作为一名老师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。优秀的教学设计都具备一些什么特点呢?下面是高考家长帮为您带来的《小数乘整数》教学教案(优秀6篇),希望能够帮助到朋友们。
《小数乘整数》教学设计 篇一
教学内容:
(人教版五上教材〈小数乘法〉例1)
教学目标:
1、使学生理解小数乘整数的算理,掌握小数乘整数的计算方法,会进行笔算。
2、使学生经历将小数乘整数转化为整数乘整数的过程,体会转化这一数学思想方法。
3、感受小数乘法在生活中的广泛应用。
教学重难点:
理解小数乘整数的算理及算法。
教学准备:
主题图幻灯片
教学过程:
[课前热身]
2×3= 5000×17=
20×3= 500×17=
200×3= 50×17=
2000×3= 5×17=
口答,说说你发现了什么数学规律?
一、情境导入
1、天里,几位小朋友想一起去广场上放风筝,他们来到商店买风筝。观察主题图,从图上你得到了哪些数学信息?
2、学生自由说(鸟风筝3.5元/只……)(教师顺势板书)
3、如果你要买风筝,你准备买哪种形状的?买几个?(教师顺势板书)
类型单价数量
鸟风筝3.5
鱼风筝6.4
三角风筝4.6
半圆风筝7.8
4、如果他们三位小朋友想买3个鸟风筝需付多少元?怎样列式?
5、学生独立列式。
6、交流想法3.5×3或3.5+3.5+3.5。
7、教师适当小结小数乘整数的意义并揭示课题(小数乘整数)
二、自主计算
1、3.5×3等于多少呢?请你自己尝试计算出得数。(教师巡视,并要求部分学生在黑板上罗列不同的计算过程)
2、全班交流各种方法
3、教师指出重点研究以下方法
4、在学生的自主解释过程中教师顺势板书,并重点指出这样做的关键步骤是将3.5元转化成35角,实际上就是将小数转化成整数。
5、用这种方法尝试计算你自己的数学问题,买怎样的风筝,买几个,需付多少元?
6、同桌检查一下。
三、探究算理和计算方法
1、出示算式0.72×5=?,提问:“0.72不是钱数,怎样计算?”自主列竖式计算,指名板演。
2、指名说说算理?(你是怎么想的?)(教师顺势板书)
3、同桌互说算理
4、请学生观察积3.60,提问:“与3.60相等的小数是多少?”(3.6)告诉学生,算出积以后,可根据小数的基本性质将积中小数末尾的0去掉。
5、计算3.15×8
6、小数乘整数是如何计算的,四人小组内讨论
7、全班交流总结小数乘整数的计算方法
① 先将小数转化为整数;
② 按整数乘法算出积;
③ 确定积的小数点位置。
四、练习巩固
1、练习一 第2题、第3题
五、课堂小结
1、这节课你有什么收获?
小数乘整数-教学设计 篇二
教学内容
小数乘整数
《义务教育课程标准实验教科书 数学》(人教版)五年级上册第2~3页,例
1、例2以及做一做。 教学目标
1、结合具体的情境理解小数乘整数的算理,掌握计算方法。2.能理解和表述计算过程,并能正确计算。
3、能联系生活提出数学问题,发现生活与数学的紧密联系,感受到数学的应用价值。 教学重点
掌握小数乘整数的计算方法,能正确计算。 教学难点
能理解、表述小数乘整数的算理。 教学准备
《小数乘整数》多媒体课件、其他必备教学用具 教学流程
一、复习旧知
师:同学们,我们已经学习过一些有关小数的知识,先来看几道复习题(课件出示):填空:
(1)3.5元=()角 426角=()元
(2)因数扩大100倍,为使积不变,积要缩小()
师:看来同学们对这些知识掌握的非常好!我们再来看一道整数乘法题(课件出示):
师:请你用竖式计算!(生算,一生板演)
2
×2 3
2 4 2 7 6
师:这位同学算的对吗?
师:我们计算整数乘法的时候,要注意什么?
师:整数乘法的相同数位对齐也就是末位对齐。非常好!
二、创设情境、引入新课
师:秋天来了几位小朋友来到公园,看到这里有许多人在放风筝,还看到了一位阿姨在卖风筝,请看大屏幕,看这张图。师:有哪些数学信息?
师:小红说:“我要买3个单价是3.5元的风筝”。你能不能帮她列出算式,怎样列式?
师:你的依据是什么?
师:仔细观察这个乘法算式,这个乘法算式和我们以前学过的乘法算式有什么不同?
师:这节课我们就来学习小数乘整数。(板书:小数乘整数)
三、自主探究,探索计算方法。
1、启发探究:
师:你能用以前学过的知识算出“3.5×3”的得数吗?拿出笔来算一算,看谁算得又快又正确。
师:大部分同学都已经做好了,我们来交流一下。
①
3.5 元
②。5 元=3 元5角
③
3.5元=35角。5 元元×3=9元
35角
+ 3.5元
5角×3=15角=1元5角
× 3 ————
9元+1元5角=10.5元
———— 0.5 元
0 5角=10.5元
2、交流汇报
师:有这么多不同的方法,看来每个同学都独立思考了,有自己思考的结晶。
师:我们先来看方法一,你来说说你是怎么想的?
师:利用了加法计算好办法!再看方法二。说说你的计算思路?
师:结合数量的转换,把3.5元转换成3元5角,也就是把小数转换为——整数,然后在算。这种方法也不错。
师:继续看最后一种方法。先说说解题思路。
师:为什么要把3.5元转化成35角?
师:所以,也是先转化为整数乘整数来计算的。非常好的一种方法。
3、竖式计算
师:刚才同学们积极开动脑筋,想出了这么多不同的方法,都算出买3个单价是3.5元的风筝的总价是10.5元,同学们,如果每一次计算小数乘整数都这样算的话,你们感觉?
师:那怎么办呢?
师:可以啊!那就试一试吧!
师:你们会列竖式计算吗?我们一起算一算,你们说我来写。3.5×3,把3和什么对齐?
师:乘法竖式计算中,注意末位对齐。
师:3.5元可以把它看成35角,扩大它的10倍,为什么要扩大10倍?
师:也就是先按整数乘法计算。35角乘3得105角,缩小它的1/10,就是10.5元,所以,小数点应该点在哪?
师:谁能再来说说用竖式计算3.5×3的过程?
师:小数点为什么点在0的右下角?因数3.5扩大了10倍,积105要缩小它的1/10变成10.5。
4、小组合作
师:你喜欢哪一种风筝?想买几个?算算需要多少钱?说说你是怎么想的?
师:小组之间汇报一下答案,看看自己做对了没有。
师:做对的同学都举手,看来一位小数乘整数的竖式计算已经掌握了,那两位小数乘整数该怎么算呢?我们来看下一到题目。请你来来读一读。
5、拓展延伸
做一件儿童服装用布0.72米,做这样的5套衣服需要布料多少米?(课件出示)
师:该怎么列式,你来说。
师:这里的0.72不是钱数,怎么用竖式计算?给你2分钟,赶紧来算一算。
师:这位同学做的对吗?你能说说用竖式算的过程吗?
师:先算的72×5,(用手盖住小数点)是按什么方法计算的?(按整数乘
法计算的)
师:为什么在3的右下角点上小数点呢?
师:3.60和哪个小数相等?(3.6)
师:所以,根据小数的基本性质,可以把小数末尾的0去掉。
四、小结小数乘整数的一般方法。
师:本堂课你学到了哪些知识?
师:现在我们来总结一下计算小数乘以整数的 方法。
① 先将小数转化为整数;② 按整数乘法算出积
③ 确定积的小数点位置。
师:同学们收获课真不少,这都归功于你们的认真听讲。四
巩固练习
课件出示一组习题,学生练习巩固。
《小数乘整数》教学设计 篇三
教学内容:
教材P2~3例1、例2及练习一第1、2、3题。
教学目标:
知识与技能:使学生理解并掌握小数乘以整数的计算方法及算理。
过程与方法:经历将小数乘整数转化为整数乘整数的过程,使学生认识到转化的方法是学习新知识的工具。
情感、态度与价值观:感受小数乘法在生活中的广泛应用。
教学重点:
理解并掌握小数乘整数的算理,学会转化。
教学难点:
能够运用算理进行小数乘整数的计算。
教学方法:
迁移类推,引导发现,自主探索,合作交流。
教学准备:
多媒体。
教学过程
一、情境导入
1.谈话:同学们都喜欢哪些运动呢?
(生回答自己喜欢的运动……)
2.导入:是啊,多参加户外运动,有利于身体健康。老师也经常参加户外运动,放风筝就是我的最爱。下课咱们一起去放风筝好吗?
3.提问:但放风筝之前要先去买风筝,所以咱们就先去买几只风筝吧!(展示教材第2页例l情境图)从图中你知道了哪些信息?
引导学生观察并思考:图中小明他们想买3个3.5元的风筝需要多少钱?你会列式吗?
指学生回答:3.5×3,教师板书:3.5×3。
4.探索:观察这一道算式,它与我们以前学过的乘法算式有什么不同?
生观察后回答:这道算式的因数有小数。
5.揭题:以前我们学习的乘法都是整数乘整数,今天的算式中却出现了小数,这就是今天我们要研究的小数乘整数。(板书课题:小数乘整数)
二、互动新授
1.初步探究竖式计算的方法。
(1)引导学生准确算出一共需要多少钱?学生独立计算,并在小组内交流自己的想法。(师走到学生中,了解学生参与讨论的情况。)
(2)让学生说说自己的想法。
指名汇报,教师根据学生叙述板书,学生可能想出下面几种不同的方法:
方法1:
连加。展示:3.5+3.5+3.5=10.5(元)
师:你是怎么想的?
生:3.5×3就表示3个3.5相加,所以可以用乘法计算。(师板书意义)
方法2:化成元、角、分计算,先算整元,再算整角,最后相加。3元×3=9元,5角×3=1元5角,9元+1元5角=10元5角,即3.5×3=10.5(元)。
方法3:把3.5元看作35角,则35角×3=105角=10.5元。
(3)追问:刚才同学们开动脑筋想出了这么多方法,真了不起。如果要用竖式计算,你会算吗?请同学们想一想,并与同桌讨论:如何列竖式计算3.5×37
引导:出示(边说边演示):
强调:我们可以把3.5元转化成35角,用35角乘3得105角,再把105角转化成10.5元。注意在列竖式时因数的末尾要对齐。
2.自主探究,进一步理解算理,掌握计算方法。
(1)教师出示算式:0.72×5。
师:同学们看0.72不是钱数了,没有元、角、分这样的单位了,还能不能计算出结果呢?请同学们独立思考,然后在小组内交流计算方法。
(2)学生汇报演示。
可能有两种方法:加法和乘法。根据学生的汇报,展示这两种方法。
(3)比较:(见板书设计)
引导:请同学们比较一下这两种方法,你喜欢哪一种呢,为什么?
生:用乘法比较简便。
(4)追问:仔细观察乘法算式,谁给大家解释一下,你是怎样把乘数转化成整数的?
生:先把0.72小数点向右移动2位转化成72×5=360,得出结果后再把积的小数点向左移动两位就是3.6。
质疑:既然把所得积的小数点向左移动两位,那这个积就应该是一个两位小数,为什么现在只有一位呢?
生:小数的末尾添上或去掉0,小数的大小不变,所以积末尾的0可以直接去掉。
(5)注意:同学们在计算小数乘整数时,想到了用转化的方法把小数乘法转化成整数乘法计算。那么,谁能和大家说说小数乘整数应该怎样计算,计算时应注意什么呢?
指导学生归纳出:计算小数乘整数的乘法,要先把小数看作整数来乘,乘完以后,看因数扩大了多少倍,再把乘出的积缩小相同的倍数。当积的末尾有“O”时,应先点上小数点,再把“0”去掉。
师:(出示教材第2页情境图)我们通过解决买风筝的问题,认识并学会了小数乘整数的计算方法。我们看图中还有几种不同的风筝,如果买3个其他形状的,需要多少钱呢?能不能很快地算出来? 学生独立计算,汇报交流。
师:同学们顺利地买完了风筝,那就让我们就一起把风筝放飞吧!
三、巩固拓展
1.教材第3页做一做第1题
想一想:小数乘整数与整数乘整数有什么不同?
2.教材第3页做一做第2题
同桌之间相互谈谈是怎样点小数点的。
3.指名板演教材第3页做一做第3题
4.不用计算,你能直接说出下面算式的结果吗?
