理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质,利用反比例函数的图象解决有关问题。这里给大家分享一些关于初中数学试讲教案,方便大家学习。下面是高考家长帮为大家整理的初中数学试讲教案:《认识负数》(优秀10篇),希望对小伙伴们有所帮助。
初中数学试讲教案:《认识负数》 篇一
《认识负数》教学反思:这是开学的第一课,一来就学习负数,很担心孩子们会接受不了。因此我认真地看了教师用书,学习了钱教导是怎么上这课的。之前听过钱教导两个版本的《认识负数》,受益菲浅。
个人觉得教材上出现的温度计与实际生活中学生能接触到的温度计不符,温度计都是只有摄氏度,而没有其他的东西在上面,而且作为教材上首次出现这类知识,个人觉得教材内容上对学生学习新知干扰太大,这些知识太专业了,不利于老师的教学,学生的学习!
刚刚学生把课堂作业送来了,大概看了一下,学生对正、负数的书写都没有问题,对数进行分类都能完成的很好。有三个学生把“+、-”号写成正、负这样的语文表达方式而没有用数学符号。课堂上首次出现“+、-”号的时候,只是让学生互相读了一下,没有让学生说说它表示的意义,以为书写的时候都能注意到,不过还是有几个学生出现问题了。
不过回顾整节课,学生表现还是比较积极,除了刚上课的那几分钟里,学生有点不太适应以外,随着我不断的鼓励、调动,在其它时间里,大部分学生都在积极参与,课堂倒也不显得沉闷。
困惑:1、教材是直接从“几个城市的不同气温中”让学生知道负数的应用,并认识负数的。这样做,学生对为什么要产生负数的源由不太清楚,至少认识不深刻。我从“要表示出比0还要低的温度”引入是不是更好?
2、教材在编写负数的例子时单一地用负整数,这样做容易使学生产生一个错觉,认为负数就是一些与非0自然数相反的数,即负整数。虽然有练习中出现了一个"-88.3",但这显然不够。
初中数学试讲教案:《认识负数》 篇二
【例1】
地面以上1层记作+1层,地面以下1层记作-1层,从+2层下降了9层,所到的这一层应该记作( )层。
【错误原因分析】
大部分学生认为是“-7”。这部分学生的思考过程是:一共要下降9层,地面以上有2层,9-2=7,那地面以下就要下降7层,所以是“-7”。
【解题思路点拨】
因为地面上从“+2”层下降到“+1”层,只下降了一层,从“+1”层下降一层,就到了“-1”层,中间没有“0层”。这样就可以通过列举的方法求出答案。
【解题过程】
+2→+1→-1→-2→-3→-4→-5→-6→-7→-8。
【变式矫正】
地面以上1层记作+1层,地面以下1层记作-1层,从-5层上升了8层,所到的这一层应该记作( )层。
【例2】
与标准体重比,小明重2千克, 记作:+2千克;小华比小明轻5千克,记作:( -5 )千克。
【错误原因分析】没有与标准体重相比, 错误地将小明体重看作标准体重。
【解题思路点拨】小明比标准体重重2千克。小华和标准体重比,相差多少呢?画图试一试找出标准体重的位置就容易了。
【解题过程】小明比标准体重重2千克, 标准体重就比小明体重轻2千克, 小华比小明轻5千克,小华体重就比标准体重轻3千克。 记作:( -3 )千克。
【变式矫正】
1.一幢大楼18层,地面以下有2层。地面以上第3层记作:+3层,地面以下第1层记作:( )层。老师现在-2层处,上升了4层,到了地面以上第 ( )层。
2.比90分多5分,记作:+5分。那么( )分可以记作:-4分。
3.“净含量:10±1kg”,表示合格重量最多是 ( )kg,最少是( )kg。
4.如果小军跳绳125下,成绩记作+5下;那么小明跳绳116下,成绩应记作( ) 下;小乐跳绳成绩记作0下,表示小乐跳绳( ) 下。
关于初中数学试讲教案 篇三
教学目标
1、使学生正确理解的意义,掌握的三要素;
2、使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;
3、使学生初步理解数形结合的思想方法。
教学重点和难点
重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数。
难点:正确理解有理数与上点的对应关系。
课堂教学过程设计
一、从学生原有认知结构提出问题
1、小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2、用“射线”能不能表示有理数?为什么?
3、你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——。
二、讲授新课
让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度。在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃。
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。具体方法如下(边说边画):
1、画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);
2、规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);
3、选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)
在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做。
进而提问学生:在上,已知一点P表示数-5,如果上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?
通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可。
三、运用举例 变式练习
例1 画一个,并在上画出表示下列各数的点:
例2 指出上A,B,C,D,E各点分别表示什么数。
课堂练习
示出来。
2、说出下面上A,B,C,D,O,M各点表示什么数?
最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示。
四、小结
指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法。
本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究。
五、作业
1、在下面上:
(1)分别指出表示-2,3,-4,0,1各数的点。
(2)A,H,D,E,O各点分别表示什么数?
2、在下面上,A,B,C,D各点分别表示什么数?
