,既是三角形、轴对称等知识的深化,又是证明角相等、线段相等、直线垂直的常用依据,也为三角形相似、三角形全等等后继知识的学习,奠定了坚实的基础。八年级的学生,从心理发展水平决定学习的思维特征由经验型推理向演绎推理过度,依赖于直观经验作出相应的判断和猜想,有了初步的推理验证意识。
根据《义务教育数学课程标准》内容,要求落实“四基”,课堂教学要体现教学的过程性、互动性和生成性,要充分关注学生的主体地位,凸显学生对知识的主动构建、对数学基本活动经验的积累和对数学思想方法的感悟。我在本节课的教学设计中,采用了问题激趣引发思考,将学生掌握的等腰三角形概念和三角形的高、中线等已有知识经验与新知进行桥接。针对学习主题,指导学生设计学习方案,逐步积累设计的活动经验。学生主动开展操作实验、观察猜想、推理论证的探究性学习,得到等腰三角形的性质,关注其动手实践、观察猜想的直接活动活动经验和推理论证、符号抽象的间接活动经验的积累。学生在我将用多媒体辅助教学呈现教学情境中,积极参与,对等腰三角形的性质证明,多角度的展开,活跃了思维,积累了一题多证的解题经验。
在进一步在变式训练中,学生通过应用性质的解释现象,解决问题,促使经验内化为思想,外化为解题的方法。课堂中学生充分展示学习收获,积极开展互评互议,体验成功的乐趣,学会客观的评价,初步感受到了数学学习的探究性和合作交流的必要性。
本节课的设计和实施中需要改进的地方:
①设计的练习,对学生准确运用性质符号有序推理考察反馈的显少。
②变式练习在完成的过程中留给学生思考的时间较少,限制了学生解决问题的直接经验的积累和思想方法的感悟。
③对于证明角度相等,未将“等边对等角”与全等证明进行比较辨析,促进学生将获得知识和积累经验内化到已知的认识体系。
④对等腰三角形的性质的应用条件限制未进行判断辨析,易导致学生将“三线合一”性质泛化到腰上。
初中数学等腰三角形的性质教案 篇四
教学目标
1、掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。
教学重点
等边三角形的。判定定理和直角三角形的性质定理。
教学难点
能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。
教学方法
教学后记
教学内容及过程
一、定理:
一个角等于60°的等腰三角形是等边三角形
1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。
2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。渗透分类讨论的思维方法。
3.关注学生得出证明思路的过程,讲评。讲解定理:有一个角是60°的等腰三角形是等边三角形。
二、一种特殊直角三角形的性质
1.让学生拼摆事先准备好的三角尺,提问:能拼成一个怎样的三角形?能否拼出一个等边三角形?并说明理由。
2.肯定学生的发现和解释,在此基础上进一步深入提问:在直角三角形中,30°所对的直角边与斜边有怎样的大小关系?
3.演示规范的证明步骤,同时引导学生意识到:通过实际操作探索出的结论还需要给予理论证明。
4.让学生准备一张正方形纸片,按要求动手折叠。
5.讲解例题,应用定理。
6.布置学生做练习。
练习:课本随堂练习1
三、课堂小结
通过这节课的学习你学到了什么知识?了解了什么证明方法?
四、作业:
同步练习
等腰三角形 篇五
在等腰三角形性质(第三课时)的教学中,教学方法是采用“目标--问题”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。本着“问题是数学的心脏”原则,精心设计了一些问题,在教学过程中有半数的学生回答了教师的提问,但碍于教学计划,有的问题在答问过程中还不时得到本人的提醒,这样导致的结果是难于发现学生真实的思维过程。“多提问”固然有利于学生思考和理解知识,有利于了解学生掌握知识的程度。但在倡导培养创新精神和实践能力的今天,更要重视对学生问题意识的培养。问起于疑,疑源于思,课堂上教师要为学生质疑创造足够的空间和时间。目标--问题教学法的本质在于:在问题解决过程中培养学生问题意识和发现问题、提出问题的能力。令人遗憾的是本节课由于教学设计中留给学生的时间和空间偏少,导致学生发现问题、提出问题太少,长此以往的“后遗症”是学生问题意识的淡化。而在探索问题的关键时候,本人也缺乏耐心急于把思路给出,这是缺乏对学生的信任,学生将因此产生思维惰性。
教学永远是一门遗憾的艺术,吹尽黄沙始现金,我们只有以“没有最好,力求更好”来不断改进我们的教学,才能实现真正意义上的与时俱进。
等腰三角形的教学设计 篇六
一、教学目标
1.知识与技能
(1)理解公理,能够举一反三,证明等腰三角形的性质定理;
(2)能够通过全等三角形的判定定理证明等腰三角形的定理,进一步感受证明过程;
(3)熟悉证明的基本步骤和书写格式
2.过程与方法
2.通过诱导、启发学生利用全等三角形证明等腰三角形的定理,发展学生的初步演绎逻辑推理的能力,鼓励学生在交流探索中发现证明的多样性,提高逻辑思维水平。
3.情感态度及价值观
使学生渗透数学思想,培养学生合作交流的意识,同时使学生通过独立思考去考虑问题的能力加强,培养良好的学习习惯。
二、教学重点、难点
重点:探索证明等腰三角形的性质定理的思路与方法,掌握证明的基本要求和方法。
难点:通过探索利用全等三角形的判定与定义证明等腰三角形的性质定理,明确推理证明的基本要求。
三、教具准备
(两个等腰三角形、彩色粉笔、教案、尺子)
四、教学过程
1.复习旧知,引入新知
(1)请同学们回忆判定三角形全等的公理有哪些?
公理:三边对应相等的两个三角形全等(SSS)
公理:两边及其夹角对应相等的两个三角形全等(SAS)
公理:两角及其夹边对应相等的两个三角形全等(ASA)
(2)推论呢?
两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS)
(3)根据全等三角形的定义,我们可以得到定理:全等三角形的对应边相等、对应角相等
学生讨论:等腰三角形有哪些性质吗?根据等腰三角形的性质给予证明。
设计意图:为学生对本节课证明等腰三角形的定理作铺垫
2.新授课
猜想:如果一个三角形是等腰三角形,那么这个三角形的两个底角有什么关系呢?如何证明呢?
(1)画出图形;
(2)根据图形写出已知求证;
(3)写出推理过程
已知:如图1-1,在△ABC中,AB=AC,求证:∠B=∠C
分析:(折叠法)要证明两底角相等,将等腰三角形对折,折痕将等腰三角形分成了两个全等三角形,可作一条辅助线(注意辅助线要画成虚线)
设计意图:锻炼学生的动手操作能力
证明:如图1-2,取BC的中点D,连接AD
(已知)AB、AC,在△BAD和△CAD中,BDxCD(已作),AD、AD(公共边),∴△BAD≌△CAD(SSS)
∴∠B=∠C(全等三角形的对应角相等)你还有其他证明方法吗?与同伴交流作出底边上的高或作出顶角的平分线,大家可以自己证明
3.巩固练习
在△ABC中,AB=AC
(1)若∠A=40°,则∠C等于多少度?
(2)若∠B=72°,则∠A等于多少度?
