1. 主页 > 范文大全 >

二次根式教案【优秀8篇】

如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面。一起看看新人教版八年级数学下册二次根式教案!欢迎查阅!高考家长帮为您带来了二次根式教案【优秀8篇】,希望能够给小伙伴们的写作带来一定的帮助。

次根式教案 篇一

第十六章 二次根式

代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,”;②单个的数字或单个的字母也是代数式

5.5(解析:这类题保证被开方数是最小的完全平方数即可得出结论。20=22×5,所以正整数的最小值为5.)

6、(1)(x+)(x-) (2)n(n+)2(n-)2(解析:关键是逆用()2=a(a≥0)将3变成()2.(1)x2-3=(x+)(x-)。(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

7、解:(1) 。 (2)宽:3 ;长:5 。

8、解:(1) =。 (2)(3)2=32×()2=18. (3)=(-2)2×=。 (4)-=-=-3π。 (5) = =。

9、解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.

10、解析:在利用=|a|=化简二次根式时,当根号内的因式移到根号外面时,一定要注意原来根号里面的符号,这也是化简时最容易出错的地方。

解:乙的解答是错误的。因为当a=时,=5,a-<0,所以 ≠a-,而应是 =-a.

本节课通过“观察——归纳——运用”的模式,让学生对知识的形成与掌握变得简单起来,将一个一个知识点落实到位,适当增加了拓展性的练习,层层递进,使不同的学生得到了不同的发展和提高。

在探究二次根式的性质时,通过“提问——追问——讨论”的形式展开,保证了活动有一定的针对性,但是学生发挥主体作用不够。

在探究完成二次根式的性质1后,总结学习方法,再放手让学生自主探究二次根式的性质2.既可以提高学习效率,又可以培养学生自学能力。

练习(教材第4页)

1、解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

2、解:(1)=0.3. (2) =。 (3)-=-π。 (4)=10-1=。

习题16.1(教材第5页)

1、解:(1)欲使有意义,则必有a+2≥0,∴a≥-2,∴当a≥-2时,有意义。 (2)欲使有意义,则必有3-a≥0,∴a≤3,∴当a≤3时,有意义。 (3)欲使有意义,则必有5a≥0,∴a≥0,∴当a≥0时,有意义。 (4)欲使有意义,则必有2a+1≥0,∴a≥-,∴当a≥-时,有意义。

2、解:(1)()2=5. (2)(-)2=()2=0.2. (3)=。 (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =。 (8)- =- =-.

3、解:(1)设圆的半径为R,由圆的面积公式得S=πR2,所以R2=,所以R=± 。因为圆的半径不能是负数,所以R=-不符合题意,舍去,故R= ,即面积为S的圆的半径为 。 (2)设较短的边长为2x,则它的邻边长为3x.由长方形的面积公式得2x3x=S,所以x=±,因为x=-不符合题意,舍去,所以x=,所以2x=2=,3x=3=,即这个长方形的相邻两边的长分别为和。

4、解:(1)32. (2)()2. (3)()2. (4)0.52. (5)。 (6)02.

5、解:由题意可知πr2=π22+π32,∴r2=13,∴r=±。∵r=-不符合题意,舍去,∴r=,即r的值是。

6、解:设AB=x,则AB边上的高为4x,由题意,得x4x=12,则x2=6,∴x=±。∵x=-不符合题意,舍去,∴x=。故AB的长为。

7、解:(1)∵x2+1>0恒成立,∴无论x取任何实数,都有意义。 (2)∵(x-1)2≥0恒成立,∴无论x取任何实数,都有意义。 (3)∵即x>0,∴当x>0时, 在实数范围内有意义。 (4)∵即x>-1,∴当x>-1时,在实数范围内有意义。

8、解:设h=t2, 则由题意,得20=×22,解得=5,∴h=5t2,∴t= (负值已舍去)。当h=10时,t= =,当h=25时,t= =。故当h=10和h=25时,小球落地所用的时间分别为 s和 s.

9、解:(1)由题意知18-n≥0且为整数,则n≤18,n为自然数且为整数,∴符合条件的n的所有可能的值为2,9,14,17,18. (2)∵24n≥0且是整数,n为正整数,∴符合条件的n的最小值是6.