3、下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
初中数学试讲教案:《认识负数》 篇四
《认识负数》一课是苏教版第九册第一单元“生活中的负数”的第一课时,是在学生已经认识了自然数,并初步认识了分数、小数的基础上,结合熟悉的生活情境,唤起已有的生活经验,初步认识负数。因此,在教学设计时充分考虑应用学生已有的知识和生活经验,创设与学生生活素材密切相关的数学情境,让他们亲历知识形成的过程,力求做到“动静结合,张驰有序”:教学片段:记录相反意义的量。(1)听清信息,独立思考,选择自己喜欢的方式,把听到的信息准确、简洁的表示出来。关键是让别人一眼就能明白你表示的意思。足球比赛转学情况帐目结算上半场四年级 三月份 下半场 五年级 四月份 (2)汇报:第一种:用文字表示第二种:用笑脸图、哭脸图表示师:你的符号你明白,我的我明白,数学语言是要交流的,怎么办?生:要统一。第三种:用+2、-2表示师:和数学家表达的一样,这种表达有什么好处?生:简明、清楚(3)认识正、负数。师:你知道像上面的数叫什么?(正数)+2怎么读?生:读加二。师导读:正二师:像下面的数呢?(负数)板书—2怎么读?生:负二(4)读上面各数,并板书在黑板上。师:加号和减号和过去的意义不同,加号叫做正号,减号叫做负号。抢读。-100、+6.8、-1.8、36(同时贴于黑板相应位置)师:为了简写可写36。如果去掉正号,这些数你们熟悉吗?是我们过去学的数。负数前的负号可以去掉吗?2、介绍负数的历史师介绍负数历史。听完介绍后你有什么感受?3、正数、负数、0(1)四个城市气温图:哈尔滨:-15~3℃ 北京:-5~5℃ 上海:0~8℃ 海口:12~20℃有负数吗?读出来。北京-5℃和5℃一样吗?零上的温度用什么表示?零下的温度用什么表示?0呢?师:0正好是零上温度和零下温度的分界点。 (2)温度计。(教具:表示水银的位置可挪动)师:每格代表1℃,请生拔出5℃。拔-5℃。为什么拔不出来?要先找到什么温度?生:先找到0℃,这是分界点。师:将温度计上的数揭开,越往上温度?生:高再拿一个温度计请该生再拔-5℃。拔-15℃比较两个温度(-5℃和-15℃)哪个更冷?怎么能说明-15℃比-5℃更冷了?生:温度计上有表示生2:-15℃在-5℃下面。师:用你的动作和表情告诉我-15℃时的感觉。 我国新疆地区最冷时温度达到-40℃,大概在温度计的哪儿?生:比划。师:你能说几个正数和负数吗?生:-10、-11师:一对一对说。生1:+10、-20师:说得完吗?用省略号表示。所有正数和0比,有什么关系? 所有负数和0比,有什么关系?(板书:负数<0<正数)用一个圈把所有正数圈出来,用一个圈把所有的负数圈出来。生圈出了板书的正数和负数。生:不同意,因为还有很多正、负数。要把省略号圈进去。师:0,正数不要,负数不要。怎么办?生1;0是分界点。六人小组讨论:0算正数吗?算负数吗?汇报,生1:0算是自然数。生2:0是正负数。生3:它一个不是,是特殊的数。师:正数比0?(大)负数比0?(小)0比0小吗?(0不是)0既不是正数,也不是负数。是分界点。4、生活中的应用(1)图:叔叔上五楼开会,阿姨到地下二楼取车,应按哪两个键?(左侧是(2)海平面图。莲花峰比海平面高+1864米,吐鲁番盆地比海平面低155米,记作( )(3)下图每格表示1米,小华刚开始的位置在0处。数轴图:左-8 右+8 西 东
初中数学试讲教案:《认识负数》 篇五
1.生活中的数,比“0”大的数叫做( )数,比“0”小的数叫做( )数。
2.如果用—3表示电梯下降3层,那么+5表示( ).
3.河道中的水位比正常水位低2m记作—2m,那么比正常水位高1m记作( )。
4 请你用正负数记录小明家的收支情况。
8月4日 爸爸工资收入1500元 记作:( )
8月6日 水、电、煤气支出200元 记作:( )
8月12日 电话费支出120元 记作:( )
8月15日 妈妈工资收入1400元 记作:( )
5. 工厂生产一批零件,要求零件的直径是40mm,现检验员检验其中的10件,检验结果如下:(单位:mm)(5分)39.7 40 40.1 39.9 40 40.3 39.8 40.2 40.1 39.9 如果以40mm为标准,超过部分为正,不足的部分为负,则这10件零件的检验结果可分别记作::( )
初中数学试讲教案:《认识负数》 篇六
4月27日,我到新昌参加“沃洲之春”教学观摩活动,上虞阳光学校的叶柱老师上了一堂精彩的课〈认识负数〉,现将课堂实录整理如下:
一、温度中的“负数”
师:老师搜集了我国三个城市某天的最低气温资料,大家想看看吗?(课件)
杭州的最低温度是多少?
生:3摄氏度 生:39摄氏度
师:到底是多少?问题出在观察的方式上。(师介绍温度计两边的刻度摄氏度和华氏)
师:我们常用的是摄氏度。
师:我们来到了六朝古都南京最低气温是多少?生:0摄氏度
师:北京最低气温是多少?生:零下3摄氏度 。
师:你是怎么看的? 生:我发现它是在0以下,再数下3格就是零下3摄氏度。
师:北京与杭州的最低气温一样吗?为什么?
