在教学工作者开展教学活动前,很有必要精心设计一份教案,教案是教学活动的总的组织纲领和行动方案。来参考自己需要的教案吧!
初中数学教学教案 1
教学目标
1.会通过列方程解决“配套问题”;
2.掌握列方程解决实际问题的一般步骤;
3.通过列方程解决实际问题的过程,体会建模思想。
教学重点
建立模型解决实际问题的一般方法。
教学难点
建立模型解决实际问题的。一般方法。
学情分析
1、 在前面已学过一元一次方程的解法,能够简单的运用一元一次方程解决实际问题。
2、 培养学生分析、解决问题的能力及逻辑思维能力。
教 学过程
一、复习与回顾
问题1:之前我们通过列方程解应用问题的过程中,大致包含哪些步骤?
1. 审:审题,分析题目中的数量关系;
2. 设:设适当的未知数,并表示未知量;
3. 列:根据题目中的数量关系列方程;
4. 解:解这个方程;
5. 答:检验 并答话。
二、应用与探究
问题2:应用回顾的步骤解决以下问题。
例1 某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母。 1个螺钉 需要配 2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人 各多少名?
三、课堂练习
1、一套仪器由一个A部件和三个B部件构成。 用1 m3钢材可以做40个A部件或240个B部件。 现要用6 m3钢材制作这种仪器,应用多少钢材做A部件,多少钢材 做B部件,恰好配成这种仪器多少套?
2、某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼。制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉。 现共有面粉4500kg,制作两种月饼 应各用多少面粉,才能生产最多的盒装月饼?
四、小结与归纳
问题4:用一元一次方程解决实际问题的基本过程有几个步骤? 分别是什么?
五、课后作业
教科书第106页习题3.4 第2、3、7题;
1、教师利用复习提问的方式导入,帮助学生掌握列方程解应用题的步骤。
2、教师展示例题,并 巡视学生独立完成情况,引导学生分析问题并解决问题。
3、教师展示练习题,引导学生分析问题并解决问题,并巡视。
4、教师通过提问,让学生进行归纳小结。
1、学生回忆并独立回答。
2、学生先观看课件,先独立思考,再合作交流解决问题 。
3、学生先观看课件并解决问题。
4、学生自主归纳本节课所学内容。
不能解决问题。
教师展示解答过程。
初中数学教案 2
教学目标
1.经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。
2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。
3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。
4.通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。
重点
1.通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。
2.通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。
难点
利用数形结合的方法验证公式
教学方法
动手操作,合作探究课型新授课教具投影仪
教师活动学生活动
情景设置:
你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)
新课讲解:
把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:
教师接着在介绍教材第94页例题的拼法及相关公式
提问:还能通过怎样拼图来解决以下问题
(1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;
(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2
试用拼一个长方形的方法,把这个二次三项式因式分解。
这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。
小结:
从这节课中你有哪些收获?
(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)
学生回答
a(b+c+d)=ab+ac+ad
(a+b)(c+d)=ac+ad+bc+bd
(a+b)2=a2+2ab+b2
学生拿出准备好的硬纸板制作
给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。
作业第95页第3题
板书设计
复习例1板演
………………
………………
……例2……
………………
………………
初中数学教案设计范例 3
《角平分线的性质》
(一)创设情境 导入新课
不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?
如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?
设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。
(二)合作交流 探究新知
(活动一)探究角平分仪的原理。具体过程如下:
播放奥巴马访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其 中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。
设计目的:用生活中的实例感知。以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。使学生很轻松的完成活动二。
(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法。自己动手做做看。然后与同伴交流操作心得。
分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。
讨论结果展示: 教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:
已知:∠AO B.
求作:∠AOB的平分线。
作法:
(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.
(2)分别以M、N为圆心,大于1/2MN的长为半径作弧。两弧在∠AOB内部交于点C.
(3)作射线OC,射线OC即为所求。
设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。
议一议:
1、在上面作法的第二步中,去掉“大于 MN的长”这个条件行吗?
2、第二步中所作的两弧交点一定在∠AOB的内部吗?
设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。
学生讨论结果总结:
1、去掉“大于 MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线。
2、若分别以M、N为圆心,大于 MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了。
3、角的平分线是一条射线。它不是线段,也不是直线,所以第二步中的两个限制缺一不可。
4、这种作法的可行性可以通过全等三角形来证明。
(活动三)探究角平分线的性质
思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。这样的三角形有多少对?