设计意图:加强学生对等腰三角形定理的认识
4.引出推论
在图1-2中,观察AD还具有怎样的性质?为什么?由此能得到什么结论?我们作出了底边上的中线,已证明△BAD≌△CAD
所以∠BAD=∠CAD(全等三角形对应角相等),即AD也是顶角的平分线,∠ADB=∠ADC(全等三角形对应角相等)。因为∠BDC=180°(平角的定义),所以∠ADB=90°,即AD也是底边上的高线
由此我们得到以下推论:等腰三角形顶角的角平分线、底边上的中线及底边上的高线互相重合(简称“三线合一”)
5.随堂练习
(1)如图1-3,在△ABC中,AB=AC,且AD⊥BC,已知BD=2cm,则DC=___cm,BC=___cm
(2)如图1-4,在△ABD中,AC⊥BD,垂足为C,AC=BC=BD
①求证:△ABD是等腰三角形,②求∠BAD的度数
图1-4
6.课堂小结
等腰三角形的性质定理:
等腰三角形的两个底角相等(简写成“等边对等角”)。等腰三角形顶角的平分线平分底边并且垂直于底边。
等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,简称“三线合一”。
《等腰三角形》教学反思 篇七
本节课《等腰三角形》的活动是从回顾轴对称图形的性质入手。因为等腰三角形是一种特殊的三角形,而等腰三角形是轴对称图形。为此,教材把本节内容安排在了轴对称之后。我利用旧知的复习唤起学生对等腰三角形的记忆。然后通过让学生预习,折纸、剪纸、猜想、验证等腰三角形的性质,并运用全等三角的知识加以论证。使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,使学生在生动有趣的数学活动中探究出等腰三角形的性质,从而实现教学目的。
在教学设计上,我把重点放在了学生交流展示和解疑点评上,由个别形象到一般抽象,体现出了学生从感性认识到理性知识发生发展的认知过程。在教学过程中,我注重引导学生对解题思路和方法进行总结,渗透化归思想与分类讨论数学思想;注重培养学生形成积极探索、主动学习的态度,关注学生学习兴趣和体验,充分体现数学教学主要是数学活动的教学;注重培养学生之间的合作、交流意识与语言表达能力,增强小组合作意识。
存在的问题:
1、本课主要放在学生知识的形成过程上,因此对等腰三角形性质的应用及知识的拓展方面较薄弱,显得深度不够。还需要在习题的设计上来补充体现。
2、课堂气氛虽热烈,学生对“三线合一”这一新名词很感兴趣,但还是难免一些同学只是凑热闹,并非真正学得真知的缺陷。要引导学生真正理解和体会几何语言的的魅力。
等腰三角形 篇八
等腰三角形的性质
几何第二册第三章,3.12第2——4页
教学目标
(1)知识目标:1、掌握等腰三角形的两底角相等,底边上的高、
中线及顶角平分线三线合一的性质,并能运用
它们进行有关的论证和计算。
2、理解等腰三角形和等边三角形性质定理之间
的联系。
(2)能力目标:1、定理的引入培养学生对命题的抽象概括能力,
加强发散思维的训练。
2、定理的证明培养大胆创新、敢于求异、勇于
探索的精神和能力,形成良好的思维品质。
3、定理的应用,培养学生进行独立思考,提高独
立解决问题的能力。
(3)情感目标:在教学过程 中,引导学生进行规律的再发现,激发
学生的审美情感,与现实生活有关的实际问题使
学生认识到数学对于外部世界的完善与和谐,使
他们有效地获取真知,发展理性。
教学重点 等腰三角形的性质定理及其证明。
教学难点 用文字语言叙述的几何命题的证明及辅助线的添加。
达标进程
教学内容
教师活动
学生活动
一、 前置诊断,开辟道路
1、什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。
首先教师提问了解前置知识掌握情况。
动脑思考、口答。
二、 构设悬念,创设情境
1、一般三角形有哪些性质?
2、等腰三角形除具有一般三角形的性质外,还有那些特殊性质?
把问题作为教学的出发点,激发学生的学习兴趣。
问题2给学生留下悬念。
三、 目标导向,自然引入
本节课我们一起研究——等腰三角形的性质。
板书课题
了解本节课的学习内容。
四、 设问质疑,探究尝试
请同学们拿出准备好的等腰三角形,与教师一起按照要求,把两腰叠在一起。
[问题]通过观察,你发现了什么结论?
[结论]等腰三角形的两个底角相等。
板书学生发现的结论。
[问题]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。
[辨疑]由观察发现的命题不一定是真命题,需要证明,怎样证明?
[问题]1、此命题的题设、结论分别是什么?
2、怎样写出已知、求证?
3、怎样证明?
