作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。那么教案应该怎么制定才合适呢?读书破万卷,下笔如有神,以下是高考家长帮www.kaoyantv.com编辑为大家整编的6篇人教版八年级数学上册教案的相关范文,希望大家能够喜欢。
八年级上册数学教案 篇一
教学目标:
1.知道负整数指数幂=(a≠0,n是正整数)。
2.掌握整数指数幂的运算性质。
3.会用科学计数法表示小于1的数。
教学重点:
掌握整数指数幂的运算性质。
难点:
会用科学计数法表示小于1的数。
情感态度与价值观:
通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题。
教学过程:
一、课堂引入
1.回忆正整数指数幂的运算性质:
(1)同底数的幂的乘法:am?an = am+n(m,n是正整数);
(2)幂的乘方:(am)n = amn (m,n是正整数);
(3)积的乘方:(ab)n = anbn (n是正整数);
(4)同底数的幂的'除法:am÷an = am?n(a≠0,m,n是正整数,m>n);
(5)商的乘方:()n = (n是正整数);
2.回忆0指数幂的规定,即当a≠0时,a0 = 1。
3.你还记得1纳米=10?9米,即1纳米=米吗?
4.计算当a≠0时,a3÷a5 ===,另一方面,如果把正整数指数幂的运算性质am÷an = am?n (a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。
二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立.事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an = am+n(m,n是整数)这条性质也是成立的。
三、科学记数法:
我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0.000012 = 1.2×10?5.即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数。启发学生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此发现其中的规律,从而有0.0000000012 = 1.2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1.
人教版八年级数学上册教案 篇二
【学习目标】
1.掌握等腰三角形的有关概念和性质,运用等腰三角形的性质解决问题。
2. 通过学生之间的交流活动,培养学生主动与他人合作 交流的意识和良好的学习习惯。
【学习重点】
探索和掌握等腰三角形的性质及其应用。
【学习难点】
等腰三角形的性质的应用。
【学习 过程】
一、你知道吗?
等腰三角形的有关概念
《等腰三角形应用》讲义
课前预习
1.SAS,SSS,ASA,AAS,HL
2.这条线段的两个端点的距离相等
3.这个角的两边的距离相等
4.这样的点有4个
?知识点睛
1.线段垂直平分线上的点到这条线段的。两个端点的距离相等
2.角平分线上的点到这个角的两边距离相等
3.顶角的平分线 底边上的中线 底边上的高 三线合一
《13.3等腰三角形》专项练习
1、填空题
2、如图,以等腰直角三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,如此作下去。若OA=OB=1,则第 个等腰直角三角形的面积 。
人教版八年级数学上教案 篇三
授课课题:《一对相对性状的遗传试验》
教材分析
本小节内容讲述由一对等位基因控制的一对相对性状的遗传定律。教材首先介绍了孟德尔的杂交试验方法和试验现象。接着讲述孟德尔用“遗传因子”(后� 本小节在编排上,注意采用从现象到本质的方式,以便使学生能够逐步深入地理解教学内容。
基因的分离定律是三个遗传定律中的第一个遗传定律,是学生学习其他两个遗传定律的重要基础,因此,本小节的教学内容是教学重点。
教学目标
知识目标
知道:孟德尔研究性状遗传的材料和方法。
理解:(1) 性状、相对性状、显性性状、隐性性状、正交、反交、自交的概念;
(2)豌豆杂交的过程;
(3) 一对相对性状的遗传实验及解释。
应用:能判断一对相对性状的显、隐性,根据已知条件写出简要的遗传图解。
能力目标
1、通过从性状分离的现象到实践的分析,从遗传现象上升为对分离定律的认识,训练学生演绎、归纳的思维能力;
2、通过遗传习题的训练,使学生掌握应用分离定律解答遗传问题的技能技巧。
情感目标
1、运用辩证唯物主义观点分析和认识生物体生命活动的基本规律,逐步树立科学的世界观;
2、通过孟德尔八年实验研究事迹,进行热爱科学、献身科学的教育。
重点及落实方案
重点
1、豌豆的杂交过程。 2、孟得尔采用豌豆作试验材料的特点;
3、遗传图解的简要书写。
落实方案
1、采用举例、讨论、多媒体等进行教学;
2、联系所学知识,演绎归纳本节知识,从而掌握重点内容;
3、根据课本表6—2的已知条件,当堂练习遗传图解的写法,并订正。
难点及突破策略
难点
1、各种概念之间的区别与联系; 2、豌豆植株与种子的关系;
3、遗传学的各种表示符号。
突破策略
1、通过对初中知识的复习,进行知识的迁移;
2、通过正反例证来明确相对性状的概念; 3、穿插小故事增强记忆。
教具准备
多媒体课件。
任务分析
本节课概念多,符号多,学生不易掌握,所以从小故事导入新课,激发他们的学习兴趣,从初中学的知识迁移到本节课的新内容上。教材前部分是在分子水平上进行探究,本节是在生物个体上进行探究,跨度大,要做好过渡。
学法指导
首先,指导学生预习教材,并结合实际引起学生对该部分内容的学习兴趣;
其次,指导学生在教材中找疑点、难点,并鼓励学生在课堂上大胆问、勤思考,做好笔记;
再次,指导学生进行图文转换的思维训练。
课时安排: 1课时
教学过程
[导课]
1、复习上节课的经典实验,从时间的顺序上理解孟德尔的杰出贡献;
2、通过对孟德尔生平的介绍,体会他用豌豆的成功之处,并了解他的研究方法。
[教学目标达成]1、出示几个经典实验的时间顺序,点出孟德尔的伟大之处:在不了解遗传物质是什么的时候,就研究总结出了遗传的规律。
2、孟德尔的豌豆杂交试验:
(1)、投影显示孟德尔相片,让学生阅读教材并思考:
①孟德尔简历说明了什么? ②为什么孟德尔采用豌豆会获得成功?
