丰富的图形世界 篇一
第一章教学评价指导
一、总体设计思路:
1、通过观察现实生活中的物体,认识基本几何体及点、线、面。
2、通过展开与折叠活动,认识棱柱的基本性质。
3、通过展开与折叠、切与截、从不同方向看等数学实践活动,积累数学活动经验。
4、通过平面图形与空间几何体相互转换的活动过程 中,建立空间观念,发展几何直觉。
5、由空间到平面,认识常见的平面图形。
——观察、操作、描述、想象、推理、交流。
二、总体教学建议:
1、充分挖掘图形的现实模型,鼓励学生从现实世界中“发现”图形。
2、充分让学生动手操作、自主探索、合作交流,以积累有关图形的经验和数学活动经验,发展空间观念。
其中动手操作是学习过程中的重要一环---在学生学习开绐阶段,它可能帮助学生认识图形,发展空间观念,以后,它可以用来验证学生对图形的空间想象。因此,学习之初,教师要鼓励学生先动手、后思考,以后,则鼓励学生先想象,再动手。
3、教学中应有意识地满足多样化的学习需要,发展学生的个性。
如开展正方体表面展开、棱柱模型制作等教学。
几点说明:
1、为什么安排展开与折叠、切与截、从不同方向看等那么多实践活动,目的是什么?
2、教学中要处理好动手操作和思考想象的关系?
3、生活中的立体图形性质的认识过程
用自己语言充分地描述----点、线、面之间的关系-----通过操作归纳出比较准确的数学语言-------更好地想象图形。
4、展开与折叠的目的与处理(想和做的关系:先做后想----先想后做)
三、总体评价建议
1、关注学生在展开与折叠、切截、从不同方向看等数学活动中空间观念的发展。
2、关注学生是否能正确认识现实生活中大量存在的柱、锥、球的实物模型。
3、关注学生在观察、操作、想象等数学活动中的主动参与的程度以及是否愿意与同伴交流各自的想法。
4、要帮助学生建立自己的数学学习成长记录袋,让他们反思自己的数学学习情况和成长的历程。
四、每一节的教学目标 、重难点、教学建议与评价方法
第一节:生活中的立体图形
第一课时:
1.经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩。
2.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、球,并能用自
己的语言描述它们的某些特征。
3.了解圆柱与圆锥、棱柱与圆柱的相同点和不同点。
重点:图形的识别。
难点:图形的分类。
教学建议:
1.多给学生创设一些情境,使学生于这些情景中认识棱柱、棱锥、圆锥、球等几何体,学会从复杂的组合图形中把这些图形分离出来,或者让学生辨认复杂图形是由哪些基本图形组合而成的;
2.这里对图形的认识是初步的,不必给予精确定义。
评价建议:
1. 过程性:关注学生从现实世界中抽象出图形的过程,关注学生能否从
现实世界中发现图形;
2.知识性:正确辨认圆柱、圆锥、正方体、长方体、棱柱和球这些几何
体,并能用自己的语言描述它们的特征。
第二课时:
1.通过大量的实例, 丰富对点、线、面的认识;
2.体会点、线、面之间的关系。
3.会识别平面和曲面、直线和曲线;
4.了解“点动成线”、“线动成面”、“面动成体”的现象。
重点:点、线、面的认识。
难点:用运动的观点描述它们的形成过程。
教学建议:
1.几何中的点只有位置,没有大小。当我们把日常生活总的某个物体看作点时,我们只是强调其位置,而忽略了它们的大小。对于线、面亦是如此。在教学时可以通过P5页下面一幅图说说这方面的思想,让学生领会即可;
2.点、线、面间的关系,书上从静止和运动两个方面来说明的,可让学生多举一些生活中的实例加以说明。
评价建议:
1.过程性:关注并鼓励学生参与到课堂活动中来,通过自己的主动思考,体会点、线、面是构成图形的基本元素。
