1. 主页 > 范文大全 >

分数乘法教案【优秀11篇】2-4-24

作为一无名无私奉献的教育工作者,总不可避免地需要编写教案,借助教案可以让教学工作更科学化。来参考自己需要的教案吧!

分数乘法教案 1

分数乘法教案【优秀11篇】2-4-24

教学目标:

1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。

2、发展学生思维,侧重培养学生分析问题的能力。

教学重点:

理解数量关系。

教学难点:

根据多几分之几或少几分之几找出所求量的对应分率。

教学过程:

一、 复习

1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?

(1)一块布做衣服用去 。

(2)用去一部分钱后,还剩下 。

(3)一条路,已修了 。

(4)水结成冰,体积膨胀 。

(5)甲数比乙数少 。

2、口头列式:

(1)32的 是多少?

(2)120页的 是多少?

(3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了 ,降低了多少分贝?

(4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的 ,人现在听到的声音是多少分贝?

3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?

4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。

二、新授

1、教学例2

(1)运用线段图帮助学生分析题意,寻找解题方法。

(2)让学生说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位“1”的量?让后把线段图表示完整。

降低?分贝

现在?分贝

80分贝

(1) 四人小组讨论,根据线段图提出解决办法,并列式计算。

解法一:80-80× =80-10=70(分贝)

现在?分贝

80分贝?

(4)鼓励学生根据题意、结合线段图,想出第二种解答方法。

解法二:80×(1- )=80× =70(分贝)

(5)学生讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的几份之几是多少的方法求出这个部分量。

2、巩固练习:P20“做一做”

3、教学例3

(1)读题理解题意后,提出“婴儿每分钟心跳的次数比青少年多 ”表示什么意思?(组织学生讨论,说说自己的理解)

(2)引导学生将句子转化为“婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的 ”。着重让学生说说谁与谁比,把谁看作单位“1”。

(3)出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。

解法一:75+75× =75+60=135(次)

解法二:75×(1+ )=75× =135(次)

4、巩固练习:P21“做一做”(列式后让学生说说算式各部分表示什么)

三、练习

1、练习五第2、3题:引导学生抓住题目中关键句子分析,找到谁与谁比,谁是表示单位“1”的量。

2、练习五第3、4题:学生依据例题引导的解题方法,独立完成3、4题。

四、布置作业

练习五第7、8、9、10题。

分数乘法教案 2

教学目的:使学生通过复习和分数乘法的计算、解答分数乘法应用题以及求倒数,培养学生综合运用知识的能力,发展学生的思维。 .

教学过程

一、基训

A、1、填》、《、=A》B》0

4/5A/B( )A/B

4/5B/A( )B/A

A/54/B( )4/5

2、一个真分数乘以一个假分数,结果大于真分数,对吗?

3、A、B互为倒数,那么1/A、1/B也互为倒数,对吗?

B、 1.分数乘以整数的意义是什么?

2.一个数乘以分数的意义是什么?一个数乘以分数的计算法则是什么?

3.计算带分数的乘法应注意些什么?

4.分数乘法的简便运算可以应用哪些运算定律?

5.解答分数乘法应用题的关键是什么?

6.倒数的意义是什么?

学生回答这些问题时,只要意思说得正确就可以了。有些问题还可以问一些与之相

关的问题,如运算定律的表达式以及字母可以表示什么数等等。

二、综合练习

1.找1。

甲是乙的35 。乙是甲的35 。

甲比乙的。35 多1。乙比甲的35 少1。

甲的35 和乙同样多。

学生独立判断,集体订正。让学生说说是怎样判断的。教师可再补充几题:

2.做口算练习。

3.求下面各数的倒数。

2/7 1/9 6 20 0.6

学生独立解答,教师巡视,发现问题及时纠正。

4.小红体重42千克,小云体重40千克,小明的体重是小红和小云体重和的1/2,三人共重多少?

5.已知a4/3=11/12b=3/3c,a、b、c都不是0,谁大?