10、解:V=πr2×10,r= (负值已舍去),当V=5π时, r= =,当V=10π时,r= =1,当V=20π时,r= =。

如图所示,根据实数a,b在数轴上的位置,化简:+。

〔解析〕 根据数轴可得出a+b与a-b的正负情况,从而可将二次根式化简。

解:由数轴可得:a+b0,

∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

[解题策略] 结合数轴得出字母的取值范围,再化简二次根式,此题体现了数形结合的思想。

已知a,b,c为三角形的三条边,则+= 。

〔解析〕 根据三角形三边的关系,先判断a+b-c与b-a-c的符号,再去根号、绝对值符号并化简。因为a,b,c为三角形的三条边,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.

[解题策略] 此类化简问题要特别注意符号问题。

化简:。

〔解析〕 题中并没有明确字母x的取值范围,需要分x≥3和x<3两种情况考虑。

解:当x≥3时,=|x-3|=x-3;

当x<3时,=|x-3|=-(x-3)=3-x.

[解题策略] 化简时,先将它化成|a|,再根据绝对值的意义分情况进行讨论。

5

O

M

次根式教案 篇二

教学建议

知识结构:

重点难点分析:

是商的二次根式的性质及利用性质进行二次根式的化简与运算,利用分母有理化化简。商的算术平方根的性质是本节的主线,学生掌握性质在二次根使得化简和运算的运用是关键,从化简与运算由引出初中重要的内容之一分母有理化,分母有理化的理解决定了最简二次根式化简的掌握。

教学难点是二次根式的除法与商的算术平方根的关系及应用。二次根式的除法与乘法既有联系又有区别,强调根式除法结果的一般形式,避免分母上含有根号。由于分母有理化难度和复杂性大,要让学生首先理解分母有理化的意义及计算结果形式。

教法建议:

1、 本节内容是在有积的二次根式性质的基础后学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质。教师在此过程中给与适当的指导,提出问题让学生有一定的探索方向。

2、 本节内容可以分为三课时,第一课时讨论商的算术平方根的性质,并运用这一性质化简较简单的二次根式(被开方数的分母可以开得尽方的二次根式);第二课时讨论二次根式的除法法则,并运用这一法则进行简单的二次根式的除法运算以及二次根式的乘除混合运算,这一课时运算结果不包括根号出现内出现分式或分数的情况;第三课时讨论分母有理化的概念及方法,并进行二次根式的乘除法运算,把运算结果分母有理化。这样安排使内容由浅入深,各部分相互联系,因此及彼,层层展开。

3、 引导学生思考“想一想”中的内容,培养学生思维的深刻性,教师组织学生思考、讨论过程中,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维。

教学设计示例

一、教学目标

1、掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;

2、会进行简单的二次根式的除法运算;

3、使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;

4、 培养学生利用二次根式的除法公式进行化简与计算的能力;

5、 通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;

6、 通过分母有理化的教学,渗透数学的简洁性。

二、教学重点和难点

1、重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行。

2、难点:二次根式的除法与商的算术平方根的关系及应用。

三、教学方法

从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的'基础上本小节

内容可引导学生自学,进行总结对比。

四、教学手段

利用投影仪。

五、教学过程

(一) 引入新课

学生回忆及得算数平方根和性质: (a≥0,b≥0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的。)

学生观察下面的例子,并计算:

由学生总结上面两个式的关系得:

类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:

(二)新课

商的算术平方根。

一般地,有 (a≥0,b>0)

商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

让学生讨论这个式子成立的条件是什么?a≥0,b>0,对于为什么b>0,要使学生通过讨论明确,因为b=0时分母为0,没有意义。

引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算。

例1 化简:

(1) ; (2) ; (3) ;

解∶(1)

(2)

(3)

说明:如果被开方数是带分数,在运算时,一般先化成假分数;本节根号下的字母均为正数。

例2 化简:

(1) ; (2) ;

解:(1)

(2)

让学生观察例题中分母的特点,然后提出, 的问题怎样解决?

再总结:这一小节开始讲的二次根式的化简,只限于所得结果的式子中分母可以完全开的尽方的情况, 的问题,我们将在今后的学习中解决。

学生讨论本节课所学内容,并进行小结。

(三)小结

1、商的算术平方根的性质。(注意公式成立的条件)

2、会利用商的算术平方根的性质进行简单的二次根式的化简。

(四)练习

1、化简:

(1) ; (2) ; (3) 。

2、化简:

(1) ; (2) ; (3)

六、作业

教材P.183习题11.3;A组1.