2.知识性:从静态和动态两个角度了解点、线、面的关系,会识别平面和曲面,直线和曲线。
第二节:展开与折叠
第一课时:
1.经历折叠、模型制作等活动, 发展空间观念, 积累数学活动经验;
2.在操作活动中认识棱柱的某些特性;
3.了解(直)棱柱的侧面展开图, 能根据展开图判断和制作简单的立体模型。
重点:通过活动认识归纳出棱柱的基本性质, 并能感受到研究空间问题的
思维方法
难点:正确判断哪些平面图形可折叠为棱柱
教学建议:
1.做一做是了解棱柱特性的一个重要手段,教学时应让学生动手折叠;
2.建议先让学生观察折叠好的棱柱,说一说棱柱有哪些特点,再根据书上的问题串归纳;
3.想一想应让学生先猜想说明理由后再操作确认;
4.棱柱、直棱柱、正棱柱这三个概念不必向学生说明,教师叙述时注意不能混为一谈。
评价建议:
1.过程性:关注学生在做一做中动手能力的培养,以及在观察、想象、归 纳等活动中合作交流意识的形成。
2.知识性:了解棱柱的有关概念以及基本特性,能应用棱柱的基本特性
解决图形折叠的某些问题。
第二课时:
1.了解立体图形与平面图形的关系,会把正方体的表面展开为平面图形,
进而会把棱柱表面展开成平面图形;
2.了解圆柱、圆锥的侧面展开图,能根据展开图判断立体模型;
3.通过展开与折叠实践操作,积累数学活动经验;在平面图形与空间几
何体表面转换的过程中,初步建立空间观念,发展几何直觉。
重点:会把正方体表面展开成平面图形。
难点:按照预定的形状把正方体展开成平面图形。
教学建议:
1.对棱柱的各种展开方式不必求全;
2.注重对图形的辨别,不必侧重于十一种平面展开图的分类。
评价建议:
1.过程性:关注学生在正方体表面展开活动中空间观念的发展,鼓励学生
制作长方体、正方体、圆柱和圆锥等几何体的模型。
2.知识性:能把正方体表面展开成平面图形,了解圆柱、圆锥的侧面展
开图。
第三节:截一个几何体
教学目标 :
1.通过经历对几何体切截的实践过程,让学生体验面与体之间的转换,探索截面形状与切截方向之间的联系;
2.于面与体的转换中丰富几何直觉和数学活动经验,发展学生的空间观念和创造性思维能力;
3.培养学生主动探索、动手实践、勇于发现、合作交流的意识。
重点:理解截面的含义。
难点:根据所给的条件做出它的截面。
教学建议:
1.由于学生的空间想象能力和识图能力不强,讲截面问题时,必须充分运用实物和动手实验;
2.由于截面形状与截面的位置密切相关,教学时必须把截面的位置交代清楚。
评价建议:
1.过程性:注重学生在对几何体的切截过程中空间观念和创造性思维
能力的培养。
2.知识性:了解截面的意义以及截面的形状是由几何体的形状与截面的位置决定的。
第四节:从不同的方向看
第一课时:
1.学生经历从不同方向观察几何物体的活动过程 ,初步体会从不同方向
2.能识别简单物体的三视图,体会物体三视图的合理性;
3.会由实物画立方体及其简单组合的三视图;
4.渗透图形的二维空间与三维空间的转换。
重点:体会从不同方向看同一物体可能看到不同的结果。
难点: 能画立方体及其简单组合的三视图。
教学建议:
1.创设丰富的情境,让学生于观察、交流中体会不同方向看某个(或某组)物体时看到的图像可能是不同的;
2.由于学生想象能力薄弱,建议多利用实物模型帮助学生认识三视图。
评价建议:
1.过程性:注重学生通过观察等活动自己认识到同一物体从不同方向看
2. 知识性:认识到从不同的方向观察同一物体时,能看到的图形往往是
不同的。正确认识三视图的意义。
第二课时:
2.能根据正方体所搭的几何体的俯视图, 画出相应几何体的主视图
3.会根据(由正方体组成的)物体的三视图去辨认该物体的形状。
重点:根据主视图、左视图、俯视图相象出实物图形。
难点:确定组合体中小立方块的个数。
教学建议:
1.做一做部分建议按先摆、再看、后画的方式进行处理;
2.例1建议先让学生猜想,再通过摆一摆验证,最后归纳一般方法。
评价建议:
1.过程性:关注学生在画三视图过程中空间想象能力的培养,以及在观
察、想象、交流等活动中的主动参与程度。
2.知识性:会画由立方块组成的简单几何体的三视图,能根据俯视图正
确画出主视图和左视图。
第五节:生活中的平面图形
教学目标 :
1.经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩;
2.在具体情境中认识多边形、扇形,了解圆与扇形的关系;
3.通过对多边形的分割,感受把复杂图形转化为简单图形的方法;
4.在丰富的活动中发现有条理的思考。
重点:多边形、弧、扇形的概念。
难点:把复杂图形转化为简单图形的方法。
丰富的图形世界 篇二
第一章《丰富的图形世界》教学评价与建议
第一章教学评价指导
一、总体设计思路:
1、通过观察现实生活中的物体,认识基本几何体及点、线、面。
2、通过展开与折叠活动,认识棱柱的基本性质。
3、通过展开与折叠、切与截、从不同方向看等数学实践活动,积累数学活动经验。
4、通过平面图形与空间几何体相互转换的活动过程 中,建立空间观念,发展几何直觉。
5、由空间到平面,认识常见的平面图形。
——观察、操作、描述、想象、推理、交流。
二、总体教学建议:
1、充分挖掘图形的现实模型,鼓励学生从现实世界中“发现”图形。
2、充分让学生动手操作、自主探索、合作交流,以积累有关图形的经验和数学活动经验,发展空间观念。
其中动手操作是学习过程中的重要一环---在学生学习开绐阶段,它可能帮助学生认识图形,发展空间观念,以后,它可以用来验证学生对图形的空间想象。因此,学习之初,教师要鼓励学生先动手、后思考,以后,则鼓励学生先想象,再动手。
3、教学中应有意识地满足多样化的学习需要,发展学生的个性。
如开展正方体表面展开、棱柱模型制作等教学。
几点说明:
1、为什么安排展开与折叠、切与截、从不同方向看等那么多实践活动,目的是什么?
2、教学中要处理好动手操作和思考想象的关系?
3、生活中的立体图形性质的认识过程
用自己语言充分地描述----点、线、面之间的关系-----通过操作归纳出比较准确的数学语言-------更好地想象图形。
4、展开与折叠的目的与处理(想和做的关系:先做后想----先想后做)
三、总体评价建议
1、关注学生在展开与折叠、切截、从不同方向看等数学活动中空间观念的发展。
2、关注学生是否能正确认识现实生活中大量存在的柱、锥、球的实物模型。
3、关注学生在观察、操作、想象等数学活动中的主动参与的程度以及是否愿意与同伴交流各自的想法。
4、要帮助学生建立自己的数学学习成长记录袋,让他们反思自己的数学学习情况和成长的历程。
四、每一节的教学目标 、重难点、教学建议与评价方法
第一节:生活中的立体图形
第一课时:
教学目标 :
1.经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩。
2.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、球,并能用自
己的语言描述它们的某些特征。
3.了解圆柱与圆锥、棱柱与圆柱的相同点和不同点。
重点:图形的识别。
难点:图形的分类。
教学建议:
1.多给学生创设一些情境,使学生于这些情景中认识棱柱、棱锥、圆锥、球等几何体,学会从复杂的组合图形中把这些图形分离出来,或者让学生辨认复杂图形是由哪些基本图形组合而成的;
2.这里对图形的认识是初步的,不必给予精确定义。
评价建议:
1. 过程性:关注学生从现实世界中抽象出图形的过程,关注学生能否从
现实世界中发现图形;
2.知识性:正确辨认圆柱、圆锥、正方体、长方体、棱柱和球这些几何
