1. 主页 > 范文大全 >

八年级数学下册教学工作总结(9篇)

数学教材是课程文本的载体之一,是八年级学生在接受学校教育期间接触到的最主要的文化文本,其中目录有哪些内容呢?高考家长帮为朋友们分享了八年级数学下册教学工作总结(9篇),希望能够为小伙伴们的写作带来一些参考。

人教版八年级数学下册教案 篇一

学会可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解、掌握解分式方程的一般步骤。

去分母法解可化为一元一次方程或一元二次方程的分式方程、验根的方法、

解分式方程的一般步骤。

1、什么叫分式方程?

2、解分式方程的基本思想:

分式方程整式方程

3、解方程(学生板演)

1、由上述学生的板演归纳出解分式方程的一般步骤

(1)去分母:在方程的。两边都乘以最简公分母,化为整式方程;

(2)解这个整式方程;

(3)检验:将所得的解代入原方程的最简公分母,若最简公分母为0,则为增根,必须舍去;若不为0,则为原方程的根、

2、范例讲解

(学生尝试练习后,教师讲评)

例1:解方程例2:解方程例3:解方程讲评时强调:

1、怎样确定最简公分母?(先将各分母因式分解)

2、解分式方程的步骤、

巩固练习:p1471t,2t、

课堂小结:解分式方程的一般步骤

布置作业:见作业本。

八年级数学下册教学工作总结 篇二

一、课程标准走进教师的心,进入课堂

《国家数学课程标准》对数学的教学内容,教学方式,教学评估教育价值观等多方面都提出了许多新的要求。鲜明的理念,全新的框架,明晰的目标,有效的学习,对新课程标准的基本理念,设计思路,课程目标,内容标准及课程实施建议有更深的了解。

二、课堂教学,师生之间学生之间交往互动,共同发展。

本学期本人是课堂教学的实践者,为保证新课程标准的落实,本人把课堂教学作为有利于学生主动探索的数学学习环境,把学生在获得知识和技能的同时,在情感、态度价值观等方面都能够充分发展作为教学改革的基本指导思想,把数学教学看成是师生之间学生之间交往互动,共同发展的过程,组织了“自主——创新”的教学模式。在有限的时间吃透教材,积极利用各种教学资源,创造性地使用教材,反复听评,从研、讲、听、评中推敲完善出精彩的案例。突出过程性,注重学习结果,更注重学习过程以及学生在学习过程中的感受和体验。这说明:设计学生主动探究的过程是探究性学习的新的空间、载体和途径。

努力处理好数学教学与现实生活的联系,努力处理好应用意识与解决问题的重要性,重视培养学生应用数学的意识和能力。重视培养学生的探究意识和创新能力。

常思考,常研究,常总结,以科研促课改,以创新求发展, 进一步转变教育观念,坚持“以人为本,促进学生全面发展,打好基础,培养学生创新能力”,以“自主——创新”课堂教学模式的研究与运用为重点,努力实现教学高质量,课堂高效率。

三、创新评价,激励促进学生全面发展。

我把评价作为全面考察学生的学习状况,激励学生的学习热情,促进学生全面发展的手段,也作为教师反思和改进教学的有力手段。

对学生的'学习评价,既关注学生知识与技能的理解和掌握,更关注他们情感与态度的形成和发展;既关注学生数学学习的结果,更关注他们在学习过程中的变化和发展。抓基础知识的掌握,抓课堂作业的堂堂清,采用定性与定量相结合,定量采用等级制,定性采用评语的形式,更多地关注学生已经掌握了什么,获得了那些进步,具备了什么能力。使评价结果有利于树立学生学习数学的自信心,提高学生学习数学的兴趣,促进学生的发展。

四、抓实常规,保证教育教学任务全面完成。

坚持以教学为中心,强化管理,进一步规范教学行为,并力求常规与创新的有机结合,促进教师严谨、扎实、高效、科学的良好教风及学生严肃、勤奋、求真、善问的良好学风的形成。