七、板书设计

二次根式的除法

次根式教案 篇三

一、内容和内容解析

1、内容

二次根式的除法法则及其逆用,最简二次根式的概念。

2、内容解析

二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础。

基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式。

二、目标和目标解析

1、教学目标

(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;

(2)会进行简单的二次根式的除法运算;

(3) 理解最简二次根式的概念。

2、目标解析

(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;

(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算。

(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式。

三、教学问题诊断分析

本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行。二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算。教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向。

本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用。

四、教学过程设计

1、复习提问,探究规律

问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?

师生活动 学生回答。

【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则。

五、目标检测设计

次根式教案 篇四

1.教学目标

(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;

(2)会用公式化简二次根式。

2.目标解析

(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;

(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式。

教学问题诊断分析

本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难。运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气。,培养学生良好的运算习惯。

在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:

(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);

(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简。

本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简。

教学过程设计

1、复习引入,探究新知

我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除。本节课先学习二次根式的乘法。

问题1 什么叫二次根式?二次根式有哪些性质?

师生活动 学生回答。

【设计意图】乘法运算和二次根式的化简需要用到二次根式的性质。

问题2 教材第6页“探究”栏目,计算结果如何?有何规律?

师生活动 学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的内容。

【设计意图】学生在自主探究的过程中发现规律,运用类比思想,由特殊到一般地,采用不完全归纳的方法得出二次根式的乘法法则。要求学生用数学语言和文字分别描述法则,以培养学生的符号意识。

2、观察比较,理解法则

问题3 简单的根式运算。

师生活动 学生动手操作,教师检验。

问题4 二次根式的乘除成立的条件是什么?等式反过来有什么价值?

师生活动 学生回答,给出正确答案后,教师给出积的算术平方根的性质。

【设计意图】让学生运用法则进行简单的二次根式的乘法运算,以检验法则的掌握情况。乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力。

3、例题示范,学会应用

例1 化简:(1)二次根式的乘除; (2)二次根式的乘除。

师生活动 提问:你是怎么理解例(1)的?

如果学生回答不完善,再追问:这个问题中,就直接将结果算成二次根式的乘除可以吗?你认为本题怎样才达到了化简的效果?

师生合作回答上述问题。对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质二次根式的乘除将其移出根号外。

再提问:你能仿照第(1)题的解答,能自己解决(2)吗?

【设计意图】通过运算,培养学生的运算能力,明确二次根式化简的方向。积的算术平方根的性质可以进行二次根式的化简。

例2 计算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除

师生活动 学生计算,教师检验。

(1)在被开方数相乘的时候,就可以考虑因数或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先写成二次根式的乘除再分解;

(2)二次根式的乘法运算类似于整式的乘法运算,交换律、结合律都是适用的。对于根号外有系数的根式在相乘时,可以将系数先相乘作为积的系数,再对根式进行运算;

(3)例(3)的运算是选学内容。让学有余力的学生学到“根号下为字母的二次根式”的运算。本题先利用积的算术平方根的性质,得到二次根式的乘除,然后利用二次根式的乘法法则,变成二次根式的乘除,由于二次根式的乘除可以判断二次根式的乘除,因此直接将x移出根号外。

【设计意图】引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算。让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用。

教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号。可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题。

4、巩固概念,学以致用

练习:教科书第7页练习第1题。 第10页习题16.2第1题。

【设计意图】巩固性练习,同时检验乘法法则的掌握情况。

5、归纳小结,反思提高

师生共同回顾本节课所学内容,并请学生回答以下问题:

(1)你能说明二次根式的乘法法则是如何得出的吗?

(2)你能说明乘法法则逆用的意义吗?

(3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?