体,并能用自己的语言描述它们的特征。
第二课时:
教学目标 :
1.通过大量的实例, 丰富对点、线、面的认识;
2.体会点、线、面之间的关系。
3.会识别平面和曲面、直线和曲线;
4.了解“点动成线”、“线动成面”、“面动成体”的现象。
重点:点、线、面的认识。
难点:用运动的观点描述它们的形成过程。
教学建议:
1.几何中的点只有位置,没有大小。当我们把日常生活总的某个物体看作点时,我们只是强调其位置,而忽略了它们的大小。对于线、面亦是如此。在教学时可以通过P5页下面一幅图说说这方面的思想,让学生领会即可;
2.点、线、面间的关系,书上从静止和运动两个方面来说明的,可让学生多举一些生活中的实例加以说明。
评价建议:
1.过程性:关注并鼓励学生参与到课堂活动中来,通过自己的主动思考,体会点、线、面是构成图形的基本元素。
2.知识性:从静态和动态两个角度了解点、线、面的关系,会识别平面和曲面,直线和曲线。
第二节:展开与折叠
第一课时:
教学目标 :
1.经历折叠、模型制作等活动, 发展空间观念, 积累数学活动经验;
2.在操作活动中认识棱柱的某些特性;
3.了解(直)棱柱的侧面展开图, 能根据展开图判断和制作简单的立体模型。
重点:通过活动认识归纳出棱柱的基本性质, 并能感受到研究空间问题的
思维方法
难点:正确判断哪些平面图形可折叠为棱柱
教学建议:
1.做一做是了解棱柱特性的一个重要手段,教学时应让学生动手折叠;
2.建议先让学生观察折叠好的棱柱,说一说棱柱有哪些特点,再根据书上的问题串归纳;
3.想一想应让学生先猜想说明理由后再操作确认;
4.棱柱、直棱柱、正棱柱这三个概念不必向学生说明,教师叙述时注意不能混为一谈。
评价建议:
1.过程性:关注学生在做一做中动手能力的培养,以及在观察、想象、归 纳等活动中合作交流意识的形成。
2.知识性:了解棱柱的有关概念以及基本特性,能应用棱柱的基本特性
解决图形折叠的某些问题。
第二课时:
教学目标 :
1.了解立体图形与平面图形的关系,会把正方体的表面展开为平面图形,
进而会把棱柱表面展开成平面图形;
2.了解圆柱、圆锥的侧面展开图,能根据展开图判断立体模型;
3.通过展开与折叠实践操作,积累数学活动经验;在平面图形与空间几
何体表面转换的过程中,初步建立空间观念,发展几何直觉。
重点:会把正方体表面展开成平面图形。
难点:按照预定的形状把正方体展开成平面图形。
教学建议:
1.对棱柱的各种展开方式不必求全;
2.注重对图形的辨别,不必侧重于十一种平面展开图的分类。
评价建议:
1.过程性:关注学生在正方体表面展开活动中空间观念的发展,鼓励学生
制作长方体、正方体、圆柱和圆锥等几何体的模型。
2.知识性:能把正方体表面展开成平面图形,了解圆柱、圆锥的侧面展
开图。
第三节:截一个几何体
教学目标 :
1.通过经历对几何体切截的实践过程,让学生体验面与体之间的转换,探索截面形状与切截方向之间的联系;
2.于面与体的转换中丰富几何直觉和数学活动经验,发展学生的空间观念和创造性思维能力;
3.培养学生主动探索、动手实践、勇于发现、合作交流的意识。
重点:理解截面的含义。
难点:根据所给的条件做出它的截面。
教学建议:
1.由于学生的空间想象能力和识图能力不强,讲截面问题时,必须充分运用实物和动手实验;
2.由于截面形状与截面的位置密切相关,教学时必须把截面的位置交代清楚。
评价建议:
1.过程性:注重学生在对几何体的切截过程中空间观念和创造性思维
能力的培养。
2.知识性:了解截面的意义以及截面的形状是由几何体的形状与截面的位置决定的。
第四节:从不同的方向看
第一课时:
教学目标 :
1.学生经历从不同方向观察几何物体的活动过程 ,初步体会从不同方向
观察同一物体可能看到不一样的结果,发展空间观念,能与他人的交流过程中,合理清晰地表达自己的思维过程;
2.能识别简单物体的三视图,体会物体三视图的合理性;
3.会由实物画立方体及其简单组合的三视图;
4.渗透图形的二维空间与三维空间的转换。
重点:体会从不同方向看同一物体可能看到不同的结果。
难点: 能画立方体及其简单组合的三视图。
教学建议:
1.创设丰富的情境,让学生于观察、交流中体会不同方向看某个(或某组)物体时看到的图像可能是不同的;
2.由于学生想象能力薄弱,建议多利用实物模型帮助学生认识三视图。
评价建议:
1.过程性:注重学生通过观察等活动自己认识到同一物体从不同方向看
可能看到不同的图形。关注学生用语言清晰表达自己思维过程的能力的培养。
2. 知识性:认识到从不同的方向观察同一物体时,能看到的图形往往是
不同的。正确认识三视图的意义。
第二课时:
教学目标 :
1.会画由正方体组成的较复杂图形的各视图;
2.能根据正方体所搭的几何体的俯视图, 画出相应几何体的主视图
和左视图;
3.会根据(由正方体组成的)物体的三视图去辨认该物体的形状。
重点:根据主视图、左视图、俯视图相象出实物图形。
难点:确定组合体中小立方块的个数。
教学建议:
1.做一做部分建议按先摆、再看、后画的方式进行处理;
2.例1建议先让学生猜想,再通过摆一摆验证,最后归纳一般方法。
评价建议:
1.过程性:关注学生在画三视图过程中空间想象能力的培养,以及在观
察、想象、交流等活动中的主动参与程度。
2.知识性:会画由立方块组成的简单几何体的三视图,能根据俯视图正
确画出主视图和左视图。
第五节:生活中的平面图形
教学目标 :
1.经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩;
2.在具体情境中认识多边形、扇形,了解圆与扇形的关系;
3.通过对多边形的分割,感受把复杂图形转化为简单图形的方法;
4.在丰富的活动中发现有条理的思考。
重点:多边形、弧、扇形的概念。
难点:把复杂图形转化为简单图形的方法。
丰富的图形世界 篇三
〖教学目标〗
1.观察生活中的大量实物,认识基本的几何体。
2.通过比较不同的物体学会观察物体间的不同特征,体会几何体的联系和区别。
〖教材分析〗
本节课的主要内容是感受丰富多彩的图形世界,并在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱和球。
本节课的重点是:通过具体情境认识一些基本的几何体;能用自己的语言描述几何体的特征。
本节课的难点是:观察身边的事物,用数学的眼光来评价它们;借助所了解的图形,归纳出几何体的 m.niubb.net 分类。
〖教学设计〗
(一)情境引入
1.让学生回忆小学学过的几何图形(立体图形):圆柱、圆锥、正方体、长方体、棱柱、球等,并展示实物教具和模型,让学生回忆这些几何体的形状。
2.请学生自己画一些立体实物(比如杯子等)。
3.组织学生观察校园里哪些物体与我们学习过的几何图形形状类似,然后鼓励学生将自己观察到的结果说出来(例如,学校里的垃圾桶是圆柱体,花池是六棱柱),由此让学生感觉到,正是这些基本图形构成了我们生活的空间,从而引出新课――生活中的立体图形(板书)。
(二)观察室
1.课件展示一些建筑物照片(如埃及金字塔、桂林香江饭店、英国白金汉宫等),让学生观察每幅图,找到与自己熟悉的几何体形状类似的物体(让学生上台说明,看谁找得最多最准,让学生说说哪些建筑物好看,以培养学生认真观察、大胆发言的良好习惯)。
2.展示课本第2页各图(课件),让学生仔细观察,并回答又有哪些与熟悉的几何体形状类似的物体。
3.展示课本第3页上图,让学生认真观察,然后分小组讨论,并回答下列问题:
(1)图中哪些物体的形状与长方体、正方体类似?