148×23=3404 14.8×23=( ) 1.48×23=( ) 0.148×23=( ) ( )×( )=34.04 四、课堂小结。同学们,这节课你们都学会了哪些知识?(学生自由发表想法)
作业:教材第4页练习练习一第1、2、3题。
板书设计
小数乘整数
求几个相同加数的各的简便运算。
《小数乘整数》教学设计 篇四
《小数乘整数》教学设计
教学内容:
义务教育课程标准实验教科书《数学》五年级上册小数乘整数 教学目标:
1、使学生在具体情境中探索并初步掌握小数乘整数的计算方法,会用竖式进行计算。
2、使学生在探索计算方法的过程中,进一步体会数学知识之间的内在联系,培养初步的抽象、概括以及合理推理能力,感受数学活动的乐趣。
教学重点:探索小数乘整数的计算方法。教学难点:确定积的小数位数。教学准备:计算器 课件 学案 教学过程:
一、情境创设,引入新课。
(1)谈话交流:同学们喜欢逛超市吗?(喜欢)
其实超市不光是我们购物的一个大买场,同时也是我们学习数学的一个大园地。那今天就让我们一起去超市的文具区,看看能学到哪些数学知识?
师问;你想买什么?买多少? 老师把大家的问题从难到易整理一下。如果要买2个文具盒要付多少钱呢?怎么列式?
(板书:6×2=12(元))6×2表示的意义是什么?(2个6相加是多少?)
如果要买3支铅笔要多少元呢?可以怎样列式?(板书:0.8×3)
0.8×3表示的意义是什么?(3个0.8是多少?)
由此可见:小数乘法的意义与整数乘法的意义是相同的。(3)揭示课题:今天,就让我们一起来学习小数乘整数。(板书课题:小数乘整数)
二、探索计算方法。
(一)学习“0.8×3”。
1.启发:买3支铅笔到底要花多少元呢?板书:2.4(元)2.交流想法:你是怎样得到的? 预设学生有以下几种想法:
想法一:连加法:0.8+0.8+0.8=2.4元
想法二:把元转化成角。0.8元=8角,8×3=24角,24角=2.4元
想法三:因为8×3=24,所以0.8×3=2.4 提问:为什么要在积里点上小数点?(如果不加,2.4元就变成了24元)
想法四:用乘法竖式计算。
你会列竖式吗? 谁来试一试?(指名上黑板板演)
出现了如下的任何一种后,追问:有不一样的列法吗?板书出第二种竖式形式。比较:
0.8 0.8
× 3 × 3 2.4 2.4 这两个算式有什么不同?(数位对齐,未位对齐)那哪一种更合理呢?
谈话:回想一下,刚才我们把0.8元看成了8角,得到3个8角是24角,再转化为2.4元。也就是要按整数乘法的方法计算,所以要末位对齐。
教师:现在,我们得到“三八二十四”。
教师在积的位置上写上“24”后提问:小数点能不点吗?为什么? 4.讨论:你觉得小数和整数相乘应该怎样计算?
(二)学习“2.35×5” 如果要买3支钢笔要多少元呢? 板书:2.35×5= 那你会计算吗?
学生尝试计算,有意识地指名两人板演,其余学生做自备本上。2.交流:谁来说说你是怎么算的?
引导学生得出:先按整数乘法的方法算出积1175,再在积里点上小数点
师追问:小数点点在哪里?
3.验证:那2.35×=7.05,对不对呢?
小数点真点这里吗?我们用计算器帮忙验证一下。
用计算器验证后,教师提问:哎,刚才计算时你是怎么知道积就是两位小数的呢?(因为因数里有两位小数)
4、得出:
小数乘整数的一般方法: ① 先将小数转化为(整数); ② 按(整数)乘法算出(积); ③ 确定积的(小数点)位置。那积的小数点位置如何确定呢?
三、探索积和因数中小数位数的联系
1.观察两个算式中因数与积的小数位数,积的小数位数和因数的小数位数有什么联系呢?
(一位小数乘整数,因数里有几位小数,积里就有几位小数。)2.那么一个三位小数乘整数积是几位小数? 一个四位小数乘整数,积是几位小数?------
用一句话说就是——几位小数乘整数,积就是几位小数(板书)3.不过仅凭这两个式子就得出这样结论,似乎有点欠妥,(板书 ?)那么我们就用计算器对下一道题验证一下。练习:1.125×35 0.8752×16 1.32167×9 1.25×()1.25×(2)师:怎么回事?对我们的结论提出了挑战。让我们借助竖式来进一步看看吧。
(原来计算器很聪明,已经灵活运用小数的基本性质,把积的小数末尾的0化简。)
补充:因数中的小数是(几)位小数,积也是(几)位小数。积的小数末尾有(0),一定要(化简)。
四、运用知识,解决问题
1、根据情景图,你想买什么,买多少?应付多少元? 独立完成,小组内共同验证,集体点评。
2、假如文具区的计算器的显示屏上显示不出小数点,你能帮它算出下列算式的结果吗?