生:杭州气温是零上3摄氏度,北京是零下3摄氏度。
( 板书杭州 南京 北京的气温 )
师:你知道数学上是怎样区别零上3摄氏度与零下3摄氏度的吗?
(教学认读正3摄氏度 负3摄氏度 )
师:你能用这样的数表示其他城市的气温吗?请你用自己的神态与姿势告诉我已经准备好了
(课件展示某城市温度计 学生举学具卡片表示)
哈尔滨 -14摄氏度 漠河 -30摄氏度
海口 30 摄氏度
这时老师发现有两个同学的答案不同说:“可给我逮到了!”
师:+30摄氏度与30摄氏度哪个对?
生:这两个都对的。
师:把学具卡片放好,它只是我们的工具。
师:现在我们来做气象纪录员,看谁有快又准确。
(略)
二、海拔中的“负数”
师:不同地区气温有差别,同一地区一天中的气温也有差别,想了解吗?
(课件欣赏吐鲁番盆地的奇特自然现象)
师:吐鲁番气温变化是什么原因?是海拔。
(课件出示海拔高度示意图)
师:从图中你知道了什么?
生:珠穆朗玛峰海拔8844.43米, 吐鲁番盆地海拔低于海平面155米。
师:你能用今天所学的数表示出珠穆朗玛峰与吐鲁番盆地的海拔高度吗?
(同桌商量着互相说。)
师:你还有什么问题?
(师补充说明8844.43是最新的测量高度。)
(练习:用正负数表示各地的海拔高度。)
马耳代夫平均海拔比 海平面高1米
师:平均海拔比海平面高1米是什么意思?
师:海拔高于海平面10米有可能吗?
(练习:根据海拔高度判断各地高于海平面,还是低于海平面。)
欧洲是世界上海拔最低的洲,平均海拔高度300米。
马里亚那海沟 最深处海拔-11032米
师:你读了这句有什么感觉?
生:很高 。生:很深。
三、数学中的“负数”
师板书 +3摄氏度 -3摄氏度 -155米 8844.4 m.haozuowen.net 3 米 40摄氏度 -26摄氏度
师:我们把它们的单位去掉,观察这些数你能给它们分分类吗?
生:分两类,有减号的与没减号的。
生:分3类,有减号的,有加号的,40是另一类。
师:你认为把它分在哪里合适?
师:像+3、40这样的数是“正数”;像-3、-400这样的数是“负数”。
( 出示一条数轴,在中间添上0)
师:如果这里是0,你能想到什么?
生:0的右边是负数,左边是正数。
生:0的左边是负数,0的右边是正数。
师:数学上规定0左侧的为负数,右侧的为正数。
( 生读数轴上的数)
师:读得完吗?红红的0该向哪边走呢?
师:0应该是分界线,0既不是正数也不是负数,所有的正数大于0所有的负数小于0。
师:我们回顾一下,学到了什么?
(揭示课题:认识负数 欣赏延伸《负数的历史》)
四、生活中的“负数”
师:生活中,你还在哪里见到过负数?
(工资单、电梯控制面板、)
(解决问题1、连一连 2、说一说 3、填一 填 4、想一想)
(课件出示有关刘翔比赛的资料:刘翔速度14.42秒 赛场风速为-0.4米)
师:你有疑问吗?
(师生表演来解释风速-0.4米)
初中数学试讲教案:《认识负数》 篇七
教学内容:
苏教版国标本五年级上册《认识负数》第一课时
教学目标:
1、在具体情境中认识负数,感受负数的实际意义;会正确读写正、负数;初步感知正、负数可以表示两种相反的关系;知道负数都小于零,正数都大于零。
2、体验生活与数学的联系,会用正负数的知识解释生活现象。
教学过程:
一、创设情境,激趣引入
(多媒体出示沈阳大雪时的一幅照片)
师:这是沈阳大雪时的一幅照片。猜猜看,这时的气温可能是多少度?(指名口答)
(评:以温度引入负数,符合学生的认知特点。“猜温度”既能服务于本节课的教学重点,又有利于激发学生的学习热情。)
二、借助经验,自主探究
1、 认识温度计
师:在日常生活中,人们往往借助温度计来测量温度。(多媒体出示温度计图)你了解温度计吗?把你了解的情况和大家交流一下,好吗?
小结:温度计上有两种计量单位:一种是摄氏度,一种是华氏度。我国统一使用摄氏度。
师:[多媒体出示标有沈阳温度读数(零下20℃)的温度计]谁能读出图中沈阳的温度?说一说你是怎样看出来的?(指名口答)
师:(多媒体依次出示读数为零下22℃、零下18℃的温度计图)这时的温度又是多少呢?你能说说是怎样看出来的吗?
[评:认识温度计是本环节的教学要点,而正确地读出温度计所示的零下温度又是本节课的教学难点。通过零下20℃、零下22℃、零下18℃的对比练习,既突出教学要点,又能有效地突破教学难点。]
2、教学例1。
(1)教学正、负数读写法
谈话:同学们,咱们中国幅员辽阔,南方和北方在气温上有很大差异。当沈阳还是千里冰封的世界时,南京和海口的气温又是多少呢?咱们一起来看一下。(多媒体出示三幅温度计图:沈阳零下20℃;南京0℃;海口零上20℃)
师:从这几幅图中,你能看出南京和海口的气温吗?你能说说怎样看出来的吗?你还能得到哪些重要的数学信息?(小组讨论、指名汇报交流。)
师:沈阳和海口的气温一样吗?为什么?