(2)图中哪些物体的形状与圆柱、圆锥类似?
(3)请找出图中与笔筒形状类似的物体。
(4)请找出图中与地球形状类似的物体。
(三)活动室
1.说一说:课件展示正方体、长方体、圆柱、圆锥、棱柱、棱台、球的几何透视图,让学生用自己的语言描述这些图形的特征。
2.议一议:课件展示棱柱和圆柱,分组讨论这两种几何体具有哪些相同点和不同点,在分组讨论交流中形成对棱柱比较全面的认识。
(四)竞赛室
赛一赛:找出生活中哪些物体的形状类似于棱柱、圆柱、圆锥和球。
(分组比赛,看哪一组举的例子多。如机器零件的六角螺母的形状类似于棱柱,圆桶形茶叶盒的形状类似于圆柱,有些冰淇淋的形状类似于圆锥,篮球、足球的形状类似于球,台灯的灯罩的形状类似于圆台。)
(五)训练室
将下列几何体分类,并说明理由。(学生上台动手将这几种几何体分类,让学生试着说明归类的理由。无论学生说什么教师都应用鼓励的目光让学生说出自己的答案。)
(六)探究室
你喜欢什么样的几何图形?为什么?如果你是一位小动物的房屋建筑师,你将建造一个什么形状的建筑物给你所喜欢的小动物居住?请把所设计的建筑物的设计草图画出来,并给小屋起个好听的名字,再用一句话来说说你们的设计(分小组)。
从学生喜爱动物的特点出发,不仅能让学生体会到生活中处处有数学,而且让学生懂得关爱,增强环保意识,同时也可以激发学生的学习兴趣,发展学生的表达能力及创新能力。
(七)小结
提问:本节课学到了什么?认识了什么图形?你发现了你的周围都存在着数学吗?
根据学生的回答,总结出:现实生活中原来有如此多的几何体,数学就在我们身边,我们也学会用数学的观点来认识生活,体会生活中的几何美,并通过学生对“美”的理解,简单地区别不同的几何体。
(八)作业
1.习题1.1。
2.动手做一个你认为在生活中比较实用的几何体。
3.做一个边长为10cm的正方体,做好后请保留。(在后面的学习用 到)
丰富的图形世界 篇四
一、总体设计思路:
1、通过观察现实生活中的物体,认识基本几何体及点、线、面。
2、通过展开与折叠活动,认识棱柱的基本性质。
3、通过展开与折叠、切与截、从不同方向看等数学实践活动,积累数学活动经验。
4、通过平面图形与空间几何体相互转换的活动过程 中,建立空间观念,发展几何直觉。
5、由空间到平面,认识常见的平面图形。
——观察、操作、描述、想象、推理、交流。
二、总体教学建议:
1、充分挖掘图形的现实模型,鼓励学生从现实世界中“发现”图形。
2、充分让学生动手操作、自主探索、合作交流,以积累有关图形的经验和数学活动经验,发展空间观念。
其中动手操作是学习过程中的重要一环---在学生学习开绐阶段,它可能帮助学生认识图形,发展空间观念,以后,它可以用来验证学生对图形的空间想象。因此,学习之初,教师要鼓励学生先动手、后思考,以后,则鼓励学生先想象,再动手。
3、教学中应有意识地满足多样化的学习需要,发展学生的个性。
如开展正方体表面展开、棱柱模型制作等教学。
几点说明:
1、为什么安排展开与折叠、切与截、从不同方向看等那么多实践活动,目的是什么?
2、教学中要处理好动手操作和思考想象的关系?