6、布置作业:教科书第7页第2、3题。习题16.2第1,6题。

五、目标检测设计

1、下列各式中,一定能成立的是( )

A.二次根式的乘除 B.二次根式的乘除

C.二次根式的乘除 D.二次根式的乘除

【设计意图】考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础。

2、化简二次根式的乘除 ______________________________。

【设计意图】二次根式是特殊的实数,实数的相关运算法则也适用于二次根式。

3、已知二次根式的乘除,化简二次根式二次根式的乘除的结果是(  )

A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除

【设计意图】巩固二次根式的性质,利用积的算术平方根的性质正确化简二次根式。

次根式教案 篇五

【 学习目标 】

1、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。

2、过程与方法:进一步体会分类讨论的数学思想。

3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。

【 学习重难点 】

1、重点:准确理解二次根式的概念,并能进行简单的计算。

2、难点:准确理解二次根式的双重非负性。

【 学习内容 】课本第2— 3页

【 学习流程 】

一、 课前准备(预习学案见附件1)

学生在家中认真阅读理解课本中相关内容的知识,并根据自己的理解完成预习学案。

二、 课堂教学

(一)合作学习阶段。

教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。

(二)集体讲授阶段。(15分钟左右)

1、 各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。

2、 教师对合作学习中存在的普遍的不能解决的问题进行集体讲解。

3、 各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。

(三)当堂检测阶段

为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。

(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)

三、 课后作业(课后作业见附件2)

教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。

四、板书设计

课题:二次根式(1)

二次根式概念 例题 例题

二次根式性质

反思:

次根式教案 篇六

教学目标:

1、知识目标:二次根式的加减法运算

2、能力目标:能熟练进行二次根式的加减运算,能通过二次根式的加减法运算解决实际问题。

3、情感态度:培养学生善于思考,一丝不苟的科学精神。

重难点分析:

重点:能熟练进行二次根式的加减运算。

难点:正确合并被开方数相同的二次根式,二次根式加减法的实际应用。

教学关键:通过复习旧知识,运用类比思想方法,达到温故知新的目的;运用创设问题激发学生求知欲;通过学生全面参与学习(分层次要求),达到每个学生在学习数学上有不同的发展。

运用教具:小黑板等。

教学过程:

问题与情景

师生活动

设计目的

活动一:

情景引入,导学展示

1、把下列二次根式化为最简二次根式: , ; , , 。上述两组二次根式,有什么特点?

2、现有一块长7.5dm、宽5dm的木板,能否采用如教科书图21.3-所示的方式,在这块木板上截出两个面积分别是8dm 和18dm 的正方形木板?

这道题是旧知识的回顾,老师可以找同学直接回答。对于问题,老师要关注:学生是否能熟练得到正确答案。 教师倾听学生的交流,指导学生探究。

问:什么样的二次根式能进行加减运算,运算到那一步为止。

由此也可以看到二次根式的加减只有通过找出被开方数相同的二次根式的途径,才能进行加减。

加强新旧知识的联系。通过观察,初步认识同类二次根式。

引出二次根式加减法则。

3、 A、B层同学自主学习15页例1、例2、例3,C层同学至少完成例1、例2的学习。

例1.计算:

(1) ;

(2) - ;

例2. 计算:

1)

2)

例3.要焊接一个如教科书图21.3—2所示的钢架,大约需要多少米钢材(精确到0.1米)?

活动二:分层练习,合作互助

1、下列计算是否正确?为什么?

(1)

(2) ;

(3) 。

2、计算:

(1) ;

(2)

(3)

(4)

3、(见课本16页)

补充:

活动三:分层检测,反馈小结

教材17页习题:

A层、 B层:2、3.

C层1、2.

小结:

这节课你学到了什么知识?你有什么收获?

作业:课堂练习册第5、6页。

自学的同时抽查部分同学在黑板上板书计算过程。抽2名C层同学在黑板上完成例1板书过程,学生在计算时若出现错误,抽2名B层同学订正。抽2名B层同学在黑板上完成例2板书过程,若出现错误,再抽2名A层同学订正。抽1名A层同学在黑板上完成例3板书过程,并做适当的分析讲解。

此题是联系实际的题目,需要学生先列式,再计算。并将结果精确到0.1 m, 学生考虑问题要全面,不能漏掉任何一段钢材。

老师提示:

1)解决问题的方案是否得当;2)考虑的问题是否全面。3)计算是否准确。

A层同学完成16页练习1、2、3;B层同学完成练习1、2,可选做第3题;C层同学尽量完成练习1、2。多数同学完成后,让学生在小组内互相检查,有问题时共同分析矫正或请教老师。也可以抽查部分同学。例如:抽3名C层同学口答练习1;抽4名B层或C层同学在黑板上板书练习第2题;抽1名A层或B层同学在黑板上板书练习第3题后再分析讲解。

