1. 主页 > 范文大全 >

《比例的意义》教案【最新7篇】

作为一名教师,总归要编写教案,教案是实施教学的主要依据,有着至关重要的作用。写教案需要注意哪些格式呢?下面是高考家长帮为朋友们整理的《比例的意义》教案【最新7篇】,希望能够对大家的写作有一点帮助。

比例的意义 篇一

2.比例的意义

教学内容:

教科书第40页的例3,完成随后的练一练和练习九的第3—7题。

教学目标:

1、理解比例的意义。

2、能根据比例的意义,正确判断两个比能否组成比例。

3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

教学重、难点:

理解比例的意义,能正确判断两个比能否组成比例;在学生观察、操作、推理和交流的过程中,发展学生的探究能力和精神

教学准备:

教学光盘及多媒体设备、两张照片

教学预设:

一、复习导入

1、昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?

2、关于比你有哪些了解?(生答:比的意义、各部分名称、基本性质等。)

3、化简比:

10:12   25:30   2:8   9:27

4、求下面比的比值:

0.9:3   1/5:1/15   1/4:1/8   1/8:1/16

师:请你说说求比的比值的方法

二、教学比例的意义。

1、教学例3

(1)观察、分析:

呈现放大前后的两张长方形照片及相关的数据。图2是图1放大后得到的。

师:你能分别写出每张照片长和宽的比吗?

(2)比较、发现:

比较写出的两个比,提问:这两个比相等吗?你有什么办法证明?

(3)明确概念:

这两个比相等,把比值相等的两个比用等号连起来,写成一种新的式子,如:

6.4:4=9.6:6           6.4/4=9.6/6

问:这两个等式表示的是怎样的式子?

揭示:像这样的式子就叫做比例。

(4)你能说说什么叫比例吗?

(让学生充分发表意见,在此基础上概括出比例的意义)

(5)学生读一读

明确:有两个比,且比值相等或化简后的最简整数比相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等或化简后的最简整数比相等。

2、学以致用

(1)学习比例的意义有什么用呢?(可以判断两个比是否可以组成比例。)

(2)分别写出照片放大后和放大前的长的比和宽的比,这两个比也能组成比例吗?

学生独立完成,再说说是怎样想的?由此可以使学生对比例意义的丰富感知。

(3)你能根据以上照片提供的数据,再写出两个比,并将它们组成比例吗?

3、活学活用。

你能根据以上的理解,再写出两个比,并将它们组成比例吗?说出为什么能组成比例。

(可以看他们的比值是否相等,也可以把两个比化简,看是不是相同的比)

三、巩固练习

1、做练一练,学生独立完成,再逐题说说判断的思考过程。

2、做练习九第3题。

先写出符合要求的比,再说清楚相应的两个比是否能够组成比例的理由。

3、做练习九第4题

独立审题,说说解题步骤,在独立完成。同时找两个同学板演。

4、做练习九第7题

(1)什么是“相对应的两个量的比”。如240米是4分钟走的路程,所以240米与4分钟是相对应的两个量。

(2)分组完成,同时四人板书,再讲评。

四:补充练习:

从12的因数中任意选出4个数,再组成两个比例式:

(   )︰(   )= (   )︰(   )

(   )︰(   )= (   )︰(   )

五、全课小结

通过本课的学习,你有哪些收获?

你理解比例的哪些有关知识?能和同学做个交流吗?

六、课堂作业

补充习题的相应练习

板书设计:

比例的意义

6.4:4=1.6       9.6:6=1.6

6.4:4=8:5      9.6:6=8:5

6.4:4=9.6:6     6.4/4=9.6/6

表示两个比相等的式子叫做比例。

比例的意义 篇二

课题一:

教学目标:

1、使学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别,能应用比例的意义和比例的基本性质判断两个比能否组成比例。

2、激发学生的学习兴趣,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。

教学重点:

理解比例的意义基本性质。

教学难点:

应用比例的意义和性质判断两个比是否成比例。

教学过程

一、导入新课

1、什么叫比?