这样设计的目的是加深对全等的认识。
初中数学教案 4
一、分层教学的含义
分层教学是指教师在学生知识基础、智力因素存在明显差异的情况下,有区别地设计教学环节进行教学,遵循因材施教的原则,有针对性地实施对不同类别学生的学习指导,不仅根据学生的不同选择不同的教法、布置作业,还因材施“助”、因材施“改”、因材施“教”,使每个学生都能在原有的基础上得以发展,从而达到不同类别的教学目标的一种教学方法。
分层教学是“着眼于与学生的可持续性的、良性的发展”的教育观念下的一种教学实施策略。所谓分层教学(同班、同年级分层次教学)就是教师在教授同一教学内容时,对同一个班内不同知识水平和接受能力的优、中、差生以相应的三个层次的教学深度和广度进行合讲分练,做到课堂教学有的放矢,区别对待,使每个学生都在自己原来的基础上学有所得,思有所进,在不同程度上有所提高,同步发展。教师的教学方法应从最低点起步,分类指导,逐步推进,做到“分合”有序,动静结合,并分层设计练习,分层设计课堂,分层布置作业,引导学生全员参与,各得进步。
二、分层教学必要性分析
1、教学现状呼唤分层教学的实施
义务教育的实施使小学毕业生全部升入初中学习,这样,在同一班里,学生的知识、能力参差不齐。但是,应试教育留下的种种弊端抑制了各层次的学生的学习积极性和兴趣,整齐划一的教学要求,忽视了学生之间的差异。为了使教育面向全体学生,减轻部分学生过重的负担,使他们在原有的基础上有所提高,全面提高教学质量,又要使有特长的学生得到更进一步的发展。因此必须实施因材施教,根据不同的学生的具体情况,确立不同的教学目标,采取不同的教学方法,使其个性得到充分发展,为社会培养各种层次的有用之人。
2、新课程改革呼唤分层教学的实施
数学课程改革的核心是课程的实施,而教学是课程实施的基本途径。课程改革归根到底是要转变教师的传统教学观念:包括教学方式的转变——从“教”到“引”;知识技能掌握理念的转变——从“满堂灌”、“书山题海”到“在亲身经历中体会、理解、掌握知识技能”,强调自我的情感体验;教材观的转变——从“教教材”到“用教材”,教材变成我们引导学生探究知识的工具之一;评价机制的转变——从“唯分数论”到“适合学生自身特点的发展”,这是实施分层教学的原动力,但也是现今新课程改革的一个难点。
在新课改中实施分层教学法的目的是逐步树立学困生学习的信心,激发中等生的学习潜力,扩大优生的学习面。为了适应当前素质教育的需要,我们要采用针对性的矫正和帮助,进行分层教学,分类指导,及时反馈,从中探索出一条教学改革的新路子。
3、学生个体差异的客观存在
心理学的研究结果表明:学生的学习能力差异是存在的,特别是学生在数学学习能力方面存在着较大的差异这已是一个不争的事实。造成差异的原因有很多,学生的先天遗传因素及环境、教育条件都有所不同,还有社会因素(即环境、教育条件、科学训练),这些原因是对学生学习能力的形成起着决定性作用,所以学生所表现出的数学能力有明显差异也是正常的。
学生作为一个群体,存在着个体差异
(1)智力差异。每个学生因为遗传基因的不同,智力的差异是不可避免的。有的人聪明;有的人愚钝,有的人形象思维强;有的逻辑思维强;有的人记忆力超人,但推理能力较差;有的人记忆力较差,却推理能力过人。
(2)学习基础差异。不同的学生在小学的数学状况不一样:有的学生数学十分优秀,有的学生数学学习基本还没入门,两极分化相当严重。
(3)学习品质差异。有的学生学习数学十分认真,有一套自己的数学学习方法,学得轻松愉快;而有的学生因为没有入门,数学学得十分艰难,部分学生甚至对数学学习丧失了信心。
4、分层次教学符合因材施教的原则
目前我国大部分省市的数学教学采用的是统一教材、统一课时、统一教参,在学生学习能力存在差异的情况下,在教学过程中往往容易产全“顾中间、丢两头”。如不因材施教,就使部分学生就成了陪读、陪考。数学能力强的学生潜能得不到充分发挥,能力稍差的学生就可能变成了后进生。有研究结果表明:教师、家庭、社会、学生、学校等方面的因素都有可能是形成后进生的原因,其中有50%的原因是来自教师在教学中的失误。我们的基础教育既要注意确保学生的共性需求,又要顾及学生的个性发展,所以进行分层教育确有必要。
5、分层次教学能够有效推动教学过程的展开