③孟德尔研究遗传规律的方法是什么? ④什么是相对性状?
⑤孟德尔研究相对性状遗传的特别之处是什么?(把问题提出来,不用一次全部解答,分散贯穿在全课之中,让学生思考,自己构建知识体系。)
(2)、学生在随着教学的开展,学习有关内容后,可以分别做出解答:
①孟德尔:奥国人。21岁起做修道士。29岁起进修自然科学和数学,3年后修毕。43岁时在自然科学研究学会上宣读了自己研究豌豆杂交的论文《植物杂交试验》。62岁时带着对遗传学无限的眷恋,回归了无机自然界。虽然在他生前没有得到社会的认可,但他给我们留下了丰厚的科学、思想和精神财富。他的刻苦研究精神将是永存的。
②豌豆特点:a.严格的闭花自花传粉植物。b.同一性状的不同表现差别显著。
③孟德尔研究遗传规律的方法:杂交法。
④相对性状:一种生物的同一种性状的不同表现类型。
⑤孟德尔研究相对性状遗传的特别之处:分别对每一对相对性状进行研究。
3、一对相对性状的遗传试验:
①孟德尔豌豆杂交实验的多媒体课件。
(多媒体课件可展示p代无论是正交还是反交,所获f1代的种子,播种后均为高茎;f1自交,所获f2代的种子,播种后出现性状分离,分离比接近3∶1)。
②讲解p、f、♀、×、♂各字母及符号的遗传学含义。
③介绍正交、反交、自交的概念,突出讲解“杂交”的过程。
④请学生按小组讨论一对相对性状的实验特点,并推举代表陈述本组讨论结果。
⑤教师总结学生通过对多媒体课件的观察、讨论后所形成的意见,结论如下:
子一代只表现显性性状;子二代出现性状分离,并且显性性状与隐性性状的分离比接近3:1。
通过对课件的再一次展示,分清以下概念:
显性性状:杂种子一代中显现出来的性状。
隐性性状:杂种子一代中未显现出来的性状。
性状分离:杂种后代中,同时显现显性性状和隐性性状的现象。
⑥投影显示孟德尔7个一对相对性状的杂交试验结果统计表,分别对表中的(除了茎的高度)六对相对性状用遗传图谱写出来。并请学生计算显隐性之比,对计算的情况进行总结。可进一步明确:子一代表现显性性状,子二代出现性状分离,分离比接近3∶1,具有普遍性,是否具有一般规律性?(设想:如果豌豆的另一对相对形状的f2也出现3:1,是否可以判断亲本的显隐性呢?)
课堂练习:(穿插在教学过程中进行。)
1、性状、相对性状的正反例证的举例、判断;
2、写遗传图解,能在图中说明各符号的代表意义,并指出在这一遗传图中,研究的性状是什么,其中显、隐性状怎样分。
[课堂小结]
通过本节课的学习,我们明确了豌豆的特点,孟德尔的杂交实验法、相对性状、显性性状、隐性性状及性状分离等;并发现了孟德尔一对相对性状遗传实验的特点。一对相对性状遗传实验的特点,是否具有一般规律性呢?下节课我们继续讨论。附:板书设计:
一对相对性状的遗传试验
1.孟德尔的豌豆杂交试验
①孟德尔 ②豌豆特点 ③杂交法 ④相对性状 ⑤孟德尔杂交法特别之处
2.一对相对性状的遗传实验
人教版八年级数学上册教案 篇四
知识目标:理解变量与函数的概念以及相互之间的关系
能力目标:增强对变量的理解
情感目标:渗透事物是运动的,运动是有规律的辨证思想
重点:变量与常量
难点:对变量的判断
教学媒体:多媒体电脑,绳圈
教学说明:本节渗透找变量之间的简单关系,试列简单关系式
教学设计:
引入:
信息1:当你坐在摩天轮上时,想一想,随着时间的变化,你离开地面的高度是如何变化的?
信息2:汽车以60km/h的速度匀速前进,行驶里程为skm,行驶的时间为th,先填写下面的表格,在试用含t的式子表示s.
t/m 1 2 3 4 5
s/km
新课:
问题:(1)每张电影票的售价为10元,如果早场售出票150张,日场售出票205张,晚场售出票310张,三场电影的票房收入各多少元?设一场电影受出票x张,票房收入为y元,怎样用含x的式子表示y?
(2)在一根弹簧的下端悬挂中重物,改变并记录重物的质量,观察并记录弹簧长度的变化规律,如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量 m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)?
(3)要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积s的式子表示圆的半径r?
(4)用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律,设长方形的长为xm,面积为sm2,怎样用含x的式子表示s?
在一个变化过程中,我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。
指出上述问题中的变量和常量。
范例:写出下列各问题中所满足的`关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?
(1)用总长为60m的篱笆围成矩形场地,求矩形的面积s(m2)与一边长x(m)之间的关系式;
(2)购买单价是0.4元的铅笔,总金额y(元)与购买的铅笔的数量n(支)的关系;
(3)运动员在4000m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系;
(4)银行规定:五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。
活动:
1.分别指出下列各式中的常量与变量。
(1)圆的面积公式s=πr2;
(2)正方形的l=4a;
(3)大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额与金额y的关系为y=2.5x.
2.写出下列问题的关系式,并指出不、常量和变量。
(1)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式。
(2)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是s,求s与n之间的关系式。
思考:怎样列变量之间的关系式?
小结:变量与常量
作业:阅读教材5页,11.1.2函数
人教版八年级数学上册教案 篇五
教学目标
1.等腰三角形的概念。
2.等腰三角形的性质。
3.等腰三角形的概念及性质的应用。
教学重点:
等腰三角形的概念及性质。 2.等腰三角形性质的应用。
教学难点:
等腰三角形三线合一的性质的理解及其应用。
教学过程
Ⅰ.提出问题,创设情境
在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案。这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。来研究:
①三角形是轴对称图形吗?
②什么样的三角形是轴对称图形?
有的三角形是轴对称图形,有的三角形不是。
问题:那什么样的三角形是轴对称图形?
满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。
我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。
Ⅱ.导入新课:要求学生通过自己的思考来做一个等腰三角形。
作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。
等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。
思考:
1.等腰三角形是轴对称图形吗?请找出它的对称轴。
2.等腰三角形的两底角有什么关系?
3.顶角的平分线所在的直线是等腰三角形的对称轴吗?
4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?
结论:等腰三角形是轴对称图形。它的对称轴是顶角的平分线所在的直线。因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。
要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。
沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。
由此可以得到等腰三角形的'性质:
1.等腰三角形的两个底角相等(简写成“等边对等角”).
2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).
由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程).
如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为
所以△BAD≌△CAD(SSS).
所以∠B=∠C.
]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为
所以△BAD≌△CAD.
所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.
[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,
求:△ABC各角的度数。
分析:根据等边对等角的性质,我们可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.
再由三角形内角和为180°,就可求出△ABC的三个内角。
把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷。
解:因为AB=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC.
∠A=∠ABD(等边对等角).
设∠A=x,则∠BDC=∠A+∠ABD=2x,
从而∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.