2、求出下面各比的比值(小黑板)

12:16    1/4:1/3   和9:12   4.5:2.7   10:6

二、教学新课

1、教学比例的意义

(1)出示例1:同学们能写出多少个有意义的比?观察这些比,哪此能用等号连接?把能用等号连接的比用等号连接起来。这些式子都是比例,你能用自己的语言说一说什么是比例吗?

(2)归纳比例的意义

(3)2:5和80:200能组成比例吗?你是怎样判断的?

(4)完成第45页“做一做”

2、教学比例的基本性质

(1)在一个比例里,有四个数,这四个数分别叫什么名字?

(2)请同们分别找出80:2=200:5和2分之80=5分之200的内项和外项。

(3)你们任意找一个比例,把它们的内项和外项分别乘起来,双可以发现什么?

(4)指导学生归纳后,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

(5)指导学生完成第一46页“做一做”第1题。

三、巩固练习

四、课堂小结

这节课你学到了哪些知识?

创意作业:

有一房间,窗子的长是6分米,宽是4分米;门的长和宽分别是21分米和14分米,你能用已知的四个数组成多少个比例?比一比哪个同学组成的多。

《比例的意义》教案 篇三

学情分析

在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。

教学目标

1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据判断两种量成不成反比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

教学重点和难点

教学重点:认识反比例关系的意义。

教学难点 :掌握成反比例量的变化规律及其特征。

教学过程一、复习导入

1.正比例关系的意义是什么?怎样用字母表示这种关系?

判断两种相关联量成不成正比例的关键是什么?

2.下面哪两种量成正比例关系?为什么?

(1)时间一定,行驶的速度和路程。

(2)数量一定,单价和总价。

3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

4.引入新课。

如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

二、教学新课

1.教学例4。

出示例4。让学生计算,在课本上填表,并观察思考能发现什么?点名让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么?

点名学生口答讨论的结果,得出:

(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(板书补充:运的总吨数一定时,每天运的吨数和天数的积一定)

2.教学例5。

出示例5。

按照刚才学习例4的方法,自己学习例5,仔细想想你发现了些什么?学生观察思考后,指名学生口答从表里发现了些什么?再提问:这两种相关联量变化的规律是什么?

(板书:每袋重量和袋数的积一定)

乘积8000是什么数量,这种数量关系用式子怎样表示?

[板书:每袋重量×袋数=糖果总重量(积一定)]这个式子表示什么意思?(把上面板书补充成:糖果总重量一定时,每袋重量和袋数的积一定)

3.概括。

(1)综合例4、例5的共同点。

提问:请你比较一下例4和例5,说一说,这两个例题有什么共同的地方?

(2)概括反比例意义。

例4、例5里两种相关联的量,它们是什么关系的量呢?

像例4、例5里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。

问:两种相关联的量成不成反比例的关键是什么?

(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?【板书:x×y=k(一定)】指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用x×y=k(一定)来表示。

4.具体认识。

(1)提问:例4里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

例5里的两种量成反比例关系吗?为什么?

(2)提问:看两种相关联的量成不成反比例,关键要看什么?

(3)做练习八第4题。

让学生读题思考。指名依次口答题里的问题。[结合板书;每天装配的台数×天数=一批计算机的总台数(一定)]

(4)判断。

现在回过来看开始写的关系式:工作效率×工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。

三、巩固练习

1. 做“练一练”第l,2,3,4,5题。

指名口答,说说理由。思考时可以引导看数量关系式,说明理由。

2.拓展应用。

3.综合练习

四、课堂小结

这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?

五、课堂作业

《比例的意义》教案 篇四

教学目标:

1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。

教学重点:

成正比例的量的特征及其判断方法。

教学难点:

理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律。

教 法:

启发引导法

学 法:

自主探究法

教 具:

课件

教学过程:

一、定向导学(5分)

1、已知路程和时间,求速度

2、已知总价和数量,求单价

3、已知工作总量和工作时间,求工作效率

4、导入课题

今天我们来学习成正比例的量。

5、出示学习目标

1、理解正比例的意义。

2、能根据正比例的意义判断两种量是不是成正比例。

二、自主学习(8分)

自学内容:书上45页例1

自学时间:8分钟

自学方法:读书法、自学法

自学思考:

1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?