[电脑演示1]
[投影学生证明过程,并由其讲述]
从而引出定理 等腰三角形的两个底角相等(简写成“等边对等角”)
通过电脑演示,引导学生全面观察,联想,突破引辅助线的难关,并向学生渗透转化的数学思想。
引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。
继续观察图形
[问题]1、指出全等三角形中还有哪些
对应边、对应角相等?
2、等腰三角形的顶角的平分线又有什么性质?
设问、质疑
小组讨论,归纳总结,培养学生概括数学材料的能力。
教学内容
教师活动
学生活动
[辨疑]一般三角形是否具有这一性质呢?
[电脑演示2]
从而引出推论1 等腰三角形顶角的平分线平分底边,并且垂直于底边。
“三线合一”性质 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
[填空]根据等腰三角形性质定理的推论,在△ABC中
(1)∵AB=AC,AD⊥BC,
∴∠_=∠_,_=_;
(2)∵AB=AC,AD是中线,
∴∠_=∠_,_⊥_;
(3)∵AB=AC,AD是角平分线,
∴_⊥_,_=_。
通过电脑演示,引出推论1,并引入[填空]、强调推论1的运用方法。
电脑演示给学生对推抡1留下深刻印象,并通过[填空]了解推论1的运用方法。
五、 变式训练,巩固提高
达标练习一
A组:根据等腰三角的形性质定理
(1)等腰直角三角形的每一个锐角都等于多少度?
(2)若等腰三角形的顶角为40°,
则它的底角为多少度?
(3)若等腰三角形的一个底角为 40°,则它的顶角为多少度?
B组:根据等腰三角形的性质定理
(1)若等腰三角形的一个内角为 40°,则它的其余各角为多少度?
(2) 若等腰三角形的一个内角为120°,则它的其余各角为多少度?
(3)等边三角形的三个内角有什么关系?各等于多少度?
从而引出推论2 等边三角形的各角都相等,并且每一个角都等于60°.
题目设计遵循由易到难的原则,引导学生拾阶而上。沟通等腰三角形的性质定理和三角形内角和定理的联系,并引出推论2。
A组口答练习
B组讨论后回答。
掌握等腰三角形性质定理的应用,训练学生的类比思维,让学生获得从问题中探索共同的属性和规律的思维能力。
教学内容
教师活动
学生活动
达标练习二
A组:等腰三角形斜边上的高把直角分成两个角,求这两个角的度数。
B组:已知:如图,房屋的顶角 ∠BAC=100°。求顶架上∠B、∠C、
∠BAD、∠CAD的度数。
理论联系实际,
充分体现数学解决实际问题的作用,培养学生的应用意识,提高数学修养。
A组口答
B组独立解答。
加深理解定理及推论1,能初步灵活地运用它们进行计算和论证。
布置作业 :1、看书:P1——P3
2、课本P5 想一想
教案设计说明
本节课是在学生掌握了一般三角形基础知识和初步推论证明的基础上进行学习的,担负着训练学生会分析证明思路的任务,等腰三角形两底角相等的性质是今后论证两角相等的依据之一,等腰三角形底边上的三条主要线段重合的性质是今后论证两条线段相等、两个角相等及两条直线垂直的重要依据。因此设计时,我分别从几个方面作了精心策划:
1、创设丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,唤起与形成新知相关的旧知,从而使学生的原认知结构对新知的学习具有某种“召唤力”。
2、提供可探索性的问题,合理的设计实验过程,创造出良好的问题情境,不断地引导学生观察、实验、思考、探索,使学生感到自己就象科学家那样提出问题、分析问题、解决问题,去发现规律,证实结论。发挥学生学习的主观能动性,培养学生的探索能力、科学的研究方法、实事求是的态度。
3、在巩固应用时,训练题组的设计具有阶梯性,加强了变式训练,便于及时反馈。实际应用充分体现了数学解决实际问题的作用,培养学生的应用意识,提高数学修养。
4、利用直观教具及电化教学手段,创设了丰富的课堂教学环境,触发学生求知心向的生成,自觉地努力调集思维和旧知纷纷指向新知,成为学习活动的“催化剂”、“助推器”。
威海市经济技术开发区皇冠中学 丛燕燕
2000年4月