[师]下面我们通过练习来巩固这节课所学的知识。
Ⅲ.随堂练习:1.课本P51练习1、2、3. 2.阅读课本P49~P51,然后小结。
Ⅳ.课时小结
这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用。等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高。
我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们。
Ⅴ.作业:课本P56习题12.3第1、2、3、4题。
板书设计
12.3.1.1等腰三角形
一、设计方案作出一个等腰三角形
二、等腰三角形性质:1.等边对等角2.三线合一
人教版八年级数学上册的教学计划 篇六
一、制定计划的目的
为使学生学好代数、几何的基础知识,具备当代社会中每一位公民适应日常生活、参加社会生产和进一步学习所必需的基本技能,进一步培养学生运算能力、发展思维能力和空间观念,使学生能够运用所学知识解决实际问题,逐步形成数学创新意识,特制定本学科教学计划。
二、教材内容分析
本学期数学教材内容包括:第一章《生活中的轴对称》、第二章《勾股定理》、第三章《实数》,第四章《概率的初步认识》,第五章《平面直角坐标系》,第六章《一次函数》, 第七章《二元一次方程组》。
第一章《生活中的轴对称》的主要内容是研究轴对称图形的性质及其应用。其重点是轴对称图形的性质。
第二章《勾股定理》的主要内容是:勾股定理的探索和应用。其中勾股定理的应用是本章教学的重点。
第三章《实数》主要内容是平方根、立方根的概念和求法,实数的概念和运算。本章的内容虽然不多,但在初中数学中占有十分重要的地位。本章的教学重点是平方根和算术平方根的概念和求法,教学难点是算术平方根和实数两个概念的理解。
第四章《概率的初步认识》主要内容是通过可能性的大小认识概率,并进行简单的概率计算。概率计算是本章教学的重点。
第五章《平面直角坐标系》主要讲述平面直角坐标系中点的确定,会找出一些点的坐标。
第六章《一次函数》的主要内容是介绍函数的概念,以及一次函数的图像和表达式,学会用一次函数解决一些实际问题。其中一次函数的图像的表达式是本章的重点和难点。
第七章《二元一次方程组》要求学会解二元一次方程组,并用二元一次方程组来解一些实际的问题。
三。 学生情况分析:
初二(3)班共有学生44人,从上学期期未统计成绩分析,及格人数为 人,优秀人数为 人,这个班的学生中成绩特别差的比较多,成绩提高的难度较大。从上学期期末统测成绩来看,成绩是 分,差的 分,这些同学在同一个班里,好的同学要求老师讲得精深一点,差的要求讲浅显一点,一个班没有相对较集中的分数段,从几分到 多分每个分数段的人数都差不多,这就给教学带来不利因素。
四、。教学目标
第一章 生活中的轴对称 1.在丰富的现实情境中,经历观察折叠剪纸图形欣赏与设计等数学活动过程,进一步发展空间观念。2.通过丰富的生活实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。3探索并了解基本图形的轴对称性及其相关性质。4能够按要求作出简单平面图形经过轴对称后的图形;探索简单图形之间的轴对称关系,并能指出对称轴。5欣赏现实生活中的轴对称图形,能利用轴对称进行一些图案设计,体验轴对称在现实生活中的广泛应用和丰富的文化价值。
第二章 勾股定理 1经历探索勾股定理及一个三角形是直角三角形的条件的过程,发展合情推理能力,体会数形结合的思想。2掌握勾股定理,了解利用拼图验证勾股定理的方法,能运用勾股定理解决一些实际问题。3掌握判断一个三角形是直角三角形的条件,并能运用它解决一些实际问题。4通过实例了解勾股定理的历史和应用,体会勾股定理的文化价值。
第三章 实数 1让学生经历数系扩张探求实数性质及其运算规律的过程;从事借助计算器探索数学规律的活动,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考合作交流的意识和能力。2结合具体情境,让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力。3了解平方根立方根实数及其相关概念;会用根号表示并会求数的平方根立方根;能进行有关实数的简单运算。4能运用实数的运算解决简单的实际问题,提高学生的应用意识,发展学生解决问题的能力,从中体会数学的应用价值。
第四章 概率的初步认识 1经历“猜测——验证并收集实验数据——分析实验结果”的活动过程。2了解必然事件,不可能事件和不确定事件发生的可能性大小,了解事件发生的可能性及游戏规则的公平性;了解概率的意义,体会概率是描述不确定现象的数学模型,发展随机观念。3能对两类事件发生的概率进行简单的计算,并能设计符合要求的简单概率模型。4进一步体会数学就在我们身边,发展用数学的意识和能力。
第五章 平面直角坐标系 1从事对现实世界中确定位置的现象进行观察分析抽象和概括活动,经历探索图形坐标变化与图形形状变化之间关系的过程,进一步发展学生的数形结合意识形象思维能力和数学应用能力。2认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。3能在方格纸上建立适当的直角坐标系,描述物体的位置;能结合具体情境灵活运用多种方式确定物体的位置。4在同一直角坐标系中,感受图形变化后点的坐标的变化合格点坐标变化后图形的变化。
第六章 一次函数 1经历函数一次函数等概念的抽象概括过程,体会函数的模型思想,进一步发展学生的抽象思维能力;经历一次函数的图像及其性质的探索过程,在合作与交流活动中发展学生的合作意识和能力。2经历利用一次函数及其图像解决实际问题的过程,发展学生的数学应用能力;经历函数图像信息的识别与应用过程,发展学生的形象思维能力。3初步理解函数的概念;理解一次函数及其图像的有关性质;初步体会方程和函数的关系。4能根据所给信息确定一次函数表达式;会做一次函数图象,并利用它们解决简单的实际问题。
第七章 二元一次方程组 1经历从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想,发展学生灵活运用有关知识解决实际问题的能力,培养良好的数学应用意识。2了解二元一次方程组的有关概念,会解简单的二元一次方程组;能根据具体问题中的数量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性。3了解二元一次方程组的图像解法,初步体会方程与函数的关系。4了解二元一次方程组的消元思想,从而初步理解化未知为已知和化复杂问题为简单问题的化归思想。