数学是一门日常都要使用的学科,所以要拥有好的教案才能充分教导学生们如何使用数学,下面是高考家长帮为您整编的高中高二数学教案(优秀5篇),希望能够给大家的写作带来一定的帮助。
数学高二教案 篇一
一、教学内容
这学期按照教育局教研室的要求,教学任务比较重。选修1-1,第三章《导数》,根据教研室的计划,应该安排在春节前。鉴于期末考试临近,这一章没有学习,所以这学期的教学内容有以下几个部分:选修1-1《导数》,选修1-2,共四章《统计案例》,《推理与证明》,《数系的扩充与复数的引入》。
二、教学策略
根据年山东省高考数学(文科)大纲的要求,应及时调整教学计划,切实重视学生学习的实施,让学生的学习成为有效的劳动。精心备课,精心指导,针对目标学生不放松,努力使目标学生数学成绩有效,积极交流,提高教学水平,同时认真学习《框图》,学习新课程,应用新课程。
三、具体措施
这学期我主要从以下几个方面做好教学工作:
1、注重学习计划指导学习,善用好学案例。注重研究老师如何说话,就是注重研究学生如何学习。
2、尽量分层次做作业,尤其是加餐,提高尖子生的学习成绩。
3、特别注意学生作业的落实,不定时查看学生的集锦和作业本。
4、组织单位通过,做好试卷讲评工作。
5、积极沟通目标学生的想法和感受。
高二数学优秀教案 篇二
教学要求:理解曲线交点与方程组的解的关系,掌握直线与曲线位置关系的讨论,能熟练地求曲线交点。
教学重点:熟练地求交点。
教学过程:
一、复习准备:
1、直线A x+B +C =0与直线A x+B +C =0,
平行的充要条件是 ,相交的充要条件是 ;
重合的充要条件是 ,垂直的充要条件是 。
2、知识回顾:充分条件、必要条件、充要条件。
二、讲授新课:
1、教学例题:
①出示例:求直线=x+1截曲线= x 所得线段的中点坐标。
②由学生分析求解的思路→学生练→老师评讲
(联立方程组→消用韦达定理求x坐标→用直线方程求坐标)
③试求→订正→小结思路。→变题:求弦长
④出示例:当b为何值时,直线=x+b与曲线x + =4 分别 相交?相切? 相离?
⑤分析:三种位置关系与两曲线的交点情况有何关系?
⑥学生试求→订正→小结思路。
⑦讨论其它解法?
解二:用圆心到直线的距离求解;
解三:用数形结合法进行分析。
⑧讨论:两条曲线F (x,)=0与F (x,)=0相交的充要条件是什么?
如何判别直线Ax+B+C=0与曲线F(x,)=0的位置关系?
( 联立方程组后,一解时:相切或相交; 二解时:相交; 无解时:相离)
2、练习:
求过点(-2,- )且与抛物线= x 相切的直线方程。
三、巩固练习:
1、若两直线x+=3a,x-=a的交点在圆x + =5上,求a的值。
(答案:a=±1)
2、求直线=2x+3被曲线=x 截得的线段长。
3、课堂作业:书P72 3、4、10题。
高二数学教案 篇三
一、教学目标设计
1. 了解利用科学计算免费软件--Scilab软件编写程序来实现算法的基本过程。
2. 了解并掌握Scilab中的基本语句,如赋值语句、输入输出语句、条件语句、循环语句;能在Scipad窗口中编辑完整的程序,并运行程序。
3. 通过上机操作和调试,体验从算法设计到实施的过程。
二、教学重点及难点
重点: 体会算法的实现过程,能认识到一个算法可以用很多的语言来实现,Scilab只是其中之一。
难点:体会编程是一个细致严谨的过程,体会正确完成一个算法并实施所要经历的过程。
三、教学流程设计
四、教学过程设计
(一)几个基本语句和结构
1、赋值语句(=)
2、输入语句 输入变量名=input(提示语)
3、输出语句 print() disp()
4、条件语句
5、循环语句
(二)几个程序设计
建议:直接在Scilab窗口下编写完整的程序,保存后再运行;如果不能运行或出现逻辑错误
可打开程序后直接修改,修改后再保存运行,反复调试,直到测试成功。
高二数学教案 篇四
一、教学目标:
1、知识与技能目标
①理解循环结构,能识别和理解简单的框图的功能。
②能运用循环结构设计程序框图解决简单的问题。
2、过程与方法目标
通过模仿、操作、探索,学习设计程序框图表达,解决问题的过程,发展有条理的思考与表达的能力,提高逻辑思维能力。
3、情感、态度与价值观目标
通过本节的自主性学习,让学生感受和体会算法思想在解决具体问题中的意义,增强学生的创新能力和应用数学的意识。三、教法分析
二、教学重点、难点
重点:理解循环结构,能识别和画出简单的循环结构框图,
难点:循环结构中循环条件和循环体的确定。
三、教法、学法
本节课我遵循引导发现,循序渐进的思路,采用问题探究式教学。运用多媒体,投影仪辅助。倡导“自主、合作、探究”的学习方式。
四、 教学过程:
(一)创设情境,温故求新
引例:写出求 的值的一个算法,并用框图表示你的算法。
此例由学生动手完成,投影展示学生的做法,师生共同点评。鼓励学生一题多解——求创。
设计引例的目的是复习顺序结构,提出递推求和的方法,导入新课。此环节旨在提升学生的求知欲、探索欲,使学生保持良好、积极的情感体验。
(二)讲授新课
1、循序渐进,理解知识
【1】选择“累加器”作为载体,借助“累加器”使学生经历把“递推求和”转化为“循环求和”的过程,同时经历初始化变量,确定循环体,设置循环终止条件3个构造循环结构的关键步骤。