按照教育家达尼洛夫关于教学过程的动力理论之说,认为只有学生学习的可能性与对他们的要求是一致的,才可能推动教学过程的展开,从而加快学习成绩的提高,而这两者的统一关系若被破坏,就会造成学业的不良后果。学生的学习可能是由他们生理和心理的一般发展水平与对某项学习的具体准备状态所决定的,学生学习可能性的构成因素中既有相对稳定的因素,又有易变的因素。相对稳定的因素,决定了学生在一段时间内可能达到的学习水平的范围,决定了学业不良学生要取得学业进步只能是一个渐进的过程;易变的因素,使学生能在:一定的主客观条件下提高或降低自己的实际可能性水平,从而促进或阻碍学习可能性与教学要求之间矛盾的转化,加快学习成绩提高或降低的速度。由此可见,分层次教学是着眼于协调教学要求与学生学习可能性的关系的一种极好的手段,使它们之间能相适应,从而推动教学过程的展开。
三、分层教学研究的目的意义
捷克教育家夸美纽斯在十七世纪提出来的班级授课制以其大大提高教学效率、加强学校工作的计划性和实际社会效益风行了三百多年后,其固有的不利于学生创造能力的培养和因材施教等种种弊端与社会发展对教育的要求的矛盾越来越尖锐起来。随着科学技术的发展,社会日益进步,教育资源和教育需求的增长和变化,班级授课制在我国做出辉煌的贡献后逐步显现出其先天的严重不足。教师在班级授课制下对能力强的学生“吃不饱”,能力欠佳的学生“吃不消”普遍感到力不从心。分层教学在这种情况下应运而生,成为优化单一班级授课制的有利途径。
1.有利于所有学生的提高:分层教学法的实施,避免了部分学生在课堂上完成作业后无所事事,同时,所有学生都体验到学有所成,增强了学习信心。
2.有利于课堂效率的提高:首先,教师事先针对各层学生设计了不同的教学目标与练习,使得处于不同层的学生都能“摘到桃子”,获得成功的喜悦,这极大地优化了教师与学生的关系,从而提高师生合作、交流的效率;其次,教师在备课时事先估计了在各层中可能出现的问题,并做了充分的准备,使得实际施教更有的放矢、目标明确、针对性强,增大了课堂教学的容量。总之,通过这一教学法,有利于提高课堂教学的质量和效率。
3.有利于教师全面能力的提升:通过有效地组织好对各层学生的教学,灵活地安排不同的层次策略,极大地锻炼了教师的组织调控与随机应变能力。分层教学本身引出的思考和学生在分层教学中提出来的挑战都有利于教师能力的全面提升。
四、分层教学的理论基础
1、掌握学习理论
布鲁姆提出的“掌握学习理论”主张:“给学生足够的学习时间,同时使他们获得科学的学习方法,通过他们自己的努力,应该都可以掌握学习内容”。“不同学生需要用不同的方法去教,不同学生对不同的教学内容能持久地集中注意力”。为了实现这个目标,就应该采取分层教学的方法。
2、教学最优化理论
巴班斯基的“教学最优化理论”的核心是:教学过程的最优化是选择一种能使教师和学生在花费最少的必要时间和精力的情况下获得最好的教学效果的教学方案并加以实施。分层教学是实现这一目标的有效方式之一。
3、新课标的基本理念
《数学课程标准》提出了一种全新的数学课程理念:“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”。面向全体学生,体现了义务教育的基础性、普及性和发展性。不仅为数学教学内容的设定指出方向,而且考虑到学生的可持续发展对数学的需求,并为学生学习数学可能产生的差异性留有充分的余地。
五、分层教学实施的指导思想及原则
首先,分层次教学的主体是班级教学为主,按层次教学为辅,层次分得好坏直接影响到“分层次教学”的成功与否。其指导思想是变传统的应试教育为素质教育,是成绩差异的分层,而不是人格的分层。为了不给差生增加心理负担,必须做好分层前的思想工作,了解学生的心理特点,讲情道理:学习成绩的差异是客观存在的,分层次教学的目的不是人为地制造等级,而是采用不同的方法帮助他们提高学习成绩,让不同成绩的学生最大限度地发挥他们的潜力,以逐步缩小差距,达到班级整体优化。
在对学生进行分层要坚持尊重学生,师生磋商,动态分层的原则。应该向学生宣布分层方案的设计,讲清分层的目的和意义,以统一师生认识;指导每位学生实事求是地估计自己,通过学生自我评估,完全由学生自己自愿选择适应自己的层次;最后,教师根据学生自愿选择的情况进行合理性分析,若有必要,在征得学生同意的基础上作个别调整之后,公布分层结果。这样使部分学生既分到了合适的层次上,又保留了“脸面”,自尊心也不至于受到伤害,也提高了学生学习数学的兴趣。
其次,在分层教学中应注意下列原则的使用:
①水平相近原则:在分层时应将学习状况相近的学生归为“同一层”;