你能用自己喜欢的方式表示这两个不同的温度吗?(学生记录后,展示、交流评价。)
师:数学语言需要交流,交流就要符号统一。(展示并板书-20℃、+20℃)这是科学家规定的记录方法。
讲解:“-”是负号,“+”是正号,要写得小一点。-20℃读作负二十摄氏度; +20℃读作正二十摄氏度。+20℃也可以简单记作20℃。
(2)练一练。
(多媒体出示标有吐鲁番盆地某一天最低气温和最高气温的温度计图:零下9℃、零上27℃)
师:你能用刚才的方法把它们记录下来吗?[指名反馈,教师揭示
(板书):-9℃、27℃]
[评:通过练一练,既可以使学生更为准确、熟练地掌握零上温度和零下温度的表示方法,又为引入例2起到过渡作用。]
3、教学例2。
(1)出示例2。
师:吐鲁番盆地的早晚温差非常大。人们常这样来形容:“早穿棉袄午穿纱、围着火炉吃西瓜”。这与它的地理特征有很大关系。(出示例2:珠穆朗玛峰比海平面高8844米;吐鲁番盆地比海平面低155米。)
(2)教师讲解“海拔”的含义。
(3)你能用以上的方法表示出这两个海拔高度吗?(学生独立完成后,指名口答。板书:8844米、-155米)
(4)练一练。
(多媒体出示:读一读下面的海拔高度,说一说分别是高于海平面还是低于海平面?
黑海海拔高度是-28米。
马里亚纳海沟最深处的海拔是-11034米。
(评:两道例题两个层次,例1通过让学生观察、讨论、交流等数学活动,初步感知负数,并掌握负数的表示方法;例2教师则完全放手,让学生根据例1中温度的表示方法,类推出海拔的表示方法。教学方法一详一略,一扶一放。)
三、抽象概括,沟通联系。
1、揭示概念。
师(指板书):这里有许多数量,如果把它们的单位名称去掉,就得到一个个的数。你能把这些数分分类吗?
师:像-20、-9、-155这样的数都是负数。你还能说出几个负数吗?能说得完吗?
像+20、27、8844这样的数都是正数。你还能说出几个正数吗?能说得完吗?
揭示课题(板书)。
2、介绍负数产生的历史。
(多媒体出示教科书第九页“你知道吗?”)
3、认识0与正、负数的关系。
师:你认为0是正数还是负数呢?理由是什么?(小组讨论、指名汇报结果)
0与负数比、0与正数比,大小有什么关系?(指名回答)
[评:揭示正负数时,让学生经历 “具体——抽象(由具体数量抽象出数)”的过程,符合儿童认知规律;让学生列举正、负数,可以初步感知正数的个数和负数的个数都是无限的。]
四、巩固练习,应用拓展。
1、选择合适的温度连一连。(多媒体出示教科书练习一第四题)
2、你知道这些温度吗?读一读。(教科书练习一第五题)
3、你能在温度计上表示出这些温度吗?(多媒体出示地图,闪烁温度:石家庄﹣5℃、长春﹣10℃、杭州5℃、桂林10℃)
(让学生在练习纸上完成后,比一比这几个城市温度的高低。)
4、下面是小明的一则日记。
2007年7月18日 晴
今天天气很热,大约有10℃。好多爱美的女士为了避暑都打上了遮阳伞。
我跟着爸爸来到他上班的冷食加工厂,一进加工车间,感到凉飕飕的,估计温度大概有-15℃。爸爸打开冷柜,马上有一股寒气袭来,我猜冰柜里的温度大约有8、9℃吧。
回来的路上,碰到了同学,我们就聊开了。洪军说:前几天,他们全家到泰山旅游,爬上了海拔﹣1545米的山顶;晓玲说:他们全家去了连云港,听说连云港海的最低处是海拔34米呢!
……
这则日记中有些数据不符合实际情况,你能找出来吗?你知道怎么改吗?
[评:以日记的形式展示数学内容,既贴近生活、新颖有趣,又有利于联系实际、培养数感。]
五、全课总结。
师:这节课我们一起认识了负数。你有哪些收获,给大家分享,好吗?