三、小结(略)

四、补充作业。

分数乘法教案 3

一、教材分析:

六年级上册第二单元围绕"分数乘法"这个主题。本单元教学内容包括三部分内容:分数乘法,解决问题和倒数。本单元是在整数乘法,分数的意义和性质的基础上进行教学的,同时又是学习分数除法和百分数的重要基础。与整数,小数的计算教学相同,分数乘法的计算同样贯彻《标准》提出的让学生在现实情景中体会和理解数学的理念,通过实际问题引出计算问题,并在练习中安排一定数量的解决实际问题的内容,以丰富练习形式,加强计算与实际应用的联系,培养学生应用数学的意识和能力。

根据本套教材的编写思路,本单元将解决一些特殊数量关系问题的内容单独安排。即把解决"求一个数的几分之几是多少"这一类问题组成"解决问题"一个小节,通过教学使学生理解这类问题的数量关系,掌握解题思路。与整数,小数的计算教学相同,教材体现结合具体情境体会运算意义的要求。不再单独教学分数乘法的意义,而是通过解决实际问题,结合计算过程去理解计算的意义。同时也不再呈现分数乘法的。计算法则,简化了算理推导过程的叙述及解决问题思路的提示,通过直观与操作等手段,在重点关键处加以提示和引导,这样可以为学生探索与交流提供更多的空间。

学情分析:

六年级的学生已经掌握整数乘法,小数乘法的计算,对于分数有一定的理解,能够在现实情境中体现和理解数学的理念。思维已经向抽象发展,需要学习透过事物表象揭示事物的本质。

二、单元目标解读

根据第三学段提出的"计算和运用"目标和本单元的特点确定本单元的教学目标:

1、理解并掌握分数乘法的计算方法,会进行分数乘法计算。

2、理解乘法运算定律对于分数乘法同样适用,并会应用这些运算定律进行一些简便计算。

3、会解答求一个数的几分之几是多少的实际问题。

4、理解倒数的意义,掌握求倒数的方法。

本单元的教学重点,难点是:

1、掌握分数乘法的计算方法,会进行分数乘法的计算。

2、会解答求一个数的同分之几是多少的实际问题。

3、理解和掌握求倒数的方法。

三、主题单元教学构想:

(一)注意三个原则

1、在已有知识的基础上,帮助学生自主构建新的知识。

2、让学生在现实情景中学习计算。

3、改变学生学习方式,通过动手操作,自主探索和合作交流的方式学习分数乘法。

(二)设计思路

本单元教学内容计划用15课时。

第一部分:分数乘法(7课时)

1、通过直观与操作帮助学生理解分数乘法的算理,会正确进行计算。

2、加强自主探索与合作交流。

第二部分:解决问题(5课时)

1、紧密联系分数乘法的意义,理解和掌握解决问题的思路与方法。

2、借助线段图帮助学生理解数量关系。

第三部分:倒数的认识(1课时)

1、让学生充分观察讨论,找出算式的特点。

2、特别理解"互为倒数"的含义

第四部分:整理和复习(2课时)

1、以知识整理措施形式回顾本单元的主要学习内容。

2、安排练习。

四、教学反思

"分数乘法"是这一单元的核心内容,不仅分数除法是以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握分数乘法具有重要的意义。教学本单元后我的感受是:

1、分数乘法解决问题对单位"1"的理解,重点应放在在应用题中找单位"1"的量以及怎样找的上面。为以后应用题教学作好辅垫。

2、在以后教学前我还要深钻教材,把握好课本的度。

3、在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学。提高教学质量。

分数乘法教案 4

教学内容:第45页例题4、5

教学目标:

1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。

2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。

教学重点、难点:

分数乘分数的计算法则。

对策:

使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。

一、 复习

1、计算下列各式

1/15╳5= 2╳2/3 = 7/8 ╳14= 15/6 ╳24=

2、说说整数与分数相乘的计算方法?先约分再计算还是先计算再约分方便?