从点滴入手,了解学生的认知水平,查找资料,精心备课,努力创设宽松愉悦的学习氛围,激发兴趣,教给了学生知识,更教会了他们求知、合作、竞争,培养了学生正确的学习态度,良好的学习习惯及方法,使学生学得有趣,学得实在,确有所得,向40分钟要效益;分层设计内容丰富的课外作业,教法切磋,学情分析,“一得”交流都是大家随机教研的话题,扎扎实实做好常规工作,做好教学的每一件事,切实抓好单元过关及期中质量检测,,班里抓单元验收的段段清,并跟踪五名好差生进行调查。为了使新课程标准落实进一步落实,引到老师走进新课程,抛砖引玉,对新课程标准的教学内容、教学方式、教学评估、及教育价值观等多方面体现,强调学生的数学活动,发展学生的数感、空间观念以及应用意识与推理能力,优化笔试题目的设计,设计知识技能形成过程的试题,设计开发性试题,设计生活化的数学试题,真正将考试作为促进学生全面发展、促进教师提高改进教学的手段,并对本班前后5名学生跟踪调研,细致分析卷面,分析每位学生的情况,找准今后教学的切入点,查漏补缺,培优辅差,立足课堂,夯实双基。

一份耕耘,一份收获。教学工作苦乐相伴。我们将本着“勤学、善思、实干”的准则,一如既往,再接再厉,把工作搞得更好。

八年级数学下册教学工作总结 篇三

本学期各项工作已近尾声。过去的一学期也是我在教学领域履行教师职责,辛勤耕耘、不断进取的一年,现将本人学期工作总结如下:

一、严格按照新课程标准教学。

本学期,我认真执行学校教育教学工作计划,转变思想,积极探索,改革教学,努力推进"合作--探究--自主--创新"课堂教学模式,把新课程标准的新思想、新理念和数学课堂教学的新思路、新设想结合起来,收到很好的效果。

二、认真努力做好教学常规工作。

我努力加强教育理论学习,提高教学水平。要提高教学质量,关键是上好课。为了上好课,我认真做好常规工作:

1、课前准备:备好课。认真学习贯彻教学大纲,钻研教材。了解教材的基本思想、基本概念、结构、重点与难点,掌握知识的逻辑。

2、了解学生原有的知识技能的质量。包括兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的措施。

3、考虑不同的教法,解决如何把已掌握的教材传授给学生,包括如何组织教学、如何安排每节课的活动。

4、做好课后辅导工作。一堂教学课下来,不可能每一个同学都能掌握好该节内容,必须要有相应的课后复习辅导工作。

三、主要工作亮点:

1、教学有激情。我自从参加工作一来,每节课我都能精神饱满地走进课堂,用自己特有的激情感染学生学习。

2、认真做好教学分析本学期,为了进一步提高教学质量,学校专门成立了教研室,针对学生的学情进行学情分析。我认真按照学校工作部署,每次学情分析考试后,及时改卷,分析试卷、分析学生,及时进行试卷评讲,把后续辅导措施放到实处,把学情分析落到实处。因此,学生在学情分析考试中,不断提高,不断进步。以计算为例,本学期八年级进行的学情主要是从计算入手,一学期下来,学生在计算能力方面提高不少,优秀率、合格率伴随着学情分析节节升高。

3、认真上好教研课本学期,我进行了以"培养学生计算能力"为主题的教研课。我积极参加本次活动,考虑到八年级有关计算方面的内容己上完,我最后把这节教研课搬到七年级(1)班来上。确定好教学内容后,我立即通过(1)班数学老师了解该生的。学情,同时与该班班主任取得联系,用一段时间对该班进行了学情调研,最后根据学情情况写出教案,做好课件。最终,在该班的教研课也取得了相当好的效果。

4、创新设计、评价本学期,我在我任教的两个班进行了创新评价工作。学习评价方面,既关注学生知识与技能的理解和掌握,更关注他们情感与态度的形成和发展;既关注学生数学学习的结果,更关注他们在学习过程中的变化和发展。作业评价方面,一改过去常规的评价方法,采取日评、周评、月评地评价方法,评出进步,评出优秀,最大限度地调动了学生的学习积极性,既看到学习的进步,又有了学习的动力,并树立起学习的目标,较好地发挥了评价的激励作用。

四、主要工作反思

1、部分学生的基础不好。虽然在教学中也取得了不错的成绩,但不能让人放心,我心上的弦一直绷着。有时感觉学生也很努力,教师也辅导了,但成绩就是上不去,这个问题一直在我的一块心病。

2、部分学生的数学学习兴趣没有得到提高,缺乏激情,这是学生的问题,还是老师的教学方法不当,值得反思。

3、课件制作方面,要不断学习和提高现代化教学技术,提高多媒体课件制作能力,能制作出针对性、实效性强的多媒体教学课件,使之更好地辅助教学,提高课堂教学效率、课堂教学质量。