六、拓展延伸。
让学生课外注意观察身边的事物,搜集一些可以用负数表示的数量。
总评:
课程标准提出:人人学有价值的数学,人人都能获得必需的数学。本节课体现了如下特点:
简约。紧紧围绕教学目标来确定教学主线。让学生在具体情境中认识负数,感受负数的实际意义;在引导学生创造的基础上,教学正、负数的表示方法;让学生联系生活感知正数和负数意义相反、相互依存的关系;……使人感到简洁、明快。
贴切。数学知识源于生活经验。老师注意寻找贴近学生生活的数学素材,精心设计符合学生年龄特点的数学活动。使得学生乐学、深思,真正成为课堂的主人。
课始,老师让学生猜测沈阳大雪时的温度;接着自然地将温度计引出,并让学生自主交流温度计的有关知识;……既可以消除学生对教学内容的陌生感,同时也能激发学生的求知欲,使得学生积极参与数学活动。使人感到真切、自然。
充实。数学重在思考。认识负数时,借助温度计和海拔,引导学生通过看一看、猜一猜、说一说、议一议等数学活动,从不同的角度感受负数、理解负数,并用所学知识解决生活中的实际问题。从而让学生经历了“感知——探索——建构——应用”的认知过程,有利于增强认识,落实目标。使人感到实在、高效。
和谐。关注学生学习过程评价。老师注意给学生提供广阔的思维空间,鼓励学生尽情地表达自己的意见与想法。例如:“你了解温度计吗?把你了解的情况和大家交流一下,好吗?”、 “你能说说是怎样看出来的吗?”、“ 你能用自己喜欢的方式表示吗?”、“你有哪些收获,给大家分享,好吗?”……有利于学生自主参与知识的形成过程,从而形成平等、自由、和谐的学习氛围。使人感到轻松、流畅 。
关于初中数学试讲教案 篇八
知识技能
会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考
1、经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。
2、通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题
能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度
经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点
建立方程解决实际问题,会通过移项解 “ax+b=cx+d”类型的一元一次方程。
教学难点
分析实际问题中的相等关系,列出方程。
教学过程
活动一 知识回顾
解下列方程:
1、 3x+1=4
2、 x-2=3
3、 2x+0.5x=-10
4、 3x-7x=2
提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?
教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)
教师追问:变形的依据是什么?
学生独立思考、回答交流。
本次活动中教师关注:
(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二 问题探究
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本。这个班有多少学生?
教师:出示问题(投影片)
提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?
(学生尝试提问)
学生:读题,审题,独立思考,讨论交流。
1、找出问题中的已知数和已知条件。(独立回答)
2、设未知数:设这个班有x名学生。
3、列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)
4、找相等关系:
这批书的总数是一个定值,表示它的两个等式相等。(学生回答,教师追问)
5、列方程:3x+20=4x-25(1)
总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?
教师提问1:这个方程与我们前面解过的方程有什么不同?
学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25)。
教师提问2:怎样才能使它向x=a的形式转化呢?
学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20。
3x-4x=-25-20(2)
教师提问3:以上变形依据是什么?
学生回答:等式的性质1。
归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。
师生共同完成解答过程。
设问4:以上解方程中“移项”起了什么作用?
学生讨论、回答,师生共同整理:
通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。
教师提问5:解这个方程,我们经历了那些步骤?列方程时找了怎样的相等关系?
学生思考回答。
教师关注:
(1)学生对列方程解决实际问题的一般步骤:设未知数,列代数式,列方程,是否清楚?
(2)在参与观察、比较、尝试、交流等数学活动中,体验探究发现成功的快乐。
活动三 解法运用
例2解方程
3x+7=32-2x
教师:出示问题
提问:解这个方程时,第一步我们先干什么?
学生讲解,独立完成,板演。
提问:“移项”是注意什么?
学生:变号。
教师关注:学生“移项”时是否能够注意变号。
通过这个例题,掌握“ax+b=cx+d”类型的一元一次方程的解法。体验“移项”这种变形在解方程中的作用,规范解题步骤。
活动四 巩固提高
1、第91页练习(1)(2)
2、某货运公司要用若干辆汽车运送一批货物。如果每辆拉6吨,则剩余15吨;如果每辆拉8吨,则差5吨才能将汽车全部装满。问运送这批货物的汽车多少量?
3、小明步行由A地去B地,若每小时走6千米,则比规定时间迟到1小时;若每小时走8千米,则比规定时间早到0.5小时。求A、B两地之间的距离。
教师按顺序出示问题。
学生独立完成,用实物投影展示部分学而生练习。
教师关注:
1、学生在计算中可能出现的错误。
2.x系数为分数时,可用乘的办法,化系数为1。
3、用实物投影展示学困生的完成情况,进行评价、鼓励。
巩固“ax+b=cx+d”类型的一元一次方程的解法,反馈学生对解方程步骤的掌握情况和可能出现的计算错误。
2、3题的重点是在新情境中引导学生利用已有经验解决实际问题,达到巩固提高的目的。
活动五
提问1:今天我们学习了解方程的那种变形?它有什么作用、应注意什么?
提问2:本节课重点利用了什么相等关系,来列的方程?