二、 新授

1、出示例题4题目和图。

2、理解题目意思。

3、你知道左边图中画斜线的部分占1/2的几分之几?是这张纸的几分之几?你是怎样想的?

4、右边呢?

5、你能看图用算式来表示结果吗?填在书上。组织交流。

6、总结:求一个分数的几分之几是多少,也可以用乘法计算。

7、探究:观察这两个算式,猜才分数与分数相乘是怎样计算的?

学生说出自己的猜想。

验证猜想,教学例题5。

(1)出示例题5

(2)在图中画斜线表示计算结果,再填空。

(3)组织交流:你发现积的分子、分母与两个因数的分子、分母各有什么关系?

(4)总结得出:分数与分数相乘,用分子相乘的积作分子,分母相乘的积作分母。

三、巩固

1、出示 1/42/3 8/93/4

2、学生独立完成,指名板演

3、可能出现两种:先乘再约分 或先约分再相乘

引导学生比较这两种方法谁更好?如果是24/7755/8呢?再次体会到先约分再计算比较简便。

4、介绍简便书写格式,发现可以在算式上直接约分,再计算,提高速度。

四、比较

出示2/113和45/6,先计算,再比较,分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?

所以不管上分数乘整数还是分数,都可以看作是分数乘分数的计算方法来计算。

五、巩固提高

您现在正在阅读的苏教版《分数乘法》第四课时教学设计文章内容由收集!本站将为您提供更多的精品教学资源!苏教版《分数乘法》第四课时教学设计1、第46页上的练一练

先独立计算在书上,指名板演,再组织交流。

2、第48页上的第1题

读题先在图中表示出来,再列式计算。组织交流想法。

3、第48页上的第3题

先独立判断,将不对的改正过来。组织交流:是否正确?错在哪里?怎样改?最后是多少?

4、第48页上的第4题

先独立计算,再组织交流:上下两题有什么相同的地方?结果怎样?

六、布置作业: 练习九 2、5

课前思考:

教学例4和例5时,我想如果借助投影仪依次呈现长方形图,可能会对学生思考问题有帮助,特别是对于一些学习困难生来说,这样便于他们直观地看出所求部分占了这张纸的几分之几。当然,最后还是要让学生从直观图中抽象出本质的东西,即认识到分数与分数相乘的计算方法。

在试一试的教学中,要分三个层次进行。第一层次是计算分数乘分数时用先约分再计算的方法;第二层次尝试用分数乘分数的方法计算分数乘整数;第三层次学习直接在题中约分的方法来计算分数乘法。估计这么多的计算方法一下子呈现在学生面前,会使一部分学生不知所措。课中教师要多关注学生学习情况,及时调整教学行为。

课前思考:

例4的教学可分三步进行,第一,看图理解1/2的1/4和1/2的3/4表示的意义,联系图弄清分别是这张纸的几分之几。第二,进一步明确求1/2的1/4或1/2的3/4是多少,也可以用乘法。第三,前两步的思考过程完成教材上的填空,建立关于分数乘分数计算方法的初步猜想。

例5可以根据例4的猜想,算出算式的积,再通过画图验证。教学时让学生观察比较几个算式的因数和积,通过交流归纳出分数乘分数的计算方法。

在介绍简便书写格式,发现可以在算式上直接约分再计算,学生可能在整数乘分数时会把整数同分子约分,教学时要进行强调。

课后反思:

本节课在教学时,我借助直观的图形,不仅让学生掌握分数与分数相乘的计算方法,更重要的是让学生理解分数乘分数的含义。并在例题教学之后增加了一个画一画环节----(1)教师写一个分数乘分数的算式,让一个学生上黑板画图表示算式的意义,要求边画边说为什么怎样画;(2)再写一个分数乘分数的算式,让全体学生独立画图表示,再同桌交流,最后指名交流。这样学生对分数乘分数的意义有了更深的认识。

在第48页第4题练习时,加强了分数乘法与分数加法的对比,强化计算方法区别,防止学生对两种计算出现混淆。

课后反思:

反思本节课的教学,在例4的教学中由于要借助直观图来思考1/2的1/4和1/2的3/4是这张纸的几分之几,所以忽略了指导学生理解1/2的1/4和1/2的3/4所表示的意义,这是今天这节课上的一处败笔。因为对于分数乘分数的计算方法的推导和理解、运用,对于学生来说反而不存在太大的问题。

从学生作业情况来看,遇到整数乘分数时,往往出现错误,分析原因是计算时不会把整数改写成分母是1的分母来计算,出现分子和分子约分的现象;还有些学生约分时仍存在错误,这样就造成乘法计算错误。

估计明天的课上计算分数连乘时问题会更多,教学时要思考对策。

课后反思:

通过教学,学生能理解分数乘分数的意义,掌握分数乘分数的计算方法,并通过学习分数乘分数的计算方法适用于分数与整数相乘,体会数学知识的内在联系,感受数学知识和方法的应用价值。

对于能约分的可以直接在题目上约,课堂上进行了讲解和示范,但在做作业时考虑到有部分学生约分时容易出错,我还是让学生写出了分母和分母相乘,分子和分子相乘的那一步,再约分,最后计算。从作业的反馈情况来看学生的计算的正确率也比较高

分数乘法的教案 5

教学目标:

1、使学生进一步理解求一个数的几分之几是多少的应用题的数量关系,掌握这类应用题的解题思路和解题方法。

2、培养学生认真审题,独立思考的学习习惯。

3、训练学生分析、解题问题的能力。

教学过程:

一、书上第44页上的第12题

1、先引导学生观察每一组分数的大小特点,知道有一些分数比1大,有些分数比1小。计算后,再把每一个积分别与15(或36)比较。

从而发现:一个数与比1大的分数相乘,所得的结果比原数大;一个数与比1小的分数相乘,所得的结果比原数小。

2、书上第44页上的第13题

引导学生根据第12题发现的规律,直接判断出每组两道算式得数的大小。

二、说说分数的意义,并把数量关系补充完整

(1)今年的产量比去年增产1/8。

×1/8=

(2)钢笔枝数的2/5相当于圆珠笔的枝数。

×2/5=

(3)花布的米数比白布长1/4。

×1/4=

(4)实际每月比计划节约了1/10。

×1/10=

(引导学生想到:单位“1”是哪个量,另一个量是多少,写出数量关系。)

二、对比练习。

1、有两块布,白布长15米,花布是白布的。1/3,花布有多少米?

2、有两块布,白布长15米,花布比白布长1/3,花布比白布长多少米?

3、有两块布,白布长15米,花布长1/3米,白布比花布长多少米?

(1)分别说说题中的分数是哪两个量比较的结果,比较时把哪个量看作单位1?

(2)比较3题有何异相点?

三、综合练习。

1、一种商品原价是250元,现价是原价的4/5,现价是多少?

2、一种商品原价是250元,后来降价了1/5,降价多少?

3、修路队修一条1米的路,第一天修了全长的1/6,第二天修了全长的1/4。

(1)两天分别修了多少米?

(2)第二天比第一天多修多少米?

(3)还剩多少米没修?

四、总结。

课后反思:

由于自己在前两节课新授学习时轻视了这单元的难度,高估学生,所以在新学习分数乘法时,就说明:熟练以后可以省略中间的计算过程直接写出得数,且补充习题册上也有这样的要求,造成很多学生在计算还不熟练的情况下就不愿意写出计算过程,结果计算正确率不高,还有部分学生计算方法没有得到完全巩固。所以在今天的练习课上,再次复习巩固计算方法,并且要求学生以后一定要写出计算过程,特别是有约分的类型,直到以后熟练后我再通知什么时候可以省略中间的计算过程。从今天的课堂作业看,这样操作确实收到了一定效果。

继续加强对数量关系的训练,关键是对其中分数含义的理解。只要学生能理解分数的意义,说明是将什么看作单位1,平均分成几份,表示这样的几份,那么写数量关系基本上没有困难了。同时,继续教学生学习借助线段图分析部分题目,这样更直观形象。