4、学情分析方面,不仅要看到学生的提高率,还要具体落实"使每个学生都能得到充分的发展"。

总之,八年级的数学教学工作,不是开始,也不是终点,只有在教学的实施中,不断地总结与反思,才能适应新的教学形势的发展。

八年级数学下册教学工作总结 篇四

转瞬间,一年过去了。过去的一学期也是我在教学领域履行教师职责,勉力耕耘、不断进取的一年,现将本人学期工作总结如下:

一、严格按照新课程标准教学

本学期,我认真执行学校教育教学工作计划,转变思想,积极探索,改革教

学,努务推进 “合作——探究——自主——创新”课堂教学模式,把新课程标准的新思想、新理念和数学课堂教学的新思路、新设想结合起来,收到很好的效果。

二、认真努力做好教学常规工作

我努力加强教育理论学习,提高教学水平。 要提高教学质量,关键是上好课。为了上好课,我认真做好常规工作:

1、课前准备:备好课。认真学习贯彻教学大纲,钻研教材。了解教材的。基本思想、基本概念、结构、重点与难点,掌握知识的逻辑。

2、了解学生原有的知识技能的质量。包括兴趣、需要、方法、习惯,

学习新知识可能会有哪些困难,采取相应的措施。

人教版八年级数学下册教案 篇五

1、掌握一次函数解析式的特点及意义

2、知道一次函数与正比例函数的关系

3、理解一次函数图象特点与解析式的联系规律

1、 一次函数解析式特点

2、 一次函数图象特征与解析式的联系规律

1、一次函数与正比例函数关系

2、根据已知信息写出一次函数的表达式。

ⅰ.提出问题,创设情境

问题1 小明暑假第一次去北京.汽车驶上a地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知a地直达北京的高速公路全程为570千米,小明想知道汽车从a地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.

分析 我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是

s=570-95t.

说明 找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.

问题2 小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的'存款与从现在开始的月份之间的函数关系式.

分析 我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.

问题3 以上问题1和问题2表示的这两个函数有什么共同点?

ⅱ.导入新课

上面的两个函数关系式都是左边是因变量y,右边是含自变量x的代数式。并且自变量和因变量的指数都是一次。若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称

y是x的正比例函数。

例1:下列函数中,y是x的一次函数的是( )

①y=x-6;②y=2x;③y=;④y=7-x x8

a、①②③b、①③④ c、①②③④ d、②③④

例2 下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?

(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);

(2)长为8(cm)的平行四边形的周长l(cm)与宽b(cm);

(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;

(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).

(5)汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;

(6)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;

(7)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米) 分析 确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答.

解 (1)a?20,不是一次函数. h

(2)l=2b+16,l是b的一次函数.

(3)y=150-5x,y是x的一次函数.

(4)s=40t,s既是t的一次函数又是正比例函数.

(5)y=60x,y是x的一次函数,也是x的正比例函数;

(6)y=πx2,y不是x的正比例函数,也不是x的一次函数;

(7)y=50+2x,y是x的一次函数,但不是x的正比例函数

例3 已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.

分析 根据一次函数和正比例函数的定义,易求得k的值.

解 若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=?

若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2.

例4 已知y与x-3成正比例,当x=4时,y=3.

(1)写出y与x之间的函数关系式;

(2)y与x之间是什么函数关系;

(3)求x=2.5时,y的值.

解 (1)因为 y与x-3成正比例,所以y=k(x-3).

又因为x=4时,y=3,所以3= k(4-3),解得k=3,

所以y=3(x-3)=3x-9.

(2) y是x的一次函数.

(3)当x=2.5时,y=3×2.5=7.5.

1. 2

例5 已知a、b两地相距30千米,b、c两地相距48千米.某人骑自行车以每小时12千米的速度从a地出发,经过b地到达c地.设此人骑行时间为x(时),离b地距离为y(千米).

(1)当此人在a、b两地之间时,求y与x的函数关系及自变量x取值范围.

(2)当此人在b、c两地之间时,求y与x的函数关系及自变量x的取值范围.

分析 (1)当此人在a、b两地之间时,离b地距离y为a、b两地的距离与某人所走的路程的差.

(2)当此人在b、c两地之间时,离b地距离y为某人所走的路程与a、b两地的距离的差.

解 (1) y=30-12x.(0≤x≤2.5)

(2) y=12x-30.(2.5≤x≤6.5)

例6 某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.

分析 因为在只打开进油管的8分钟内、后又打开进油管和出油管的16分钟和最后的只开出油管的三个阶级中,储油罐的储油量与进出油时间的函数关系式是不同的,所以此题因分三个时间段来考虑.但在这三个阶段中,两变量之间均为一次函数关系.