②差别模糊原则:分层是动态的、可变的,有进步的可以“升级”,退步的应“转级”,且分层结果不予公布;
③感受成功原则:在制定各层次教学目标、方法、练习、作业时,应使学生跳一跳,才可摘到苹果为宜,在分层中感受到成功的喜悦;
④零整分合原则:教学内容的合与分,对学生的“放”与“扶”,以及课外的分层辅导都应遵守这个原则;
⑤调节控制原则:由于各层次学生要求不一,因此在课堂上以学、议为主,教师要善于激趣、指导、精讲、引思,调节并控制止好各层次学生的学习,做好分类指导;
⑥积极激励原则:对各层次学生的评价,以纵向性为主。教师通过观察、反馈信息,及时表扬激励,对进步大的学生及时调到高一层次,相对落后的同意转层。从而促进各层学生学习的积极性,使所有学生随时都处于最佳的学习状态。
大班数学教案:圆柱体 5
活动目标
1、认识球体和圆柱体,知道他们的名称和基本特征。能从周围环境中找出相似的物体。
2、能区别圆片和球体及圆柱体的不同,发展幼儿的辨别力。
3、发展幼儿的观察力、空间想象能力。
4、喜欢数学活动,乐意参与各种操作游戏,培养思维的逆反性。
5、能与同伴合作,并尝试记录结果。
教学重点、难点
重难点:在实践中感受球体与圆柱体的不同。
活动准备
小箱子,乒乓球及各种球体、圆片纸等。
活动过程
一、情境引入,组织教学。
二、边看边玩,引导探究。(区分圆形与球体)
1、请幼儿拿乒乓球,从上(下)面、前(后)面、左(右)边等方向看乒乓球是什么形状的。请幼儿观察后回答。
2、教师小结:乒乓球从各个方向看,它都是圆的。
3、请幼儿拿圆片纸,比较圆片纸和乒乓球的不同,进一步了解球体的特征。
4、引导幼儿从各个方向看圆片纸,从旁边看是一条线,幼儿观察回答,教师小结。
5、把球放在桌子上,让幼儿玩球。注意不要让球离开桌面,引导幼儿把球向前(后)、向左(右)等方向滚动,并启发幼儿说出:球向前,向后,向左,向右都能滚动。
6、教师小结:球能向各个方向滚动,球体的外部特征,从各个方向看都是圆的,能往各个方向滚动的,这样的形状叫球体。
三、自主尝试,认识区分。(区分球体与圆柱体)
1、出示圆柱体。
2、球体和圆柱体比赛滚。(比滚)
A、请个别幼儿上来滚一滚圆柱体与球体,看看他们谁快谁慢?
B、讲讲为什么?
3、球体和圆柱体比叠高。(比叠高)
A、请小朋友把你叠的圆柱体和好朋友再叠一叠,可以吗?把两个球也叠一叠,可以吗?
B、为什么?
4、摆一摆。(把五个一圆的硬币叠在一起,看看变成了什么?)
5、小结:象球这种每个面都是圆形的,可以往前往后,往左往右往很多方向滚,但不可以叠起来的物体,我们叫它球体。象几个硬币叠起来的,上下两个面都是一样大小的圆,上下一样粗,可以向前向后滚的物体,我们叫它圆柱体。
四、参与游戏,巩固练习。
“奇妙的箱子”。让幼儿逐个摸出箱中的物体,摸出后按圆形、球体、圆柱体分类。
五、活动小结,拓展延伸。
说说生活中,你见到过哪些球体和圆柱体?
六、课后完成,亲子活动
1、开展一次家庭球赛。
2、将家里的卫生纸叠一叠,看看能叠几个,明天与大家分享。
教学反思
幼儿天生具有强烈的好奇心,对周围事物的探索和求知欲望也特别强,新纲要强调:科学教育应密切联系幼儿的实际生活进行,利用身边的事物和现象作为科学探索的对象。日常生活中,幼儿其实已接触很多球体玩具,例如皮球、羊角球、乒乓球等,对它们十分感兴趣,但对幼儿来说,他们很难完全用几何角度来理解立体图形,往往把平面几何图形和立体相混淆,因此,我设计了本次活动,让幼儿通过亲身经历探究,实验和操作感知球体的特征,获取有关球体的科学经验。激发幼儿探索兴趣,培养其关心周围事物的习惯。
大班幼儿探究欲望强,能较好地运用语言与同伴、成人进行沟通与交流,会用自己喜欢的方式表达自己的认识和情感。因此,为了满足幼儿认知、能力、情感发展的需要。我确定活动上述目标。
从设计这次活动,到实践这次活动,让我对教材的设计有了更透彻的了解,在科学领域要学习的'东西还有很多,今后我会多去翻翻教材,把教材吃透,多走进优秀教师的课堂,多学习新的教学理念与教学方法,在实践中不断反思,在反思中不断改进。
课后通过反思,我发现有以下几点不足:
1、在利用准备的材料探索圆与球体的区别时,我的目的是让幼儿能够自己想办法来区别二者,但是,在教学时,我却疏忽了。直接让幼儿用滚、看、摸的办法来区别。因而,对幼儿学习方法的培养造成了空白。如果,在活动中,能放手让幼儿自己想办法,这样既发展了幼儿思维能力又能达到活动目的。
2、在指名让幼儿说说圆与球体的区别时,我过于急噪,没有给幼儿充分的发言时间,没有顾及到一些孩子的活动感受,给幼儿语言的组织及发展的空间太小。
3、为给幼儿创设一种轻松的学习环境,我准备了很多的活动材料,但各种材料没有最大可能的发挥出作用来。比如:在让幼儿通过摸、看、滚来区别圆与球体的区别时,有一部分幼儿只是做到了看和滚,摸的很少,尤其是我准备了小的乒乓球,用拳头握以握,很快就能掌握球体的特征,我没能及时的提醒幼儿。
4、在让幼儿说说生活中有哪些球体物品时,目的是让幼儿感受到数学就在身边,在生活中,调动幼儿的生活经验,同时培养幼儿动脑、动口、观察、比较等能力。这一环节给孩子的时间不够,过于急噪。
5、我发现部分幼儿参与活动不够积极,只能跟着老师及小朋友完成一些活动,缺乏创造性。另外,还有一些幼儿操作速度过于慢。
在幼儿经历了探索、发现→感知、体验→发展的全过程中,作为教师我深深感悟到:在幼儿的学习活动中我们的角色定位应是组织者、点拔者,我们更应关注幼儿的学习过程和评价,才能促使幼儿获得一次又一次新的发现,充分地体验成功的快乐。
小百科:一个半圆绕直径所在直线旋转一周所成的空间几何体叫做球体,简称球,半圆的半径即是球的半径。球体是有且只有一个连续曲面的立体图形,这个连续曲面叫球面。
中学数学教案模板大全 6
1、课题
填写课题名称(初中代数类课题)
2、教学目标
(1)知识与技能:
通过本节课的学习,掌握。.。.。.知识,提高学生解决实际问题的能力;
(2)过程与方法:
通过。.。.。.(讨论、发现、探究)的过程,提高。.。.。.(分析、归纳、比较和概括)的能力;
(3)情感态度与价值观:
通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。
3、教学重难点
(1)教学重点:本节课的知识重点
(2)教学难点:易错点、难以理解的知识点
4、教学方法(一般从中选择3个就可以了)
(1)讨论法
(2)情景教学法
(3)问答法
(4)发现法
(5)讲授法
5、教学过程
(1)导入
简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)
(2)新授课程(一般分为三个小步骤)
①简单讲解本节课基础知识点(例:类比一元一次方程的解法,讲解一元一次不等式的解法和步骤)。
②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(例:分组讨论一元一次不等式的解法,归纳总结一元一次不等式的方法步骤,设置系数化为一,负号要变号的易错点)。
③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题(例:设置一元一次不等式的应用题,学生再次体会一元一次不等式解决实际问题,并且再次巩固不等式的解法)。
(3)课堂小结
教师提问,学生回答本节课的收获。
(4)作业提高
布置作业(尽量与实际生活相联系,有所创新)。
6、教学板书
数学教案:连加连减 7
教学要求使学生掌握同分母分数加、减法的算理和计算法则,能够正确地计算比较简单的同分母分数的连加、连减,会口算简单的同分母的分数加、减法。
教学重点掌握同分母分数连加、连减的计算方法。
教学难点对计算结果出现分子是”0“的情况,会正确写”0“。
教学过程
一、创设情境
1、指名学生说出分数加、减法的意义。
2、计算下列各题。
-++
订正后,提问:同分母分数加、减法的计算法则是什么?
二、探索研究
1、揭示课题:同分母分数的连加、连减。
2、教学同分母分数的连加。
教师出示例4,指名读题,说题意。
问:这道题里有几个分数?应该用什么方法计算?怎样列式?
教师板书:++=
怎样计算呢?让学生讨论,并说一说怎样计算。可能大部分同学会说出按顺序分两步计算,即先计算+,得出的和再和相加。
这时教师再启发学生想一想,还有没有更简便的计算方法?
让学生根据同分母分数加、减法的计算法则,说出也可以把三个分数的分子连加起来,分母不变。
学生说计算过程,教师板书。
写完得数1后,引导学生再认真审题,明确题中已知条件中的分数是有单位名称的,所以在写出计算结果后还要注上单位名称。
3、教学同分母分数的连减。
教师出示例5。
启发学生思考:题中的”1“是整数,而另外两个数是分母为12的分数,能直接相减吗?
怎样才能直接相减呢?(把1化成分母是12的分数)
同学们根据例4连加的计算,能算出这道题吗?
学生独立计算。
指名学生说出计算过程,教师板书。
当学生把计算结果写成0时,教师请学生说一说是怎样想的,让学生明确:在分数除法中,分子相当于除法中的被除数,分母相当于除法中的除数,因为在除法算式中,0除以任何自然数都得0,所以分子是0的分数都等于0。
三、课堂小结
1、引导学生小结出同分母分数连加、连减的计算方法。(同分母分数连加、连减,要把分子连加、连减,分母不变)
2、指名学生回答同分母分数连加、连减的计算结果应该注意什么?(能约分的要约成最简分数,是假分数的要化成带分数或整数,分子是0的分数等于0)
四、课堂实践
做例5下面的”做一做“中的题目。
五、课堂作业
练习二十八的第5~10题。
六、思考练习
练习二十八第11题。
初中数学教学教案 8
知识技能
会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考
1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题
能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度
经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点
建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点
分析实际问题中的相等关系,列出方程。
教学过程
活动一知识回顾
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?
教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)
教师追问:变形的依据是什么?
学生独立思考、回答交流。
本次活动中教师关注:
(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的。理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本。这个班有多少学生?
教师:出示问题(投影片)
提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?
(学生尝试提问)
学生:读题,审题,独立思考,讨论交流。
1.找出问题中的已知数和已知条件。(独立回答)
2.设未知数:设这个班有x名学生。
3.列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)
4.找相等关系:
这批书的总数是一个定值,表示它的两个等式相等。(学生回答,教师追问)
总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?
教师提问1:这个方程与我们前面解过的方程有什么不同?
学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25).
教师提问2:怎样才能使它向x=a的形式转化呢?
学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20。
教师提问3:以上变形依据是什么?
学生回答:等式的性质1。
归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。
师生共同完成解答过程。
设问4:以上解方程中“移项”起了什么作用?
学生讨论、回答,师生共同整理:
通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。
教师提问5:解这个方程,我们经历了那些步骤?列方程时找了怎样的相等关系?
学生思考回答。
教师关注:
(1)学生对列方程解决实际问题的一般步骤:设未知数,列代数式,列方程,是否清楚?
在参与观察、比较、尝试、交流等数学活动中,体验探究发现成功的快乐。
活动三解法运用
例2解方程
3x+7=32-2x
教师:出示问题
提问:解这个方程时,第一步我们先干什么?
学生讲解,独立完成,板演。
提问:“移项”是注意什么?
学生:变号。
教师关注:学生“移项”时是否能够注意变号。
通过这个例题,掌握“ax+b=cx+d”类型的一元一次方程的解法。体验“移项”这种变形在解方程中的作用,规范解题步骤。
数学教案:连加连减 9
活动目标:
1、初步感受3个数的连加连减,并能计算出得数。
2、能积极思考,提高理解与运算能力。
3、培养合作意识,喜欢参加数学计算活动,体验活动的成功感和趣味性。
活动准备:
1、教具:仿真人民币,超市用品若干,捐款箱,人物胸牌,统计格,题卡,小票,红旗,奖品,购物篮,塑料袋6个。
2、学具:仿真人民币,铅笔,操作册。
活动过程:
预备活动
1、师幼问好,走线。
师:小朋友们中午好!今天教师里来了好多的客人老师,和她们打个招呼吧,好,打过招呼之后呢,就不要看客人老师了,转过来和陈老师做好朋友吧,陈老师今天要带你们去一个很好玩的地方。
师:HELLO,我是好上好超市的陈经理,今天特地来邀请小朋友去参加我们超市举办的“超市大赢家”的游戏比赛,想参加吗?
师:让我们一起先排好队,顺时针方向站在安全通道上,脚尖亲脚跟,安安静静地走去超市吧。
2、线上游戏:快乐大巴
师:好上好超市到了,好多健身器材呀!咦,还有玩具汽车呢!我们先来玩玩开汽车的游戏好吗?
师:这是一辆开往北京的“快乐大巴”,被我摸过头的小朋友,请你们先上车吧。
师:小朋友,快坐好,我的汽车就要开,嘟嘟嘟、嘟嘟嘟,车上现在有几人?
师:小朋友,快坐好,我的汽车就要开,嘟嘟嘟、嘟嘟嘟,你们几个快上来,车上现在共几人?
师:小朋友,快坐好,我的汽车要到站,嘟嘟嘟、嘟嘟嘟,你们几个请下车,车上现在剩几人?
初中数学教案 10
学习目标:
1、能推导平方差公式,并会用几何图形解释公式;
2、能用平方差公式进行熟练地计算;
3、经历探索平方差公式的推导过程,发展符号感,体会特殊一般特殊的认识规律。
学习重难点:
重点:能用平方差公式进行熟练地计算;
难点:探索平方差公式,并用几何图形解释公式。
学习过程:
一、自主探索
1、计算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)
(3) (x+5y)(x-5y) (4)(y+3z) (y-3z)
2、观察以上算式及其运算结果,你发现了什么规律?再举两例验证你的发现。
3、你能用自己的语言叙述你的发现吗?