分数乘法教案 6

教学目标:

1、使学生理解分数乘整数的意义和整数乘法的意义相同,并掌握分数乘整数的计算法则,正确运用法则进行计算。

2、通过引导学生进行比较、归纳,培养学生迁移类推的能力和初步概括能力。

3、在探究活动中激发学生学习数学的兴趣。

教学重点:分数乘整数的意义和计算法则。

教学难点:为了计算简便,能约分的要先约分,然后再相乘。

教学过程:

一、复习导入

1、填空。

(1)8+8+8=()()

(2)54=()+()+()+()

(3)5个12是多少?列式为()

乘法的意义是什么?

2、计算。

二、引导探索,展示反馈

1、揭示课题。

今天开始我们学习分数乘法。首先学习分数乘整数。

2、分数乘整数的意义。

(1)出示P8例1。

(2)表示什么意义?

(3)的分数单位是多少?有几个这样的分数单位?

(4)人走3步的距离是袋鼠跳一下的几分之几?就是求什么?

(5)3个相加的和是多少?怎样列式?

(6)++,这3个加数有什么特点?还可以怎样列式比较简便?

(7)3表示什么意思?

(8)把3和125的意义相比较,引导学生归纳本部门分数乘整数的意义与整数乘法的意义相同。

3、分数乘整数的计算法则。

(1)用加法算:

(2)用乘法算:

(3)引导学生归纳:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

4、教学例2:6

学生试做,强调为了计算简便,能约分的要先约分,然后再乘。

5、尝试练习:P9做一做第1题。

三、巩固深化,拓展思维

1、P9做一做第2、3题。

2、小结:这节课学习了什么内容?分数乘整数的意义是什么?分数乘整数的计算方法是怎样的?计算时要注意些什么?

3、课堂练习:P12练习二第1、2、4题。

4、课外补充,拓展延伸

(1)、一种稻谷每千克能出大米千克,100千克稻谷能出大米多少千克?

(2)、甲、乙两袋橘子,如果从甲袋中拿出千克橘子放入乙袋,则两袋橘子一样重。原来甲袋橘子比乙袋橘子重多少千克?

分数乘法教案 7

教学目标:

1.使学生通过观察、猜测、推理、验证等数学活动理解整数乘法运算定律对于分数乘法同样适用,并能应用运算定律进行一些简便计算。

2.在计算过程中,培养学生细心观察、根据具体情况灵活应用所学知识解决问题的能力。

3.培养学生探索数学问题的兴趣,使其在自主探究、合作交流中体验成功的喜悦。

教学重点:

培养学生应用运算定律进行一些简便计算的能力。

教学难点:

培养学生细心观察、根据具体情况灵活应用所学知识的能力。

教学准备:

课件

教学过程:

一、复习导入

(一)激疑引入

1.教师在黑板上出示两个算式:21×3 3×21。

同学们,这两个算式相等吗?(学生显然能得出相等,教师用等号连接)21×3=3×21。

2.看到这个等式,你想起了什么知识?(乘法交换律)

3.用字母可以表示为:。这里的字母你觉得可以表示哪些数呢?

4.和可以表示分数,这只是你们的猜测。下面请你独立思考,举例验证这个猜测。

5.交流反馈:整数乘法交换律在分数乘法中同样适用,此时你还想到了哪些定律呢?

(二)点明课题

师:今天我们就来学习和研究整数乘法运算定律推广到分数。

【设计意图】从学生原有的知识经验入手,利用知识的正迁移和同化与顺应的心理基础,使学生通过猜测、举例验证得出“整数乘法交换律在分数乘法中同样适用”,使其获得成功的喜悦。这样既培养了学生观察、猜测、验证的数学思维能力,又培养了学生口头表达的能力,使其能既有条理又较为清晰地表述自己的思考过程。同理,利用这样的数学思想,得出其他两个运算定律的应用。

二、探究新知

(一)合作学习,展开验证

1.刚才同学们还想到了乘法结合律和乘法分配律,那么这里的字母也可以表示分数吗?下面请同桌合作,举例验证。

2.同桌合作,举例验证。

合作要求:

(1)举例说明

①请同桌各写出一个算式并计算出结果,如或;

②同桌交换,计算出利用运算定律后的结果,如或。

③对照两者的结果是否相等。

(2)能否举出一个不相等的例子?