2、正比例关系式是什么?

(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积一定,体积和高成正比例。

(2)构成正比例关系的两种量,必须具备三个条件:一是必须是两种相关联的量,二是一种量变化另一种量也随着变化,三是比值(商)一定

(3)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

y/x=k(一定)

(4)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是175立方米?225立方厘米的水有9厘米。

2、归类提升

引导学生小结成正比例的量的意义和关系式。

三、合作交流(5分)

第46页正比例图像

1、正比例图像是什么样子的?

2、完成46页做一做

3、各组的b1同学上台讲解

四、质疑探究(5分)

1、第49页第1题

2、第49页第2题

3、你还有什么问题?

五、小结检测(8分)

1、什么是正比例关系?如何判断是不是正比例关系?

2、检测

1、49页第3题。

六、堂清作业(9分)

练习九页第4、5题。

板书设计:

成正比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。

关系式:

y/x=k

(一定)

《比例的意义》教案 篇五

教学目标:

(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。

(2)认识比例的各部分名称。

(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。

教学重点难点:

理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。

教具学具准备:

幻灯片、学习卡。

教学过程:

一、创设情景,引入新课。

出示三幅场景图。

(1)图上描述的是什么情景?这几幅图都与什么有关?

(2)这三面国旗有什么相同和不同的地方?(形状相同,大小不同)

(3)你们有见过这样的国旗吗?或者这样的?

我们的国旗,不论大小,之所以形状相同,是因为它们都是按照一定的比例来制作的,从今天开始,我们将要学习有关比例的知识。板书课题

二、自主探究,明确意义

1、提问:你们知道每一幅图中国旗的长和宽分别是多少吗?

2、谈话:在制作国旗的过程中存在着有趣的比。请同学们拿出第一张自主学习卡,算一算这三幅国旗的长、宽之比,求出比值,并同桌互相说一说你有什么发现?

3、学生汇报。

4、我们以操场上和教室里的国旗为例,2.4:1.6= ,60:40= ,这两个比的比值相等,中间可以用等号连接起来,写成2.4:1.6=60:40,因为比还可以写成分数形式,所以还可以写成=。

像这样表示两个比相等的式子叫做比例。(板书)

5、在上图的三面国旗的尺寸中,还有哪些比可以组成比例?

6、深入探讨:

(1)比例有几个比组成?

(2)是不是任意两个比都能组成比例?

(3)判断两个比能不能组成比例,关键要看什么?

7、完成“做一做”。

三、探究比例的基本性质。

1、学习比例各部分的名称。

教师:我们知道组成比的两个数分别叫前项和后项,组成比例的四个数也有自己的名字,你们知道它们分别叫什么吗?(课件出示)

(1)指名读一读有关知识。

(2)谁来介绍一下在2.4:1.6=60:40中,内项和外项分别是谁?

随着学生的回答教师出示:

2.4: 1.6 = 60: 40 (外项)(内项)

└-内项-┘ =

└------外项-------┘ (内项)(外项)

(3)如果把比例写成分数形式,你能找出它的内项和外项吗?

(4)任意选择一个比例式,标出内项、外项,同桌两人互相检查。

2、研究比例的基本性质。

(1)活动探究,总结性质。

谈话:比有基本性质,比例表示两个比相等的式子,也有它特有的性质,请同学们拿出2号自主学习卡,小组讨论一下,写一写,算一算,解决以下问题。

①计算下面比例中两个外项的积和两个内项的积,比较一下,你能发现什么?

2.4:1.6=60:40 =

②你能举一个例子,验证你的发现吗?

③你能得出什么结论?

④你能用字母表示这个性质吗?

(2)运用性质。

①提问:学了比例的基本性质,你觉得运用它能解决什么问题?