解 在第一阶段:y=3x(0≤x≤8);

在第二阶段:y=16+x(8≤x≤16);

在第三阶段:y=-2x+88(24≤x≤44).

ⅲ.随堂练习

根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y是否为x有正比例函数?

2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。

(1)写出每月用水量不

超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。

(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。[①y=0.6x,y=x-2.4,y是x的一次函数。②y=8-2.4=5.6(元)]

ⅳ.课时小结

1、一次函数、正比例函数的概念及关系。

2、能根据已知简单信息,写出一次函数的表达式。

ⅴ.课后作业

1、已知y-3与x成正比例,且x=2时,y=7

(1)写出y与x之间的函数关系.

(2)y与x之间是什么函数关系.

(3)计算y=-4时x的值.

2.甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y(元)与包裹重量x(千克)之间的函数解析式,并计算5千克重的包裹的邮资.

3.仓库内原有粉笔400盒.如果每个星期领出36盒,求仓库内余下的粉笔盒数q与星期数t之间的函数关系.

4.今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米.求树高与年数之间的函数关系式.并算一算4年后同学们中学毕业时这些树约有多高.

5.按照我国税法规定:个人月收入不超过800元,免交个人所得税.超过800元不超过1300元部分需缴纳5%的个人所得税.试写出月收入在800元到1300元之间的人应缴纳的税金y(元)和月收入x(元)之间的函数关系式.

人教版八年级数学下册教案 篇六

1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法。

2.会综合运用平行四边形的判定方法和性质来解决问题

平行四边形的判定方法及应用

:平行四边形的判定定理与性质定理的灵活应用

小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?

阅读教材p44至p45

利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:

(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?

(2)你怎样验证你搭建的四边形一定是平行四边形?

(3)你能说出你的做法及其道理吗?

(4)能否将你的。探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?

(5)你还能找出其他方法吗?

平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

平行四边形判定方法2对角线互相平分的四边形是平行四边形。

平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

证明:(画出图形)

平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。

人教版八年级数学下册教案 篇七

1.使学生正确理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法;

2.培养学生观察、分析、比较的能力,并初步掌握对比的思想方法;

3.在本节课的教学过程中,渗透数形结合的思想,并使学生初步学会运用数形结合的观点去分析问题、解决问题。

重点:不等式的解集的概念及在数轴上表示不等式的解集的方法。

难点:不等式的解集的概念。

1.什么叫不等式?什么叫方程?什么叫方程的解?(请学生举例说明)

2.用不等式表示:

(1)x的3倍大于1; (2)y与5的差大于零;

(3)x与3的和小于6; (4)x的小于2.

(3)当x取下列数值时,不等式x+3<6是否成立?

-4,3.5,-2.5,3,0,2.9.

((2)、(3)两题用投影仪打在屏幕上)

1.引导学生运用对比的方法,得出不等式的解的概念

2.不等式的解集及解不等式

首先,向学生提出如下问题:

不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,还有没有其它的解?若有,解的个数是多少?它们的分布是有什么规律?

(启发学生利用试验的方法,结合数轴直观研究。具体作法是,在数轴上将是x+3<6的解的。数值-4,-2.5,0,2.9用实心圆点画出,将不是x+3<6的解的数值3.5,4,3用空心圆圈画出,好像是“挖去了”一样。如下图所示)

然后,启发学生,通过观察这些点在数轴上的分布情况,可看出寻求不等式x+3<6的解的关键值是“3”,用小于3的任何数替代x,不等式x+3<6均成立;用大于或等于3的任何数替代x,不等式x+3<6均不成立。即能使不等式x+3<6成立的未知数x的值是小于3的所有数,用不等式表示为x<3.把能够使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的集合。简称不等式x+3<6的解集,记作x<3.