点拨:1)对 的化简是否正确;2)当根式中出现小数、分数、字母时,是否能正确处理;

3)运算法则的运用是否正确

先测试,再小组内互批,查找问题。学生反思本节课学到的知识,谈自己的感受。

小结时教师要关注:

1)学生是否抓住本课的重点;

2)对于常见错误的认识。

把学习目标由高到低分为A、B、C三个层次,教学中做到分层要求。

学生学习经历由浅到深的过程,可以提高学生能力,同时有利于激发学生的探索知识的欲望。

二次根式的加减运算融入实际问题中去,提高了学生的学习兴趣和对数学知识的应用意识和能力。

小组成员互相检查学生对于新的知识掌握的情况,巩固学生刚掌握的知识能力。达到共同把关、合作互助的目的。

培养学生的计算的准确性,以培养学生科学的精神。

对课堂的问题及时反馈,使学生熟练掌握新知识。

每个学生对于知识的理解程度不同,学生回答时教师要多鼓励学生。

次根式教案 篇七

一、学习目标:

1、多项式除以单项式的运算法则及其应用。

2、多项式除以单项式的运算算理。

二、重点难点:

重点:多项式除以单项式的运算法则及其应用

难点:探索多项式与单项式相除的运算法则的过程

三、合作学习:

(一)回顾单项式除以单项式法则

(二)学生动手,探究新课

1、计算下列各式:

(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.

2、提问:①说说你是怎样计算的②还有什么发现吗?

(三) 总结法则

1、多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______

2、本质:把多项式除以单项式转化成______________

四、精讲精练

例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)

随堂练习:教科书练习

五、小结

1、单项式的除法法则

2、应用单项式除法法则应注意:

A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号

B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行。

E、多项式除以单项式法则

第三十四学时:14.2.1平方差公式

一、学习目标:

1、经历探索平方差公式的过程。

2、会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点

重点:平方差公式的推导和应用

难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习

你能用简便方法计算下列各题吗?

(1)2001×1999 (2)998×1002

导入新课:计算下列多项式的积。

(1)(x+1)(x-1) (2)(m+2)(m-2)

(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)

结论:两个数的和与这两个数的差的积,等于这两个数的平方差。

即:(a+b)(a-b)=a2-b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)

例2:计算:

(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)

随堂练习

次根式教案 篇八

教学目标

1、根据了解二次根式的概念:

2、知道被开方数必须是非负数的理由;

3、能运用二次根式的性质解决实际问题

4新设计:我们知道,用字母表示数,可以将字母和数一起运算。前面已经学习了单项式、多项式和分式等概念和运算,可以发现,式的运算本质上就是对符号运用运算律所进行的形式运算。本节课主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。前面我们学习的平方根和算术平方根的概念和性质是学习二次根式的基础,我们先来回忆一下平方根和算术平方根的有关知识。

5、新设计:问题1平方根的概念,算术平方根的概念,平方根的性质。

6、学情分析:本班40名学生,成绩参差不齐,程度差距很大,鉴于此,对于学生要分层教学。

7、重点难点:1.重点:形如(a≥0)的式子叫做二次根式的概念;2.难点:运用二次根式的性质解决实际问题。

8、教学过程6.1第一学时教学活动

活动1【讲授】二次根式

教学过程设计

创设情境,提出问题

引言

我们知道,用字母表示数,可以将字母和数一起运算。前面已经学习了单项式、多项式和分式等概念和运算,可以发现,式的运算本质上就是对符号运用运算律所进行的形式运算。本节课主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。前面我们学习的平方根和算术平方根的概念和性质是学习二次根式的基础,我们先来回忆一下平方根和算术平方根的有关知识。

问题1平方根的概念,算术平方根的概念,平方根的性质。

师生活动:给学生充分思考和讨论时间,让他们回忆有关平方根和算术平方根的有关知识,才能在此基础上再进一步研究二次根式概念。

设计意图:回顾已学的数和式的运算,丛数和式运算的完整性角度提出要研究的问题,让学生了解本章将要学习的主要内容,起到先行组织者的作用。

问题2请思考下列问题

面积为3的正方形的边长为,面积为S的正方形边长为。

一个长方形围栏,长是宽的2倍,面积为130㎡,则它的宽为m。

一个物体从高处自由落下,落在地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t2。如果用含有h的式子表示t,则t为。

师生活动:学生思考并完成上述问题,用算术平方根表示结果,教师进行适当引导和评价。关键是帮助学生实现从数的算术平方根到用含有字母的式子表示算术平方根的抽象。

设计意图:为概括二次根式的概念提供具体例子,同时发展符号意识。

抽象概括,形成概念

问题3上面得到的式子有什么共同特征?