②运用比例的基本性质,判断下面哪组中的两个比可以组成比例。

(1) 6:3和8:5 (2) 0.2:2.5 和 4:50

(3) :和 : (4) 1.2: 和 :5

四、巩固练习。

1、填空

(1)在a:7=9:b中,( )是内项,( )是外项,a×b=( )。

(2)一个比例的两个内项分别是3和8,则两个外项的积是( ),两个外项可能是( )和( )。

(3)在一个比例里,两个外项互为倒数,那么两个内项的积是( ),如果一个外项是 ,另一个外项是( )。

(4)在比例里,两个内项的积是18,其中一个外项是2,另一个外项是( )。

(5)如果5a=3b,那么, = , = 。

2、判断。

(1)在比例中,两个外项的积减去两个内项的积,差是0。( )

(2)18:30和3:5可以组成比例。( )

(3)如果4X=3Y,(X和Y均不为0),那么4:X=3:Y。( )

(4)因为3×10=5×6,所以3:5=10:6。( )

3、把下面的等式改写成比例:(能写几个写几个)

16 × 3 = 4 × 12

四、总结归纳

1、这节课我们学习了什么知识?你有什么收获?

2、判断两个比能不能组成比例,有几种方法?

比例在生活中有着广泛的应用,比如:警察可以根据脚印的长短判断罪犯的大致身高,根据影子的长度可以算出一棵大树的高度等,都与比例有关,我们只要认真学好比例,就一定能帮助我们了解其中的奥秘。

板书设计

比例的意义和基本性质

表示两个比相等的式子叫做比例。

2.4: 1.6 = 60: 40 (外项)(内项)

└-内项-┘ 或 =

└------外项-------┘ (外项)(内项)

在比例里,两个外项的积等于两个内项的积。

A:B=C → AD=BC

《比例的意义》教案15

教学内容:教科书第19—21页正比例的意义,练习六的1—3题。

教学目的:

1.使学生理解正比例的意义,能够根据正比例的意义判断两种量是不是成正比例。

2.初步培养学生用事物相互联系和发展变化的观点来分析问题。

3.初步渗透函数思想。

教具准备:投影仪、投影片、小黑板。

教学过程():

一、复习

用,投影片逐一出示下面的题目,让学生回答。

1.已知路程和时间,怎样求速度?板书: =速度

2.已知总价和数量,怎样求单价?板书: =单价

3.己知工作总量和工作时间,怎样求工作效率?板书:

=工作效率

4,已知总产量和公顷数,怎样求公顷产量?板书: =公顷产量

二、导人新课

教师:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系。(板书课题:正比例的意义)

三、新课

1.教学例1。

用小黑板出示例1:一列火车行驶的时间和所行的路程如下表:

提问:

“谁来讲讲例1的意思?”(火车1小时行驶60千米,2小时行驶120千米……)

“表中有哪几种量?”

“当时间是1小时,路程是多少?当时间是2小时,路程又是多少?……”

“这说明时间这种量变化了,路程这种量怎么样了?”(也变化了。)

教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量。(板书:两种相关联的量)“时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢?”

教师指着表格:我们从左往右观察(边讲边在表格上画箭头),时间扩大2倍,对应的路程也扩大2倍3时间扩大3倍,对应的路程也扩大3倍……从右往左观察(边讲边在表格上画反方向的箭头),时间缩小8倍,对应的路程也缩小8倍;时间缩小7倍,对应的路程也缩小7倍……时间缩小2倍,对应的路程也缩小2倍。通过观察,我们发现路程是随着时间的变化而变化的。时间扩大路程也扩大,时间缩小路程也缩小。它们扩大、缩小的规律是怎么样的呢?

让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值。教师板书出来: =60. =60, =60…… 让学生双察这些比和它们的比值,看有什么规律。教师板书:相对应的两个数的比值(也就是商)一定。

然后教师指着 =60, =60 = 60……问:“比值60,实际上是火车的什么:你能将这些式子所表示的意义写成一个关系式吗?板书: =速度(—定)

教师小结:通过刚才的观察和分析.我们知道路程和时间是两种什么样的量?(两种相关联的量。)路程和时间这两种量的变化规律是什么呢?(路程和时间的比的比值(速度)总是一定的。)

2.教学例2。

出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。

让学生观察上表,并回答下面的问题:

(1)表中有哪两种量?