最后,请学生总结出不等式的解集及解不等式的概念。(若学生总结有困难,教师可作适当的启发、补充)

一般地说,一个含有未知数的不等式的所有解,组成这个不等式的解的集合。简称为这个不等式的解集。

不等式一般有无限多个解。

求不等式的解集的过程,叫做解不等式。

3.启发学生如何在数轴上表示不等式的解集

我们知道解不等式不能只求个别解,而应求它的解集,一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x<3.那么如何在数轴上直观地表示不等式x+3<6的解集x<3呢?(先让学生想一想,然后请一名学生到黑板上试着用数轴表示一下,其余同学在下面自行完成,教师巡视,并针对黑板上板演的结果做讲解)

在数轴上表示3的点的左边部分,表示解集x<3.如下图所示。

由于x=3不是不等式x+3<6的解,所以其中表示3的点用空心圆圈标出来。(表示挖去x=3这个点)

记号“≥”读作大于或等于,既不小于;记号“≤”读作小于或等于,即不大于。

例如不等式x+5≥3的解集是x≥-2(想一想,为什么?并请一名学生回答)在数轴上表示如下图。

即用数轴上表示-2的点和它的右边部分表示出来。由于解中包含x=-2,故其中表示-2的点用实心圆点表示。

此处,教师应强调,这里特别要注意区别是用空心圆圈“。”还是用实心圆点“.”,是左边部分,还是右边部分。

例1 在数轴上表示下列不等式的解集:

(1)x≤-5; (2)x≥0; (3)x>-1;

(4)1≤x≤4; (5)-2<x≤3; (6)-2≤x<3.

解(1),(2),(3)略。

(4)在数轴上表示1≤x≤4,

(5)在数轴上表示-2<x≤3,

(此题在讲解时,教师要着重强调:注意所给题目中的解集是否包含分界点,是左边部分还是右边部分。本题应分别让6名学生板演,其余学生自行完成,教师巡视遇到问题,及时纠正)

例2 用不等式表示下列数量关系,再用数轴表示出来:

(1)x小于-1; (2)x不小于-1;

(3)a是正数; (4)b是非负数。

解:(1)x小于-1表示为x<-1;(用数轴表示略)

(2)x不小于-1表示为x≥-1;(用数轴表示略)

(3)a是正数表示为a>0;(用数轴表示略)

(4)b是非负数表示为b≥0.(用数轴表示略)

(以上各小题分别请四名学生生回答,教师板书,最后,请学生在笔记本上画数轴表示)

例3 用不等式的解集表示出下列各数轴所表示的数的范围。(投影,请学生口答,教师板演)

解:(1)x<2; (2)x≥-1.5; (3)-2≤x<1.

(本题从另一例面来揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)

练习(1)用简明语言叙述下列不等式表示什么数:①x>0;②x<0;③x>-1;④x≤-1.

(2)在数轴上表示下列不等式的解集:

①x>3; ②x≥-1; ③x≤-1.5;

④0≤x<5; ⑤-2<x≤2; ⑥-2<x<.

(3)用观察法求不等式<1的解集,并用不等式和数轴分别表示出来。

(4)观察不等式<1的解集,并用不等式和数轴分别表示出来,它的正数解是什么?

自然数解是什么?(*表示选作题)

针对本节课所学内容,请学生回答以下问题:

1.如何区别不等式的解,不等式的解集及解不等式这几个概念?

2.找出一元一次方程与不等式在“解”,“求解”等概念上的异同点。

3.记号“≥”、“≤”各表示什么含义?

4.在数轴上表示不等式解集时应注意什么?

结合学生的回答,教师再强调指出,不等式的解、不等式的解集及解不等式这三者的定义是区别它们的唯一标准;在数轴上表示不等式解集时,需特别注意解的范围的分界点,以便在数轴上正确使用空心圆圈“。”和实心圆点“·”。

1.不等式x+3≤6的解集是什么?

2.在数轴上表示下列不等式的解集:

(1)x≤1; (2)x≤0; (3)-1<x≤5;

(4)-3≤x≤2; (5)-2<x<; (6)-≤x<.

3.求不等式x+2<5的正整数解。

课堂教学设计说明由于本节课的知识点比较多,因此,在设计教学过程时,紧紧抓住不等式的解集这一重点知识。通过对方程的解的电义的回忆,对比学习不等式的解及解集。同时,为了进一步加深学生对不等式的解集的理解,教学中注意运用以下几种教学方法:(1)启发学生用试验的方法,结合数轴直观形象来研究不等式的解和解集;(2)比较方程与不等式的解的异同点;(3)通过例题与练习,加深理解。

在数轴上表示数是数形结合的具体体现。而在数轴上表示不等式的解集则又进了一步。因此,在设计教学过程时,就充分考虑到应使学生通过本节课的学习,进一步领会数形结合的思想方法具有形象、直观、易于说明问题的优点,并初步学会用数形结合的观念去处理问题、解决问题。