(3)得出结论。

3.全班交流反馈,请几个小组来交流验证过程。

4.小结:整数乘法交换律、结合律和分配律对于分数乘法同样适用。

【设计意图】学生通过独立思考、同桌合作、全班交流反馈的形式,经历猜测、举例验证、尝试举反例、得出结论这样的数学活动过程,激发了学生探究数学知识的兴趣,渗透了科学的探究方法。这一过程,学生始终是知识建构的主人,充分体现了学生的主体地位。

(二)实践新知,应用提高

1.我们花了那么多时间和精力为了得出这一个结论,应该怎样应用呢?

2.独立尝试。

(1)出示:

(2)思考:选择什么运算定律才能使计算简便?

(3)计算

3.小组交流。

四人小组合作交流,讨论:

(1)计算中运用了什么运算定律?

(2)这样计算,为什么能使计算简便?

4.全班反馈

第一题:

=×5×(应用了乘法交换律,可约分)

=3×

=

第二题:

=×12+×12(应用了乘法分配律,可约分)

=10+3

=13

5.小结:应用乘法运算定律,能使一些分数混合运算变得简便。

【设计意图】学生通过独立思考、小组交流、全班反馈,得到“应用乘法运算定律,能使一些分数混合运算变得简便”的结论,使学生体验到获得成功的喜悦,更能够激发其学习的兴趣。

三、练习巩固

1.请独立完成教材第9页的“做一做”。

(1)××3 87×

选择合适的运算定律,使计算简便。第3小题,思考87与的分母之间有什么联系,怎样做可以进行约分呢?

(2)奶牛场每头奶牛平均日产牛奶t,42头奶牛100天可产奶多少吨?

每头奶牛每天产奶t,那么42头奶牛每天产奶t。求这些奶牛100天产奶的数量,可以列出的算式为:。

2.出示:

(1)请同学们仔细观察这两题,动笔前先思考怎样算比较简便?学生独立计算。

(2)第一题用乘法分配律进行简便计算大家都没有异议;第二题到底如何?两种方法都试试看,比较得出结论,其实用乘法分配律并不简单。

(3)第二题的数怎么改一下用乘法分配律就比较简单了呢?

(4)做了这两题,你有什么体会?

【设计意图】引导学生先观察后计算,有利于学生细心观察,养成良好的计算习惯。同时让学生通过计算自己感悟,并不是任何计算都是用乘法分配律简便。针对封闭的计算题采用了开放式教学,为计算练习注入了活力,学生兴趣高涨,思维活跃。

3.开放练习:在□中填上适当的数,使计算简便。

×15×□ ×+×□ (+□)×□

【设计意图】开放式习题的设计,把学生所学的知识和已掌握的解题能力巧妙地融合在一起,既使学生巩固乘法运算定律的运用,弄清了知识之间的联系和区别,又使学生的知识得到了整合,提高了学生的发散思维能力。

四、课堂小结

通过本节课的学习,你掌握了哪些知识?

你是怎样获得这些知识的?

你还有哪些疑问?

五、随堂作业

独立完成教材第12页练习二的第12、13、14题。

分数乘法教案 8

教学目标:

能力目标:

能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

知识目标:学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的`结果。

情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

教学重点、难点:

学生能够熟练的计算出分数乘以分数的结果。

教学方法:师生共同归纳和推理

教学准备:教学参考书、教科书

教学过程:

一、复习导入:

教师出示教学板书,请学生计算下列分数乘法运算题。

教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

学生寻找完毕,纷纷举手准备回答问题。

教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。)

二、课堂练习:

学生做第一题折一折,涂一涂。让学生用折纸的方式再次验证分数乘以分数的运算法则,注意让学生体会分数的几分之几是多少?