(2)米数扩大,总价怎样?米数缩小,总价怎样?

(3)相对应的总价和米数的比各是多少?比值是多少?

当学生回答完第二个问题后,教师板书: =3.1, =3.1, =3.1……

然后进一步问:

“这个比值实际上是什么?你能用一个关系式表.示它们的关系吗?”板书: =单价(一定)

教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价也随着扩大;米数缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和米数的比的比值总是一定的。

3.抽象概括正比例的意义。

教师:请同学们比较一下刚才这两个例题,回答下面的问题;

(1)都有几种量?

(2)这两种量有没有关系?

(3)这两种量的比值都是怎样的`?

教师小结:通过比较,我们看出上面两个例题,有一些共同特点:都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值(也就是商)一定。像这样的两种量我们就把它们叫做成正比例的量,它们的关系叫做正比例关系。(板书出教科书上第’20页的倒数第二段。)

接着指着例1的表格说明:在例1中,路程随着时间的变化而变化,它们的比值(速度)保持一定,所以路程和时间是成正比例的量。随后让学生想一想:在例2中,有哪两种相关联的量:它们是不是成正比例的量?为什么?

最后教师提出:如果我们用字母X,y表示两种相关联的量.用字母K表示它们的比值,你能将正比例关系用字母表示出来吗?

学生回答后,教师板书: =K(一定)

4,教学例3。

出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?

教师引导:

“面粉的总重量和袋数是不是相关联的量?”·

“面粉的总重量和袋数有什么关系?它们的比的比值是什么?这个比值是否—定?”(板书: =每袋面粉的重量(一定))

“已知每袋面粉的重量一定,就是面粉的总重量和袋数的比的比值是一定的,所以面粉的总重量和袋数成正比例。”

5.巩固练习。

让学生试做第21页“做一做”中的题目。其中(3)要求学生说明这个比值所表示的意义,学生说成是生产效率和每天生产的吨数都可以。

四、课堂练习

完成练习六的第1—3题。

第1题,做题前,让学生想一想:成正比例的量要满足哪几个条件?然后让学生算出各表中两种相对应的数的比的比值,看看它们的比值是否相等。如果比值相等就可以列出关系式进行判断。第(3)小题,要问一问学生为什么正方形的边长和面积不成比例。(因为相对应的正方形的边长和面积的比的比值不相等。)

第2题,先让学生自己判断,再订正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。

第3题,可先让同桌的同学互相举例,然后再指名举出成正比例的例子。

比例的意义 篇六

教学内容:比例的意义和基本性质 (省义务教材第十二册)

教学目标 : 1、理解和掌握比例的意义和基本性质,认识比例的各部分的名称,体会数学的规律美。

2、利用比例知识解决实际问题。

3、培养学生自主参与的意识、主动探究的精神,激发学生的审美愉悦。培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。

教学过程 :

一、    谈话导入  ,创设情境:

出示CAI课件(一张微型照片)。你能看出这是杭州哪一个景点的照片?的确,照片太小了,那现在老师将这张照片按一定比例放大一些,[师将照片逐渐放大]。由此出现一张平湖秋月的风景照。【诱发审美注意】

我们的祖国方圆960万平方公里,幅员辽阔却能在一张小小的地图上清晰可见各地位置。建筑设计师可将滨江四区的设计构想展示在一张纸上。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

二、    自主探究,学习新知

(一)            教学比例的意义

1、   8厘米

出示

6厘米

4厘米

3厘米

(1)根据表中给出的数量写出有意义的比。[生汇报]

(2)哪些比是相关联的?[生说,师板书]

(3)根据以往经验,可将相等的两个比怎样?(用等号连接)

教师并指出这些式子就是比例。

2、   让学生任意写出比例,并让学生用自己的语言描述比例的意义。

3、   教师板书:表示两个比相等的式子叫做比例。比例也可用分数形式表示。

4、   写出比值是1/3的两个比,并组成比例。

(二)            教学比例的基本性质

1、   比例和比有什么区别?