教师组织学生就本节课所学知识进行小结。
学生进行总结归纳、回答交流,相互完善补充。
教师关注:学生能否提炼出本节课的重点内容,如果不能,教师则提出具体问题,引导学生思考、交流。
引导学生对本节所学知识进行归纳、总结和梳理,以便于学生掌握和运用。
布置作业:
第93页第3题
初中数学试讲教案:《认识负数》 篇九
课题是《认识负数》,它是人教版教材小学数学六年级下册第一单元的内容。《数学课程标准》将负数的认识安排在第二学段“数与代数”的知识体系中,具体目标是:在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题。从《课标》中可以发现,本课的学习,意在让学生感受负数与生活之间的联系,并没有复杂的概念与计算,知识层次比较浅。因此我认为,如何充分地展现负数的魅力,激起学生探索的兴趣,是教师在设计本课时值得关注的问题。
一、教材分析
在认真研读教材后,我改变了教科书原有的编排。教材是根据学生已有的生活经验,选用“气温”和“温度计”这两个熟悉的情境,让学生认识负数和理解负数。适时加入初一学习数轴初步知识,改变原有的编排,整合学习内容,“创造性的使用教材”,而不是“教教材”。为此,我制定出以下的教学 目标。
二、说教学目标
1、知识与技能方面:了解正数与负数是实际需要的,掌握会判断一个数是正数还是负数,会初步应用正负数来表示相反意义的量。
2、过程与方法方面:通过正数、负数的学习,培养学生应用数学知识解决实际问题的能力。
3、情感与态度方面:
①、从实际问题引入正数、负数,然后通过实例巩固,让学生感知到数学知识来源于生活,应用于生活。
②、根据新课程标准新提出要注重培养学生基本的数学思想,我想通过正负数的教学,渗透对立、统一的辩证思想。
③、通过对负数有关知识的介绍,培养学生爱国主义情感。
三、说教学重点和难点。
本课的教学重点:理解运用正负数表示具有相反意义的量。
教学难点:理解0既不是正数也不是负数,并能对三者初步进行大小比较。
四、说教学环节以及设计意图
为了能很好地达到以上教学目标,我设计了四个教学环节,分别是:1、巧设情境、感知引入——引出负数;2、体验内化、探求新知——认识负数;3、回归生活,拓展应用——应用负数;4、课堂总结、知识延伸——拓展负数。下面,我就来具体阐述教学环节以及我的设计意图。
第一个环节:巧设情境、感知引入——引出负数
我们都知道:课堂应是点燃学生智慧的火把,而给予她火种的是一个个具有挑战性的问题。于是,我改变原有课本呈现三个城市的温度教学,一开始,让学生记录三条意义完全相反的信息:“老师说几件事,把你所听到的数据信息记录下来,独立思考,选择你喜欢的方法记录,关键是让别人一眼就能看明白。”这些数据信息是我精心准备的:比赛中进球丢球、学生的转进转出、生意的盈利亏损。创设这三个情境,其目的有两个:一、这些情境都是学生比较熟悉的,比教材中的温度学习更有兴趣。二、这些情境隐含了本节课的重点,用正负数来表示相反意义的量。我预设学生可能出现的答案,有的学生用文字,有的学生用箭头,当然也有学生就用正数、负数来表示。虽然他们的答案形式各样,但都有本质上的联系,我紧接又抛出一个评价性的问题:你们觉得谁的表示方法更简单易懂一些呢?于是动态生成里学习目标:认识负数,用正负数来表示意义相反的量。不惊让人觉得“负数”真是一场“及时雨”啊!这样的引入,学生自身产生“需要找到一种统一的形式”的内需,这时的学习,已经由被动化主动,同时,也让学生体验了由具体到抽象的符号化、数学化过程,认识也逐渐从模糊到清晰。这样的过程更让学生简约地经历了人类探索负数的历程,实现了数学学习的再创造。
引出负数后,我直接描述性的介绍,像什么样的数叫正数、像什么样的数叫负数。俗话说得好:不要认为学生是一张白纸,是一无所知,教师该放手时就放手,该出手时就出手。当学生知道它们的概念后,就能很快的判断一个数是正数还是负数。接着,我通过“快速抢答并判断”的游戏来刺激学生的思维,既能活跃课堂气氛,又能不知不觉中让学生熟练的掌握知识。还可以通过:“你能写出几个正数和负数”的练习,让学生体会正数和负数无限、对应等数学思想。现在新课标也注重要加强学生的基本数学思想。我想在此,这些数学思想已经无形地渗透其中。 介绍有关负数的小知识,让学生感受到我们的祖先是最早认识和使用负数的,这是多么的了不起啊!
第二个环节:体验内化、探求新知——认识负数
学习完了上一环节内容后,我让学生联系生活,想一想生活中的负数。顺利引入四个城市某日的天气预报,要求学生读出上述信息后,引导学生明白在生活中用温度计来测量温度,初步明确零上温度和零下温度的不同表示方法。在介绍完温度计的基本知识后,指名让学生动手拨出5℃和北京-5℃,也就是零下4℃。学生在没有0℃的温度计上,轻易的拨出了5℃,接着我又让她再-5℃,生在“水银”无法往下拨时,发现应该先确定0℃。加深他们对分界点0的认识。不要小看学生拨一拨这个环节,我们教材是直接呈现城市的温度,让学生自己读出来。而创造性地改变教材,其目的有两层意思:一、由静态化为动态,通过小小的“拨”,唤起了更深层次的思考:要在温度计上表示温度,首先要确定0℃的位置。使学生明确感悟到:温度中,0℃是区分零上温度和零下温度的分界点,比0℃高的温度用正数表示,比0℃低则用负数表示。其二、学生动手操作,兴趣盎然,既将正数、负数、零有机地整合到了一个新的概念框架中,实现了对0的再认识,又突出了本节课的教学重点、突破了0既不是正数也不是负数的难点。
在学生理性认识了零上温度和零下温度后,我再出示中国最冷的城市:黑龙江-40℃,用自己的表情和动作来表示越来越冷的感受。这不仅将负数大小的比较等知识很好地渗透进来,而且又能体现在生活中学数学的理念。
第三个环节:回归生活,拓展应用——应用负数。
既然负数是生活中发现的,那么我们就应该“取之于生活,用之于生活”。在练习环节,我为学生提供了大量的生活中的信息,运用数学知识解决生活中自己身边的问题,使练习变的既有趣又有用。我设计了三种练习:
1、基础性练习:山峰的海拔高度和盆地让学生再次感受“负数真的是无处不在”啊!多样化的练习,既不枯燥,又检查了学生对负数的理解。
2、形成性练习。比如上课时教师和学生可以演示方位中的负数。教师向北走几步,学生应该向南走几步等,这些不仅针对教学重点“用正负数表示意义相反的量”,而且又紧密联系生活,学生好学、乐学。
3、拓展性练习。我借助“刘翔”这个不仅是小学生会关注,大人会关注,乃至全世界人都会关注的人物跨栏成绩的研究,一下子把学生的积极性提到最高处。当时风速是每秒-0.4米,为bb么说要说-0.4米呢?给予学生讨论的空间,并用肢体语言表示出来。然后借助两位同学的表演,相对而跑,揭示出负数是表示相反意义的数。再让学生想想如果风速是每秒+0.4米呢,又会出现什么情况呢?这些有价值性的问题,我想,学生愿意去思考,在思考中学数学,学在其中,乐在其中。
第四个环节:课堂总结、知识延伸——拓展负数。
引入数轴评价本课的收获:学生有前面温度计的辅垫,学习数轴也觉得轻松很多。
这个环节主要让学生总结本节课的知识,我相信,由于教师为学生搭建一个交流、开放、宽松的“舞台”,学生就能熟练轻松地总结知识。为了提高学生对负数的知识的兴趣,提高:你还想了解哪些与负数有关的知识?这样不仅能给课堂画上圆满的句号,还激发了学生继续探究的热情!
五、课后反思
通过本节课的学习,学生在知识性目标方面能够很好地落实,同时学生对所学过的数也能初步地形成知识系统,对负数的知识也能产生浓厚的学习兴趣。情感性目标也应能落实得比较到位。
现代教学论认为:学生只有在亲身经历或体验一种学习过程时,其聪明才智才能得以发挥出来。任何学习都是一种积极主动的建构过程。有这样一句话:听见了,忘记了;看见了,记住了;体验了,理解了。可见让学生感受数学、经历数学、体验数学是学生学习数学的最佳方式。
本节课的不足之处:老师在语言总结上,应该更为简洁;正数在日常生活中,正号省略不写,有个别学生还未掌握。
初中数学试讲教案:《认识负数》 篇十
教学内容:苏教版《义务教育标准实验教科书(五年级上册)》p1~3
教学目标:1,在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方式。
2,能用正负数描述现实生活中的现象,如温度,收支,海拔高度等具有相反意义的量。
3,体验数学与日常生活密切相关,激发学生对数学的兴趣。
教学重点:在现实情景中理解正负数及零的意义。
教学难点:用正负数描述生活中的现象。
教学准备:多媒体课件,写有温度的卡片,练习纸。
教学过程:
课前做一个游戏:对着干!
老师说一句话,你们要和老师对着干,说一句相反的话!
"向前看!向左走!我要向学校的东南方走!起立!我坐电梯向上到二楼!我炒股赚了100元钱!今天气温比昨天下降了2℃!"
一,教学例1
1.由中国台湾水果引入。
出示几幅中国台湾水果的图片。
看到这些水果有什么感觉 你们知道这些美味的水果产自哪里吗
师介绍:近两年来,随着海峡两岸交流的日趋频繁,中国台湾地产水果也逐渐进入了祖国大陆,越来越多的人品尝到了来自宝岛的美食。
看着这些图片你就觉得这些水果怎么样 那你们知道为什么中国台湾的水果会长的这么好
师介绍:中国台湾雨水充沛,冬暖夏凉,气候宜人,所以中国台湾的水果特别可口。老师统计了台北市冬季的一天的最低气温,你们能知道什么
2.依次出示几个城市某天最低气温的温度计图。
学生观察台北图示时向学生介绍温度计的读法。在科学课上同学们已学过了温度计的用法,这里老师给同学简单介绍一下,在温度计上有两个计量温度的单位,左边是℃,右边是℉,我们一般计量温度时都用℃,所以我们只要看左边的刻度就可以了。它是0℃为分界线,一大格表示10℃,一小格就表示2℃.液面上升指在10℃以上四格半位置处就表示19℃.
老师还统计了另外几个城市冬季同一天的最低气温,想不想看一下
出示例1图片,
仔细读题,从图中你能知道什么
学生回答。(引导学生与0摄氏度进行比较)
北京气温和上海气温一样吗 (零上和零下) 一上一下,正好相反!(板书:0℃)
你们知道在数学上我们是怎样区分和表示零上4℃和零下4℃的呢 (板书:+4℃ -4℃)
学生回答。你们在哪见过的。(天气预报中常出现)
那你知道北京和上海这一天相差了多少摄氏度吗
3.师小结正负数的读写法
为了方便表示,我们把零上4℃可记做+4℃,读作正4℃,也可记做4℃;把零下4℃记作-4℃,读作负4℃.写的时候只要在4前面加个正号(在黑板上板书写法),+4也写做4,这个数读作负4,只要在4前面加个负号就可以了,写的时候先写负号再写数。
(板书:+4 读作正四,也可写成4 -4读作负四)
4.现在看着图中的温度计能不能很迅速的知道那儿的温度了 来个比赛好不好,看谁是个合格的气象员 拿出老师发给大家的小纸片,老师出示几个城市冬季同一天的最低温度,一说开始就迅速的举起合适的纸片,看谁又对又快!