学生做第2题,注意让学生体验分数相乘的积于每一个乘数的关系。

学生做第3题,让学生理解分数的几分之几与占整体“1”之间的关系。

学生做第4题,让学生能够学会比较的和占整体“1”的大小。

学生做第5题,教师注意让学生整体的几分之几是多少?

学生做第6题,让学生注意区分不同标准的几分之几是多少;占整体的几分之几。

学生做第7题,教师注意让学生利用分数乘法学会解决生活中实际问题。

第8题,学生根据学过的分数乘法知识,分辨一下唐僧分西瓜是否公平。

四、课堂小结:

同学们,这一节课你学到了哪些知识?(提问学生回答)

板书设计:

是整个操场“1”的,是整个操场“1”的。

分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。

教学重点。 9

使学生理解分数乘整数的意义及计算方法。

分数乘法教案 10

教学内容:人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。

教学目标:

1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。

2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。

3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。

教学重点:掌握分数乘整数的计算方法。

教学难点:理解分数乘整数和一个数乘分数的意义。

教学准备:课件。

教学过程:

一、情境创设,探求新知

(一)探索分数乘整数的意义

1.教学例1(课件出示情景图) 师:仔细观察,从图中能得到哪些数学信息?这里的“个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)

师:想一想,你还能找出不一样的方法验证你的计算结果吗?

2.小组交流,汇报结果 预设:(1)(个);(2)(个);(3)(个);(4)3个就是6个就是,再约分得到(个)。(根据学生发言依次板书)

3.比较分析 师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?

预设: 生1:每个人吃个,3个人就是3个相加。

生2:3个个相加也可以用乘法表示为。

提出质疑:3个相加的和可以用乘法计算吗?为什么?

预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

引导说出:这两个式子都可以表示“求3个相加是多少”。

师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

4.归纳小结

通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。(二)分数乘整数的计算方法

1.不同方法呈现和比较 师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,的计算过程用式子该如何表示?

预设: 生1:按照加法计算=(个)。 生2:(个)。

师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个。

2.归纳算法 师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢? 引导说出:用分子与整数相乘的积作分子,分母不变。(板书)

3.先约分再计算的教学

师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?

预设:一种算法是先计算再约分,另一种是先约分再计算。

师:比较一下,你认为哪一种方法更简单?为什么? 小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。

二、巩固练习,强化新知

1.例1“做一做”第1题 师:说出你的思考过程。

2.例1“做一做”第2题 师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。

三、探索一个数乘分数的意义

教学例2(课件出示情景图)

(1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。

预设1:求3桶共有多少升?就是求3个12 L的和是多少。 预设2:还可以说成求12 L的3倍是多少。

预设3:单位量×数量=总量,所以12×3=36(L)。 (2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。) 交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的是多少。” (3)出示第2小题学生自练。引导说出:“12×表示求12 L的是多少。”在这里都是把12 L看作单位“1”。

(4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。) 归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。

四、课堂练习,深化理解

1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的,吃了多少千克? 师:你能说说这个算式表示的意义吗?“求3千克的是多少。”

2.比较两种意义 出示:一袋面包重千克,3袋重多少千克?

师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?

预设1:一个是分数乘整数,另一个是整数乘分数。

预设2:它们表示的意义相同但有所区别。 引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。 师:那么,它们有什么是相同的呢?(计算方法和结果)

五、联系实际,灵活运用 1.算式可以列成 × ,表示 ;或者表示 ;

也可以列成 × ,表示 。

师:选择一个算式进行计算,想一想,计算时要注意什么?

2.比较练习

(1)一堆煤有5吨,用去了,用去了多少吨?

(2)一堆煤有吨,5堆这样的煤有多少吨?

3.拓展练习

1只树袋熊一天大约吃 kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?

六、课堂小结,拓展延伸

1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?