八年级数学下册教学工作总结 篇八

本学期,本人担任八年级两个班数学学科的工作。一学期来,本人以学校及各处组工作计划为指导;以加强师德师风建设,师德水平为重点,以提高教育教学成绩为中心,以深化课改实验工作为动力,认真履行岗位职责,较好地完成了工作目标任务,现将一学期来的工作总结如下:

一、加强,努力提高自身素质

一方面,认真学习教师职业道德规范、,不断提高自己的道德修养和政治理论水平;另一方面,认真学习新课改理论,努力提高业务能力。通过学习,转变了以前的工作观、观,使我对新课改理念有了一个全面的、深入的理解,为本人转变教学观念、改进教学方法打好了基础。

二、以身作则,严格遵守工作纪律

一方面,在工作中,本人能够严格要求自己,模范遵守学校的各项规章制度,做到不迟到、不早退,不旷会。另一方面,本人能够严格遵守教师职业道德规范,关心爱护学生,不体罚,变相体罚学生,建立了良好的师生关系,在学生中树立了良好的形象。

三、强化常规,提高课堂教学效率

本学期,本人能够强化教学常规各环节:在课前深入钻研、细心挖掘教材,把握教材的基本思想、基本概念、教材结构、重点与难点;了解学生的知识基础,力求在备课的过程中即备教材又备学生,准确把握教学重点、难点,不放过每一个知识点,备写每一篇教案;在课堂上,能够运用多种教学方法,利用多种教学手段,充分调动学生的多种感官,激发学生的学习兴趣,向课堂40分要质量,努力提高课堂教学效率;在课后,认真及时批改作业,及时做好后进学生的思想工作及课后辅导工作;在自习课上,积极落实分层施教的原则,狠抓后进生的。转化和优生的培养;同时,进行阶段性检测,及时了解学情,以便对症下药,调整教学策略。认真参加教研活动,积极参与听课、评课,虚心向同行学习,博采众长,提高教学水平。一学期来,本人共听课10节,完成了学校规定的听课任务。

四、加强研讨,努力提高教研水平

本学年,本人参加省级教研课题“开放性问题学习的研究”的子课题及县级课题开放性教学课型的研究的子课题的研究工作,积极撰写课题实施方案,撰写个案、教学心得体会,及时总结研究成果,撰写论文,为课题研究工作积累了资料,并积极在教学中进行实践。在课堂教学中,贯彻新课改的理念,积极推广先进教学方法,在推广目标教学法、读书指导法等先进教法的同时,大胆进行自主、合作、探究学习方式的尝试,充分发挥学生的主体作用,使学生的情感、态度、价值观等得到充分的发挥,为学生的终身可持续发展打好基础。

五、正视自我,明确今后努力方向

本次期末考试,我所带班成绩相对其它平行班而言,有一定的差距,本人认真进行了反思,原因主要有以下几个方面:

1、在课堂教学中充分利用多媒体课件,调动了学生的积极性,但对学生基础知识的训练不够,致使课堂教学效率不高;

2、对知识点的检查落实不到位;

3、对差生的说服教育缺乏力度,虽然也抓了差生,但没有时时抓在手上。

4、教学中投入不够,没能深入研究教材及学生。

下学期改进的措施:

1、进一步加强对新课改的认识,在推广先进教学方法、利用多媒体调动学生学习积极性的同时,努力提高课堂教学的效率。

2、狠抓检查,落实对知识点的掌握。将差生时时放在心上,抓在手上;

3、加强学生的阅读训练,开阔学生的视野,拓宽学生思路,提高学生解决问题的能力;

4、采取措施,加强训练,落实知识点。

5、加强对学生的管理教育,努力教学提高成绩。

6、群体育人方面的工作还需要进一步加强。特加是要加强与班主任之间的联系,共同解决所任班级班风学风方面存在的问

本文来自学习网(),原文地址:/essay/summary/jsgzzj/200905/36091.htm

人教版八年级数学下册教案 篇九

1.使学生理解并掌握反比例函数的概念

2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式

3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想

1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式

2.难点:理解反比例函数的概念

3.难点的突破方法:

(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解

(2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以 www.baihuawen.cn 函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。

(3)(k≠0)还可以写成(k≠0)或xy=k(k≠0)的形式

教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。

教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。

补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。

1.回忆一下什么是正比例函数、一次函数?它们的`一般形式是怎样的?

2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?

例1.见教材p47

分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。

例1.(补充)下列等式中,哪些是反比例函数

(1)(2)(3)xy=21(4)(5)(6)(7)y=x-4

分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式

例2.(补充)当m取什么值时,函数是反比例函数?

分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误