3、生活中的立体图形性质的认识过程
用自己语言充分地描述----点、线、面之间的关系-----通过操作归纳出比较准确的数学语言-------更好地想象图形。
4、展开与折叠的目的与处理(想和做的关系:先做后想----先想后做)
三、总体评价建议
1、关注学生在展开与折叠、切截、从不同方向看等数学活动中空间观念的发展。
2、关注学生是否能正确认识现实生活中大量存在的柱、锥、球的实物模型。
3、关注学生在观察、操作、想象等数学活动中的主动参与的程度以及是否愿意与同伴交流各自的想法。
4、要帮助学生建立自己的数学学习成长记录袋,让他们反思自己的数学学习情况和成长的历程。
四、每一节的教学目标 、重难点、教学建议与评价方法
第一节:生活中的立体图形
第一课时:
教学目标 :
1.经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩。
2.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、球,并能用自
己的语言描述它们的某些特征。
3.了解圆柱与圆锥、棱柱与圆柱的相同点和不同点。
重点:图形的识别。
难点:图形的分类。
教学建议:
1.多给学生创设一些情境,使学生于这些情景中认识棱柱、棱锥、圆锥、球等几何体,学会从复杂的组合图形中把这些图形分离出来,或者让学生辨认复杂图形是由哪些基本图形组合而成的;
2.这里对图形的认识是初步的,不必给予精确定义。
评价建议:
1. 过程性:关注学生从现实世界中抽象出图形的过程,关注学生能否从
现实世界中发现图形;
2.知识性:正确辨认圆柱、圆锥、正方体、长方体、棱柱和球这些几何
体,并能用自己的语言描述它们的特征。
第二课时:
教学目标 :
1.通过大量的实例, 丰富对点、线、面的认识;
2.体会点、线、面之间的关系。
3.会识别平面和曲面、直线和曲线;
4.了解“点动成线”、“线动成面”、“面动成体”的现象。
重点:点、线、面的认识。
难点:用运动的观点描述它们的形成过程。
教学建议:
1.几何中的点只有位置,没有大小。当我们把日常生活总的某个物体看作点时,我们只是强调其位置,而忽略了它们的大小。对于线、面亦是如此。在教学时可以通过P5页下面一幅图说说这方面的思想,让学生领会即可;
2.点、线、面间的关系,书上从静止和运动两个方面来说明的,可让学生多举一些生活中的实例加以说明。
评价建议:
1.过程性:关注并鼓励学生参与到课堂活动中来,通过自己的主动思考,体会点、线、面是构成图形的基本元素。
2.知识性:从静态和动态两个角度了解点、线、面的关系,会识别平面和曲面,直线和曲线。
第二节:展开与折叠
第一课时:
教学目标 :
1.经历折叠、模型制作等活动, 发展空间观念, 积累数学活动经验;
2.在操作活动中认识棱柱的某些特性;
3.了解(直)棱柱的侧面展开图, 能根据展开图判断和制作简单的立体模型。
重点:通过活动认识归纳出棱柱的基本性质, 并能感受到研究空间问题的
思维方法
难点:正确判断哪些平面图形可折叠为棱柱
教学建议:
1.做一做是了解棱柱特性的一个重要手段,教学时应让学生动手折叠;
2.建议先让学生观察折叠好的棱柱,说一说棱柱有哪些特点,再根据书上的问题串归纳;
3.想一想应让学生先猜想说明理由后再操作确认;
4.棱柱、直棱柱、正棱柱这三个概念不必向学生说明,教师叙述时注意不能混为一谈。
评价建议:
1.过程性:关注学生在做一做中动手能力的培养,以及在观察、想象、归 纳等活动中合作交流意识的形成。
2.知识性:了解棱柱的有关概念以及基本特性,能应用棱柱的基本特性
解决图形折叠的某些问题。
第二课时:
教学目标 :
1.了解立体图形与平面图形的关系,会把正方体的表面展开为平面图形,
进而会把棱柱表面展开成平面图形;
2.了解圆柱、圆锥的侧面展开图,能根据展开图判断立体模型;
3.通过展开与折叠实践操作,积累数学活动经验;在平面图形与空间几
何体表面转换的过程中,初步建立空间观念,发展几何直觉。
重点:会把正方体表面展开成平面图形。
难点:按照预定的形状把正方体展开成平面图形。
教学建议:
1.对棱柱的各种展开方式不必求全;
2.注重对图形的辨别,不必侧重于十一种平面展开图的分类。
评价建议:
1.过程性:关注学生在正方体表面展开活动中空间观念的发展,鼓励学生
制作长方体、正方体、圆柱和圆锥等几何体的模型。
2.知识性:能把正方体表面展开成平面图形,了解圆柱、圆锥的侧面展
开图。
第三节:截一个几何体
教学目标 :
1.通过经历对几何体切截的实践过程,让学生体验面与体之间的转换,探索截面形状与切截方向之间的联系;
2.于面与体的转换中丰富几何直觉和数学活动经验,发展学生的空间观念和创造性思维能力;
3.培养学生主动探索、动手实践、勇于发现、合作交流的意识。
重点:理解截面的含义。
难点:根据所给的条件做出它的截面。
教学建议:
1.由于学生的空间想象能力和识图能力不强,讲截面问题时,必须充分运用实物和动手实验;
2.由于截面形状与截面的位置密切相关,教学时必须把截面的位置交代清楚。
评价建议:
1.过程性:注重学生在对几何体的切截过程中空间观念和创造性思维
能力的培养。
2.知识性:了解截面的意义以及截面的形状是由几何体的形状与截面的位置决定的。
第四节:从不同的方向看
第一课时:
教学目标 :
1.学生经历从不同方向观察几何物体的活动过程 ,初步体会从不同方向
观察同一物体可能看到不一样的结果,发展空间观念,能与他人的交流过程中,合理清晰地表达自己的思维过程;
2.能识别简单物体的三视图,体会物体三视图的合理性;
3.会由实物画立方体及其简单组合的三视图;
4.渗透图形的二维空间与三维空间的转换。
重点:体会从不同方向看同一物体可能看到不同的结果。
难点: 能画立方体及其简单组合的三视图。
教学建议:
1.创设丰富的情境,让学生于观察、交流中体会不同方向看某个(或某组)物体时看到的图像可能是不同的;
2.由于学生想象能力薄弱,建议多利用实物模型帮助学生认识三视图。
评价建议:
1.过程性:注重学生通过观察等活动自己认识到同一物体从不同方向看
可能看到不同的图形。关注学生用语言清晰表达自己思维过程的能力的培养。
2. 知识性:认识到从不同的方向观察同一物体时,能看到的图形往往是
不同的。正确认识三视图的意义。
第二课时:
教学目标 :
1.会画由正方体组成的较复杂图形的各视图;
2.能根据正方体所搭的几何体的俯视图, 画出相应几何体的主视图
和左视图;
3.会根据(由正方体组成的)物体的三视图去辨认该物体的形状。
重点:根据主视图、左视图、俯视图相象出实物图形。
难点:确定组合体中小立方块的个数。
教学建议:
1.做一做部分建议按先摆、再看、后画的方式进行处理;
2.例1建议先让学生猜想,再通过摆一摆验证,最后归纳一般方法。
评价建议:
1.过程性:关注学生在画三视图过程中空间想象能力的培养,以及在观
察、想象、交流等活动中的主动参与程度。
2.知识性:会画由立方块组成的简单几何体的三视图,能根据俯视图正
确画出主视图和左视图。
第五节:生活中的平面图形
教学目标 :
1.经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩;
2.在具体情境中认识多边形、扇形,了解圆与扇形的关系;
3.通过对多边形的分割,感受把复杂图形转化为简单图形的方法;
4.在丰富的活动中发现有条理的思考。
重点:多边形、弧、扇形的概念。
难点:把复杂图形转化为简单图形的方法。