4、平方差公式的特征:
(1)、公式左边的两个因式都是二项式。必须是相同的两数的和与差。或者说两 个二项式必须有一项完全相同,另一项只有符号不同。
(2)、公式中的a与b可以是数,也可以换成一个代数式。
二 、试一试
例1、利用平方差公式计算
(1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n)
例2、利用平方差公式计算
(1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2
三、合作交流
如图,边长为a的大正方形中有一个边长为b的小正方形。
(1)请表示图中阴影部分的面积。
(2)小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗? a a b
(3)比较(1)(2)的结果,你能验证平方差公式吗?
四、巩固练习
1、利用平方差公式计算
(1)(a+2)(a-2) (2)(3a+2b)(3a-2b)
(3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)
2、利用平方差公式计算
(1)803797 (2)398402
3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )
A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以
4.下列多项式的乘法中,可以用平方差公式计算的是( )
A.(a+b)(b+a) B.(-a+b)(a-b)
C.( a+b)(b- a) D.(a2-b)(b2+a)
5.下列计算中,错误的有( )
①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;
③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.
A.1个 B.2个 C.3个 D.4个[来源:中。考。资。源。网]
6.若x2-y2=30,且x-y=-5,则x+y的值是( )
A.5 B.6 C.-6 D.-5
7.(-2x+y)(-2x-y)=______.
8.(-3x2+2y2)(______)=9x4-4y4.
9.(a+b-1)(a-b+1)=(_____)2-(_____)2.
10.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.
11.利用平方差公式计算:20 19 .
12.计算:(a+2)(a2+4)(a4+16)(a-2).
五、学习反思
我的收获:
我的疑惑:
六、当堂测试
1、下列多项式乘法中能用平方差公式计算的是( ).
(A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[
2、填空:(1)(x2-2)(x2+2)=
(2)(5x-3y)( )=25x2-9y2
3、计算:
(1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4)
4.利用平方差公式计算
①1003997 ②14 15
七、课外拓展
下列各式哪些能用平方差公式计算?怎样用?
1) (a-b+c)(a-b-c)
2) (a+2b-3)(a-2b+3)
3) (2x+y-z+5)(2x-y+z+5)
4) (a-b+c-d)(-a-b-c-d)
2.2完全平方公式(1)
中学数学教案模板大全 11
【教学目标】
1、知识与技能
(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:
(2)账务等差数列的通项公式及其推导过程:
(3)会应用等差数列通项公式解决简单问题。
2、过程与方法
在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。
3、情感、态度与价值观
通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。
【教学重点】
①等差数列的概念;②等差数列的通项公式
【教学难点】
①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程。
【学情分析】
我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
【设计思路】
1、教法
①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。
②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。
③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。
2、学法
引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。
【教学过程】
一、创设情境,引入新课
1、从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?
2、水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?
3、我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息。按照单利计算本利和的公式是:本利和=本金×(1+利率×存期)。按活期存入10000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?
教师:以上三个问题中的数蕴涵着三列数。
学生:
①0,5,10,15,20,25,…。
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型。通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力。
二、观察归纳,形成定义
①0,5,10,15,20,25,…。
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述数列有什么共同特点?
思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?
思考3你能将上述的文字语言转换成数学符号语言吗?
教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念。
学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定。
教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义。
(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达。)
三、举一反三,巩固定义
1、判定下列数列是否为等差数列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教师出示题目,学生思考回答。教师订正并强调求公差应注意的问题。
注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0.
(设计意图:强化学生对等差数列“等差”特征的理解和应用)。
2、思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?
(设计意图:强化等差数列的证明定义法)
四、利用定义,导出通项
1、已知等差数列:8,5,2,…,求第200项?
2、已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?
教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示。根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法。
(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力。学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识。鼓励学生自主解答,培养学生运算能力)
五、应用通项,解决问题
1、判断100是不是等差数列2,9,16,…的项?如果是,是第几项?
2、在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.
3、求等差数列3,7,11,…的第4项和第10项
教师:给出问题,让学生自己操练,教师巡视学生答题情况。
学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式
(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系。初步认识“基本量法”求解等差数列问题。)
六、反馈练习:教材13页练习1
七、归纳总结:
1、一个定义:
等差数列的定义及定义表达式
2、一个公式:
等差数列的通项公式
3、二个应用:
定义和通项公式的应用
教师:让学生思考整理,找几个代表发言,最后教师给出补充
(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念。)
【设计反思】
本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣。在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力。本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率。
大班数学教案:5的组成 12
活动目标:
1、初步体验数量为5的物品可以分成两个部分
2、在活动中学习掌握5的分解与组合3、通过感知分解组合的关系,提高对数学活动的兴趣。
3、喜欢数学活动,乐意参与各种操作游戏,培养思维的逆反性。
4、初步培养观察、比较和反应能力。
活动准备:
物质准备:PPT,黑板上展示操作——盘子,数字,符号卡,操作题…
经验准备:接触过5以内数的分合
活动过程:
一、游戏导入:《数字问答游戏》
二、活动环节
1、观看并操作课件《分草莓》
(1)教师引导引导幼儿将5颗草莓分在两个盘子里,可以怎么分呢?