(1)将“递推求和”转化为“循环求和”的缘由及转化的方法和途径
引例“求 的值”这个问题的自然求和过程可以表示为:
用递推公式表示为:
直接利用这个递推公式构造算法在步骤 中使用了 共100个变量,计算机执行这样的算法时需要占用较大的内存。为了节省变量,充分体现计算机能以极快的速度进行重复计算的优势,需要从上述递推求和的步骤 中提取出共同的结构,即第n步的结果=第(n-1)步的结果+n。若引进一个变量 来表示每一步的计算结果,则第n步可以表示为赋值过程 。
(2)“ ”的含义
利用多媒体动画展示计算机中累加器的工作原理,借助形象直观对知识点进行强调说明① 的作用是将赋值号右边表达式 的值赋给赋值号左边的变量 。
②赋值号“=”右边的变量“ ”表示前一步累加所得的和,赋值号“=”左边的“ ”表示该步累加所得的和,含义不同。
③赋值号“=”与数学中的等号意义不同。 在数学中是不成立的。
借助“累加器”既突破了难点,同时也使学生理解了 中 的变化和 的含义。
(3)初始化变量,设置循环终止条件
由 的初始值为0, 的值由1增加到100,可以初始化循环变量和设置循环终止条件。
【2】循环结构的概念
根据指定条件决定是否重复执行一条或多条指令的控制结构称为循环结构。
教师学生一起共同完成引例的框图表示,并由此引出本节课的重点知识循环结构的概念。这样讲解既突出了重点又突破了难点,同时使学生体会了问题的抽象过程和算法的构建过程。还体现了我们研究问题常用的“由特殊到一般”的思维方式。
2、类比探究,掌握知识
例1:改造引例的程序框图表示①求 的值
②求 的值
③求 的值
④求 的值
此例可由学生独立思考、回答,师生共同点评完成。
通过对引例框图的反复改造逐步帮助学生深入理解循环结构,体会用循环结构表达算法,关键要做好三点:①确定循环变量和初始值②确定循环体③确定循环终止条件。
高二数学教案 篇五
教学目标:
1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。
2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。
教学重点:
体会直角坐标系的作用。
教学难点:
能够建立适当的直角坐标系,解决数学问题。
授课类型:
新授课
教学模式:
启发、诱导发现教学。
教 具:
多媒体、实物投影仪
教学过程:
一、复习引入:
情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。
情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。
问题1:如何刻画一个几何图形的位置?
问题2:如何创建坐标系?
二、学生活动
学生回顾
刻画一个几何图形的位置,需要设定一个参照系
1、数轴 它使直线上任一点P都可以由惟一的实数x确定
2、平面直角坐标系
在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定。
3、空间直角坐标系
在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。
三、讲解新课:
1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:
任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置
2、确定点的位置就是求出这个点在设定的坐标系中的坐标
四、数学运用
例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
变式训练
如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置
例2 已知B村位于A村的正西方1公里处,原计划经过B村沿着北偏东60的方向设一条地下管线m.但在A村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W周围100米范围划为禁区。试问:埋设地下管线m的计划需要修改吗?
变式训练
1一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B两地相距800米,并且此时的声速为340m/s,求曲线的方程
2在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程
例3 已知Q(a,b),分别按下列条件求出P 的坐标
(1)P是点Q 关于点M(m,n)的对称点
(2)P是点Q 关于直线l:x-y+4=0的对称点(Q不在直线1上)
)高考家长帮●www.kaoyantv.com(变式训练
用两种以上的方法证明:三角形的三条高线交于一点。
思考
通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?
五、小 结:本节课学习了以下内容:
1.平面直角坐标系的意义。
2. 利用平面直角坐标系解决相应的数学问题。
六、课后作业: