总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成情况加以回顾和分析,得出教训和一些规律性认识的一种书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,为此我们要做好回顾,写好总结。你想知道总结怎么写吗?下面是高考家长帮为您整理的高一数学知识点总结【优秀3篇】,希望能够对小伙伴们的写作有一点启发。
高一数学知识点总结 篇一
集合间的基本关系
1。“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2。“相等”关系:A=B(5≥5,且5≤5,则5=5)
实例:设A={x|x2—1=0}B={—1,1}“元素相同则两集合相等”
即:①任何一个集合是它本身的子集。AA
②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)
③如果AB,BC,那么AC
④如果AB同时BA那么A=B
3。不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n—1个真子集
集合的运算
运算类型交集并集补集
定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。记作AB(读作‘A交B’),即AB={x|xA,且xB}。
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:AB(读作‘A并B’),即AB={x|xA,或xB})。
设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
高一数学知识点总结 篇二
函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象。
C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上。即记为C={P(x,y)|y=f(x),x∈A}
图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。
(2)画法
A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来。
B、图象变换法(请参考必修4三角函数)
常用变换方法有三种,即平移变换、伸缩变换和对称变换
(3)作用:
1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。
高一数学知识点总结 篇三
元素与集合的关系有“属于”与“不属于”两种。
集合与集合之间的关系
某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作AB。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作AB。中学教材课本里将符号下加了一个≠符号,不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。