2、   认识比例的各部分

(1)让学生自己取。

(2)组成比例的四个数叫做比例的项,两端的两项叫做比例的

外项,中间的两项叫做比例的内项。

板书:    8       :      6   =      4     :      3

内 项

外   项

(3)让学生找出自己举的比例的内外项。

( )

12

2

( )

=

(4)找出分数形式比例的内外项位置又是怎样的?

3、   出示                      【启迪学生思维,展开审美想象】

(1)     这个比例已知的是哪两项,要求的又是哪两项?学生试填。

(2)     学生反馈,教师板书。

(3)     你发现了什么?

(4)     指导学生概括出比例的基本性质,并板书:在比例里,两个外项之积等于两个内项之积。

4、   用比例性质验证你所写比例是否正确。

5、练习   8 : 12 =X : 45

0.5

X

20

32

=

求比例中的未知项,叫做解比例。

如何证明你的解是正确的?

(三)            小结:今天这堂课你有什么收获?

三、    巩固练习

1、下面哪几组中的两个比可以组成比例。

4

1

12 : 24 和18 : 36

0.4 :    和0.4 : 0.15

14 : 8  和7 : 4

5

2

2、根据18 x 2 =  9 x 4 写出比例。【体会到数学的逻辑美,规律美】

3、从1   、8、0.6、3、7五个数中

(1)     选出四个数,组成比例。

(2)     任意选出3个数,再配上另一个数,组成比例。

(3)     用所学知识进行检验。

四、    实际应用

不久前,汪骏强家的菜地边高高矗立起一个新铁塔,这天午后,阳光明媚,邻居家刚读一年级的小明又拉着汪骏强来到铁塔下,玩着玩着,小明问道:“强强哥哥,这铁塔干嘛用?”“铁塔嘛,架设高压线用的,以后等电线架好了,可不能再来玩了,更不能攀登,高压线可危险了!”“那这个铁塔有多高压呀?”

同学们,如果你是汪骏强,你准备怎么办?

执教者        方 艳

《比例的意义》教案 篇七

教学目标

知识目标:理解比例的意义,掌握组成比例的关键条件。

能力目标:能正确的判断两个比能否组成比例。

情感目标:通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

重点解比例的意义,掌握组成比例的关键条件。

难点正确的判断两个比能否组成比例。

教学过程教学预设个性修改。

目标导学复习激趣目标导学自主合作汇报交流变式训练。

创境激疑

一、创设情境,导入新课

师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢?(生自由回答)

师:同学们都说出了自己的想法,说明你们都很热爱我们的国家,希望你们以后一定要好好学习,做一个有用的人,把我们的国家建设的更加美好!五星红旗是庄严而美丽的,并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容:比例(板书课题:比例)

合作探究

二、新授(课件出示不同大小的国旗图案)

师:画面上出现了四幅不同大小的国旗,请同学们任选两面国旗来算一算它们各自长与宽的比值是多少?然后观察结果,你能发现什么?

(板演,观察到比值相等,教师板书:两个比相等)

师:那我们就可以将这两个比用等号连接。(教师板书生汇报的两个相等的比)

教师边指着这组相等的比一边说:好,像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是比例的意义(把课题板书完整)请同学们齐读。

请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(生回答,等式;有两个相等的比)

(教师再强调:一定是比值相等的两个比才能组成比例。)

师:你还能从四面国旗中找出哪些比例?

(写在练习本上,然后汇报。教师板书)

师:我们在学习比的时候,可以把比写成分数的形式,比如:60:40=60/40,那比例也能写成分数的形式吗?怎么写?(口答)

师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?

从形式上区分:比由两个数组成;比例由四个数组成。

从意义上区分:比表示两个数之间的倍数关系;比例表示两个比相等的式子。

拓展应用下面哪些组的两个比可以组成比例?如果能,在()打对号。

10:2和35:42()0.6:0.2和):4和3:():和12:8()

总结小强3分钟走了180米,小刚1小时走了3.6千米。小强说他们各自所走的路程和时间的比能组成比例,小刚说不能组成比例。请问:谁说的对?

作业布置做一做。

板书设计比例的意义

2.4:1.6=60:40=

2.4:1.6=60:40

(或)=