(2)教师示范将5颗草莓分成1颗和4颗。
(3)请幼儿操作,尝试不同的分法。
教师:还可以怎么分呢?请小朋友试试看吧!
(4)教师小结:5颗草莓可以分成1颗草莓和4颗草莓,4颗草莓和1颗草莓,2颗草莓和3颗草莓,3颗草莓和2颗草莓一共有4种分法。
2、观看课件《学习分合式》,认识分合号及分合式。
(1)认识分合号教师:这是分合号,用分合号就可以很方便把刚才分草莓的结果记录下来。
(2)教师示范分合式及读法教师:5颗草莓分成了1颗和4颗,所以5可以分成1和4;1颗草莓和4颗草莓合起来是5颗草莓,所以1和4合起来是5。
3、操作课件《数字卡片》,进一步了解5的分解组合。
教师:请根据卡片上的数字及图案数量,找出合起来是5的两张不同形状的卡片。
4、操作课件《彩色气球》,巩固5的分解组合。
教师:请给气球涂上红蓝两种颜色,涂完后用对应的分合式记录下来。
三、教师将分合式汇总到黑板上进行展示。
教师:小朋友看一看有几种分法?请小朋友分分看。
幼儿:4种。
教师:这4种分法怎样记录让我们看起来更清晰呢?
幼儿:按顺序记。
教师:我们分成的数字叫部分数,记录时可以按一个部分数递增,另一个部分数递减的规律,这样看起来更清楚。
教师和幼儿一起按规律记录。
四、分组活动
第一二组:《涂一涂》根据分合式数字将每种花涂上两种不同颜色,
第三四组:《贴一贴》根据图案在方框里贴出相应的数字。
第五六组:《连一连》将数字合起来是5的两张扑克牌连起来
五、交流小结
1、幼儿讲述操作过程
2、教师根据幼儿不同的表现给予相应的总结。
3、师幼儿共同收拾整理材料六、
活动延伸在一日活动中可以引导幼儿利用周围事物练习5的分解组合,比如:每只手上的5根手指头,衣服上的5颗纽扣等。
教学反思:
本次活动的设计根据新《纲要》精神,要求幼儿"从生活和游戏中感知事物的数量",还要关注幼儿探索、操作、交流、问题解决和合作能力。数的组成和分解是数概念教育内容的一个重要组成部分。本学期我们大班幼儿已经学过了《2—4以内各数分解与组成》,对于数的组成孩子们也已经有了一定经验。我尝试让幼儿亲自动手操作、然后纪律结果,在教师的引导下寻找分解和组成的规律,让幼儿玩中学习,以达到生活目标与幼儿兴趣最优化的结合。活动的设计思路来源最近我们学的《树的名片》、《树妈妈写信》两首诗歌,孩子们知道秋天到了,树妈妈忙着写着信,树妈妈告诉小动物们做好过冬的准备,结合诗歌的内容,本次活动以尝试为小动物分房子,幼儿通过自主探索动手操作,感知5的分解组成,掌握5的4种分法,在感知数的分解组成的基础上,掌握数组成的递增、递减规律、相互交换的规律。
数学教案:连加连减 13
教学内容:
人教版实验教材数学教科书二年级上册第26、27页
教学目的:
1、强学生对连加连减应用题的理解。
2、学生掌握连加连减的式计算。
3、让学生明白互助友爱的道理。
教学重难点:
1、应用题的多种解。
2、加连减式计算方法。
教学过程设计:
一、常规练习
9+3+4 8+6+9 3+2+7
10-8-2 13-2-7 19-6-5
二、教学连加
出示主题图和表格。
第一组 第二组 第三组
28 34 23
问:你看到了什么?
从表中你看到了什么数量?(三个条件)
你能提什么问题?
(教师板书出学生的各种问题,并选择:一共摘了多少个?)
问:你能列式吗?
这个算式我们又叫什么算式?(板书 连加)
请同学们在草稿纸上进行计算!学生板演
三、教学连减
1、学生看图,口编应用题。
有85个西瓜,李明运走26个,我运走40个,还剩几个?
学生解答,并板演。
四、巩固练习
口算:7+59+20 72-6-40
笔算:46+25+17 75-28= 54+20+16 90-58-24=