等腰三角形的性质
教 案
威海市经济技术开发区皇冠中学
丛燕燕
二O O O年四月
------------------------------------------------------------
相关专题: 初中数学
专题信息:
九年级(上)第一章(证明二)单元测试卷1(2004-10-12 12:48:49)[1300]
等腰三角形 篇九
等腰三角形的性质
几何第二册第三章,3.12第2——4页
教学目标
(1)知识目标:1、掌握等腰三角形的两底角相等,底边上的高、
中线及顶角平分线三线合一的性质,并能运用
它们进行有关的论证和计算。
2、理解等腰三角形和等边三角形性质定理之间
的联系。
(2)能力目标:1、定理的引入培养学生对命题的抽象概括能力,
加强发散思维的训练。
2、定理的证明培养大胆创新、敢于求异、勇于
探索的精神和能力,形成良好的思维品质。
3、定理的应用,培养学生进行独立思考,提高独
立解决问题的能力。
(3)情感目标:在教学过程 中,引导学生进行规律的再发现,激发
学生的审美情感,与现实生活有关的实际问题使
学生认识到数学对于外部世界的完善与和谐,使
他们有效地获取真知,发展理性。
教学重点 等腰三角形的性质定理及其证明。
教学难点 用文字语言叙述的几何命题的证明及辅助线的添加。
达标进程
教学内容
教师活动
学生活动
一、 前置诊断,开辟道路
1、什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。
首先教师提问了解前置知识掌握情况。
动脑思考、口答。
二、 构设悬念,创设情境
1、一般三角形有哪些性质?
2、等腰三角形除具有一般三角形的性质外,还有那些特殊性质?
把问题作为教学的出发点,激发学生的学习兴趣。
问题2给学生留下悬念。
三、 目标导向,自然引入
本节课我们一起研究——等腰三角形的性质。
板书课题
了解本节课的学习内容。
四、 设问质疑,探究尝试
请同学们拿出准备好的等腰三角形,与教师一起按照要求,把两腰叠在一起。
[问题]通过观察,你发现了什么结论?
[结论]等腰三角形的两个底角相等。
板书学生发现的结论。
[问题]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。
[辨疑]由观察发现的命题不一定是真命题,需要证明,怎样证明?
[问题]1、此命题的题设、结论分别是什么?
2、怎样写出已知、求证?
3、怎样证明?
[电脑演示1]
[投影学生证明过程,并由其讲述]
从而引出定理 等腰三角形的两个底角相等(简写成“等边对等角”)
通过电脑演示,引导学生全面观察,联想,突破引辅助线的难关,并向学生渗透转化的数学思想。
引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。
继续观察图形
[问题]1、指出全等三角形中还有哪些
对应边、对应角相等?
2、等腰三角形的顶角的平分线又有什么性质?
设问、质疑
小组讨论,归纳总结,培养学生概括数学材料的能力。
教学内容
教师活动
学生活动
[辨疑]一般三角形是否具有这一性质呢?
[电脑演示2]
从而引出推论1 等腰三角形顶角的平分线平分底边,并且垂直于底边。
“三线合一”性质 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
[填空]根据等腰三角形性质定理的推论,在△ABC中
(1)∵AB=AC,AD⊥BC,
∴∠_=∠_,_=_;
(2)∵AB=AC,AD是中线,
∴∠_=∠_,_⊥_;
(3)∵AB=AC,AD是角平分线,
∴_⊥_,_=_。
通过电脑演示,引出推论1,并引入[填空]、强调推论1的运用方法。
电脑演示给学生对推抡1留下深刻印象,并通过[填空]了解推论1的运用方法。
五、 变式训练,巩固提高
达标练习一
A组:根据等腰三角的形性质定理
(1)等腰直角三角形的每一个锐角都等于多少度?
(2)若等腰三角形的顶角为40°,
则它的底角为多少度?
(3)若等腰三角形的一个底角为 40°,则它的顶角为多少度?