香港18℃,哈尔滨-12℃,西宁-8℃,漠河-30℃,曾母暗沙30℃(或+30℃).介绍漠河,曾母暗沙地理位置。
那你们看在同一天我国最南部和最北部相差了多少摄氏度 有什么想法
先做一个合格的气象记录员还不够,看着图示能很快地把气温写下来才是一个优秀的小小气象员,想不想试一试
出示赤道40℃,北极-34℃,南极-40℃的图片。(南极是全球温度最低的地区)
二,教学例2
1.从上面的知识我们知道了同一天不同的地区有着不同的温差,而有的地方一天以内也存在着巨大的温差,想不想了解一下。
出示1:哈蜜瓜和葡萄的图片。
这个地方的水果特别有名,你们知道这是什么地方吗
出示2:"早穿皮袄午穿纱,围着火炉吃西瓜".
这是新疆的一个地方,这儿的气候特点也非常奇特。你知道这句话是什么意思吗 (介绍:新疆特别是吐鲁番盆地素有"早穿皮袄午穿纱"之说。以盆地西缘的托克逊为例,9月份中,午后最高气温平均27.5℃经常可升到30℃以上(最高曾达36.8℃)确实可以穿"纱";但清晨最低气温平均仅9.3℃,经常可以降到0℃~5℃(最低曾降到零下5.1℃),不穿棉就会很冷了。当地人在春秋季节中,一天之内衣服更换之频,大概也是世上少有。而那里的气候干燥,当地居民要多吃瓜果来补充水份。所以有此一说!)
师介绍吐鲁番盆地的气候特点:早晚很冷要裹着皮袄,而到了正午却很热只能穿件纱衣。那儿的水果因为白天日照非常充沛产生了很多甜分,到了夜间很冷这些甜分得以在水果内保存下来,所以吐鲁番的水果特别的香甜。
你们知道为什么吐鲁番盆地一天之内会有如此大的差异吗
这和它独特的地理特点有着密切的关系,它是我国海拔最低的地方,老师带来了一幅图。
出示例2的图片。
介绍海平面:图中的这条红线就表示海平面。你通过这幅图你知道了什么 那你能用今天所学的知识来表示这两个地方的海拔高度吗
学生回答后师总结:以海平面为基准(板书:海平面),比海平面高8844.43米,通常称为海拔8844.43米,可以记作+8844.43(板书+8843.43);比海平面低155米,通常称为海拔负155米,可记作-155米(板书:-155).看来用这样的数还能区分海平面以上的高度和海平面以下的高度。
介绍珠峰最新高度。(今年3—5月,我国的科考队员,登上珠峰,通过先进的技术为这世界最高峰重新测量了身高,10月,国务院正式公布了新高度,向全世界展示我国严谨认真的对待科学的态度。)
2.下面这个地区的海拔高度你会表示吗
我国最大的湖——青海湖高于海平面3193米。
世界最低最咸的湖——死海低于海平面400米。
南京市的最高点——紫金山顶峰高于海平面448米。
3.从下面给你的数据中你能知道这个地区是高于海平面还是低于海平面呢
世界上最大的湖是亚洲北部的里海,它的海拔高度是-28米,太平洋的马里亚纳海沟是世界上最深的海沟,它的海拔高度是-11034米。
三,教学正负数的意义
1.刚才我们用这些数来表示零摄氏度以上的温度,零摄氏度以下的温度,还可以表示海平面以上的高度和海平面以下的高度 ,你们能将这些数分分类吗
出示:+4 -4 40 +8844.43 -155 448 -28 0
小组讨论。
学生汇报后师总结(板书:正数 负数)
师结合温度和海拔高度来总结正数和负数。"0"怎么办呢
结合学生回答板书:0既不是正数也不是负数。
2.练习
(1)先读一读,再把这些数填入相应的圈内。
-5 +26 8 -40 -120 +103
(2)你能自己写出一些正数和负数吗
请学生上台有投影仪上演示,再同桌互相读一读。你们为什么不写零啊
3.今天我们认识了负数。老师这有些负数的小知识,你们想不想知道
介绍第9页"你知道吗 "
四,总结
我国是世界上最早使用负数的国家。那你今天学习了那些负数的知识了。
那你在日常生活中有没有见过负数
结合学生回答介绍电梯里的正负数,股市中的正负数,存折中的负数等。
五,练习
1.做练习一第4题。
2.你知道下面的温度吗 读一读。
(1)水沸腾的温度是0℃.水结冰的温度是100℃.
(2)月球表面的最高气温是127℃,最低气温是-183℃.介绍月球表面的最高和最低气温。
(3)我国刚刚成功发射的神舟六号飞船在太空中向阳面的温度为100℃以上,而背阳面却低于-100℃,但通过隔热和控制,太空舱内的温度始终保持在21℃,非常适宜宇航员工作。
(我国的神舟六号飞船从发射到昨天的成功返回,虽然只经过短短的五天时间,但却凝聚了我国的最尖端技术,使我国成为世界上仅有的三个拥有载人航天技术的国家之一。希望同学们也能从小就学好知识,长大后为我国的科技事业更进一步做为贡献。)