分数乘法教案 11

教学目标

1.使学生掌握求一个数的几分之几是多少的两步分数乘法应用题的解题思路和解答方法。

2.在画图、分析的过程中培养学生的分析能力、推理能力等初步的逻辑思维能力。

教学重点和难点

1.正确分析关键句,找准单位1。

2.掌握分析思路,弄清所求问题是求谁的几分之几是多少。

教学过程

(一)复习准备

1.口算,并口述第二组算式的意义。

2.列式。

这些算式求的是什么?(求一个数的几分之几或几倍是多少。)

这里的b,a,x就是什么?(单位1)

3.找出下列各句子中的单位1,再说明另一个数量与单位1的关系。

提问:(3)题中怎样求甲?(4)题中怎样求乙?

今天我们继续学习分数乘法应用题。

(二)讲授新课

1.出示例3。

2.理解题意,画出线段图。

(1)读题,找出已知条件和所求问题。

(2)提问:你认为应着重分析哪些已知条件?(小华储蓄的钱是小亮的

(3)分组讨论这两个已知条件应怎样理解。

(4)学生口述已知条件的意义,老师板演线段图,加深学生对题意的理解。

18元看作单位1,平均分成6份,小华储蓄的钱数相当于这样的5份。

师板演:

数看作单位1,平均分成3份,小新储蓄的钱数相当于这样的2份。

所以小新储蓄的钱数是以谁为单位1?(以小华储蓄的钱数为单位1。)

怎样用线段表示小新的钱数?

生口述,师继续板演:

(把小华储蓄的钱数平均分成3份,小新储蓄的钱数相当于这样的2份。)

求什么?(小新的钱数)

3.分析数量关系,列式解答。

(1)根据刚才的分析,再结合线段图想一想,能不能一步求出小新储蓄的钱数?(不能)

必须先求什么?再求什么?(先求小华储蓄的钱数,再求小新储蓄的钱数。)

因此这道题要分两步解答。

根据哪两个条件能求出小华的钱数?

求出小华的钱数,又怎样求小新的钱数?

(2)以小组为单位共同完成列式解答。

(3)口述列式,并说明理由。

求什么?为什么这样列式?(求小华储蓄的钱数。因为小华储蓄的钱

求什么?根据什么列式?(求小新储蓄的钱数,因为小新储蓄的钱数

(4)你能列综合算式解答吗?

答:小新储蓄了10元。

(三)巩固反馈

1.出示做一做。

小明有多少枚邮票?

(1)读题,找出已知条件和问题。

(2)请你确定从哪些条件入手分析。

(3)小组讨论:分析已知条件并画线段图。

(4)反馈:请代表分析,并出示该小组的线段图。

作单位1,平均分成6份,小新的邮票数量是这样的5份。

均分成3份,小明的邮票是这样的4份。求小明有多少邮票。

应先求什么?再求什么?

(6)列式解答,做在练习本上。

2.出示21页的9题。

要求学生独立画图,分析解答。再互查。

3.变换条件和问题进行对比练习。

(1)找出已知条件中的相同处和不同处。

(2)画图分析并列式解答。

4.选择正确列式。(小组讨论完成)

第二天看了多少页?

(四)布置作业

课本20页第6题,21页第10,12题。

课堂教学设计说明

解答分数应用题的关键是弄清题中的数量关系,谁和谁比,把谁看作单位1,求的是谁的几分之几。这也正是课堂教学的重点与难点,是学生分析能力的体现。是我们课堂的教学目标之一。

这节课是分数乘法应用题的第二节。学生已具备初步分析已知和找单位1的能力,但是例3增加了一个条件,并增加了一个数量。要利用已有的分析方法分步分析,才能化难为易。

教学中采用小组合作的形式,发挥集体智慧,在共同讨论中理解已知条件,有利于学生排除思维障碍。教师再配以线段图加深强化学生理解题意,以实现旧知识向新知识的迁移和飞跃。练习的设计,由易到难、变换条件,有助于学生灵活分析,防止定势。