B组:根据等腰三角形的性质定理
(1)若等腰三角形的一个内角为 40°,则它的其余各角为多少度?
(2) 若等腰三角形的一个内角为120°,则它的其余各角为多少度?
(3)等边三角形的三个内角有什么关系?各等于多少度?
从而引出推论2 等边三角形的各角都相等,并且每一个角都等于60°.
题目设计遵循由易到难的原则,引导学生拾阶而上。沟通等腰三角形的性质定理和三角形内角和定理的联系,并引出推论2。
A组口答练习
B组讨论后回答。
掌握等腰三角形性质定理的应用,训练学生的类比思维,让学生获得从问题中探索共同的属性和规律的思维能力。
教学内容
教师活动
学生活动
达标练习二
A组:等腰三角形斜边上的高把直角分成两个角,求这两个角的度数。
B组:已知:如图,房屋的顶角 ∠BAC=100°。求顶架上∠B、∠C、
∠BAD、∠CAD的度数。
理论联系实际,
充分体现数学解决实际问题的作用,培养学生的应用意识,提高数学修养。
A组口答
B组独立解答。
加深理解定理及推论1,能初步灵活地运用它们进行计算和论证。
布置作业 :1、看书:P1——P3
2、课本P5 想一想
教案设计说明
本节课是在学生掌握了一般三角形基础知识和初步推论证明的基础上进行学习的,担负着训练学生会分析证明思路的任务,等腰三角形两底角相等的性质是今后论证两角相等的依据之一,等腰三角形底边上的三条主要线段重合的性质是今后论证两条线段相等、两个角相等及两条直线垂直的重要依据。因此设计时,我分别从几个方面作了精心策划:
1、创设丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,唤起与形成新知相关的旧知,从而使学生的原认知结构对新知的学习具有某种“召唤力”。
2、提供可探索性的问题,合理的设计实验过程,创造出良好的问题情境,不断地引导学生观察、实验、思考、探索,使学生感到自己就象科学家那样提出问题、分析问题、解决问题,去发现规律,证实结论。发挥学生学习的主观能动性,培养学生的探索能力、科学的研究方法、实事求是的态度。
3、在巩固应用时,训练题组的设计具有阶梯性,加强了变式训练,便于及时反馈。实际应用充分体现了数学解决实际问题的作用,培养学生的应用意识,提高数学修养。
4、利用直观教具及电化教学手段,创设了丰富的课堂教学环境,触发学生求知心向的生成,自觉地努力调集思维和旧知纷纷指向新知,成为学习活动的“催化剂”、“助推器”。
等腰三角形的性质
《等腰三角形》教学反思 篇十
今天在县教育局的组织下,在李菊芳科长的领导下,我在永流中学顺利上完示范课《等腰三角形的性质》,并和领导,同仁们进行了评课。在大家的指导下,结合这节课的设计意图,以及学生的学习效果,我个人认为值得以后借鉴的地方有:
(一)突出重点,实现教学目标
《等腰三角形的性质》这节课重点是让学生通过动手翻折等腰三角形纸片得出“等腰三角形的两底角相等”及“三线合一”的性质。设计理念是让学生通过折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证。使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目标。
(二)导课自然,成功引入新课
首先用生活中的图片引入等腰三角形的基本图形,联系生活,创设问题情境,把问题作为教学的出发点,激发学生的学习兴趣。引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。从而使学生的原认知结构对新知的学习具有某种“召唤力”,既明确了本节课的主要内容,激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活。
(三)设置有梯度,学生易于接受
在本节课的问题设置中,特别是巩固练习题的设置,由易到难,由一般到规律先一般顶角70度,到一个角是70度,再到一个角是110度,再总结出顶角的范围,底角的范围,给据学生的认知特点,易于接受。有着良好的效果
这节课,也有不足的地方:
(一)在证明性质时由命题转化几何求证时应多加强已知,求证的书写过程。
(二)上课的节奏有点快。在以后的教学中能多加以改正。美中不足的是性质二的应用本节课安排的例题,习题有点少,在以后的教学中应多补充些例题及习题。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。