师生活动:教师引导学生概括得出共同特征,并给出二次根式的定义。

追问1中a的取值有要求吗?为什么?

师生活动:教师引导学生讨论,分析共同特点,归纳得到二次根式的概念,并强调“被开方数非负”。

追问2二次根式有什么样的特点?

师生活动:给学生充分的思考和讨论时间,让学生总结二次根式的特点,教师归纳总结。

设计意图:采用从具体到抽象的方式,通过归纳的出二次根式的概念。

辨析概念,应用巩固

例1下列各式是二次根式吗?

师生活动:教师引导学生从二次根式的特征出发思考问题。

例2求下列二次根式中字母的取值范围:

师生活动:教师可以通过问题“观察各式被开方数是什么?你能根据二次根式的概念的带答案吗?”引导学生从概念出发思考问题。

追问:求二次根式中字母的取值范围的。基本依据:

师生活动:给学生充分的思考和讨论时间,让学生总结回答,教师归纳总结。

问题4 x取何值时,下列二次根式有意义?

师生活动:学生抢答加分,调动学大亨的积极性。

设计意图:让学生独立思考,再追问。

问题5计算

师生活动:通过简单计算让学生总结规律。

例3计算

师生活动:学生直接回答。

设计意图:通过加分制调动学生的积极性,提高学生的注意力,通过练习巩固知识点。

问题7计算

师生活动:通过简单计算让学生总结规律。

追问:

师生活动:学生讨论回答,教师归纳总结。

设计意图:通过简单计算学生自己归纳总结二次根式的性质,加深学生的印象。

综合应用,深化提高

练习1学生完成教科书第3页的练习。

练习2若1<x<4,则化简

设计意图:辨别二次根式的概念,确定二次根式有意的条件。利用二次根式的性质解题。

小结

教师与学生一起回顾本节课所学主要内容,并请学生回答下列问题:

什么叫二次根式?二次根式有意义的条件是什么?二次根式的值的范围是什么?

二次根式与算术平方根有什么联系与区别?

我们以前学过整式、分式都能像数一样进行运算,你认为对于二次根式应该进一步研究哪些问题?

设计意图:共同回顾本节课学习的概念,再次练习算术平方根理解二次根式的概念,提出二次根式应该研究的问题。

布置作业

教科书习题16.1第1、2题。

教学反思:

1、在实际授课中,通过以下步骤让学生认识、理解、并掌握本节知识:

(1)让学生回顾了算术平方根与平方根的概念,并且通过一个思考栏目的两道题,得出二次根式的定义后又复习了算术平方根具有双重非负性;

(2)通过练习掌握如何判断一个式子是否是二次根式的条件,并经过例1掌握二次根式在实数范围内有意义的条件;

(3)通过练习让学生得出二次根式的两个性质,体会从特殊到一般的思维过程,进而掌握公式的一般推导方法;……,本节课大部分时间都是引导学生边学边做,让学生经历了整个学习过程。

2、在学习过程中,突出了引导学生自己得出结论,特别是二次根式的两个性质,在做完思考题之后,学生自己就初步得出了结论,而且通过其他学生的补充越来越完善。

3、让学生自己找出性质1和性质2的区别与联系,虽然不够系统和完整,但通过这样的训练,培养了学生总结规律的能力。

4、在实际教学中,仍然存在着对课堂时间把握不精确的问题,出现了前松后紧的现象,以致有深度的练习没时间完成,结束的也比较仓促。在今后教学中,应注意时间的掌控。

5、在引导学生探索求知和互动学习方面还有欠缺。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,对学生探索求知进行了引导,并且鼓励大家自己得出结论,但在互动方面做的还不够,大部分学生都是独立思考,很少与同学合作交流,今后的教学中应多培养学生合作交流的意识,这样有助于他们今后的生活和学习。