课件出示: 已知:148×23=3404 那么:14.8×23=
148×0.23=
148×2.3=
1.48×23= 交流:怎你是怎么得出各题的积的?
3、()里可以填哪些数? 看谁填得最多?()×()=4.8
五、全课总结
通过本节课的学习,你有哪些收获?你还想学到什么?
《小数乘整数》教学设计 篇五
1、比一比
12×3 5×20 43×2
15×80 35×3 25×4
72×50 365×1 16×9
单价
数量
总价
风筝1
3.5元
3个
风筝2
4.6元
4个
风筝3
6.4元
6个
2、
3、猜一猜下列算式的积各是几位小数,再用计算器验证一下。
4.76×12 =57.12
2.8×53=1148.4
103×0.25=25.75
3.013×4=12.052
你有什么发现?
4、马秋月家开了一个水果店,这是水果价码表。有4位顾客分别购买了以上几种水果,他们各用了多少钱?
5、王阿姨用来算账的计算器坏了,计算器的显示屏上显示不出小数点,你能帮她算出下列算式的结果吗?
已知:148×23 = 3404,
那么:14.8×23 =
148×0.23=
148×2.3 =
0.148×23=
6、下面各题做得对吗?如果有错,你能改正吗?
7、小华一家要到200千米外的姑妈家作客。爸爸汽车的油箱里有25千克汽油,每千克汽油可供汽车行驶6.8千米。
爸爸中途要加油吗?
8、挑战自我
(1)下面几题的结果,可能是怎样算出来的?根据积,在因数上点上小数点。
3 2 × 1 9=6 0 . 8
5 4 × 4 1=2 2 . 1 4
3 2 4 ×6 5=2 1 0 . 6
(2)在下面的( )里填上合适的数,看谁填的最多!
( )×( ) = 0 . 4 8
《小数乘整数》教学设计 篇六
《小数乘整数》教学反思
今天是学生学习小数乘法的第一课时,让学生理解小数的意义与整数相同学生很容易理解,而怎样确定积的小数位数。学生能不能很好理解呢?进入课堂之前我已经思考了很久,并且为此进行了精心的教学设计。
在课的开始,出示一个乘法算式 :18 ×3 问:18 ×3表示什么?生:3个18相加的和是多少?或18的3倍是多少?接着出示例题提出问题:要求:夏天买3千克西瓜要多少元?怎样列式? 0.8+0.8+0.8 或 0. 8×3 那谁能说说 0. 8×3 表示什么?生(3个0. 8相加的和 )这样做的目的是让学生明确:小数乘以整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
而后,我提出挑战:你能算出0.8×3 的结果是多少吗? 先让学生说自己的想法并交流:生1:把0.8扩大10倍当做8,用8乘3得24要想使积不变,积要缩小10倍。生2:把0.8元转换成角计算。在学生充分讨论的基础上,板书出竖式 :提出先用加法竖式算,在用乘法算。这样做不仅使学生感受到用乘法计算不仅简单外,更重要的是让学生感受到小数乘法的积与加法结果之间的联系。加法和是一位小数,0.8×3的积是一位小数。接着又出示:2.35 ×3 0.9×4两个算式要求先用加法计算,在用乘法计算。让学生更进一步感受加法和是一 位小数,0.8×3的积是一位小数。最后 学生观察得出积的小数位数与因数的小数之间的关系。既:因数有几位小数积也有几位小数。
这节课学生是真正课堂的主人。是“知识意义的主动建构者”计算课不是一味的算,要明白算理”需要“悟”。因此,在注重计算方法的掌握,计算技能的提高的同时,更强调对算理的理解和感悟。摒弃一切“形式化”说理,经历独立尝试、思维交流、反思评价、再次体验四个层次,层层深入,理解感悟算理。这样的计算课才生动有趣。
《小数乘整数》教学反思
片断一:
师:出示情景:让我们一起走进不同季节的水果店看看!
师:从图中你了解哪些信息?
师:夏天买3千克西瓜需要多少元?怎么求?
(0.8×3)
师:这道乘法算式和我们以前的乘法有什么不同?
对,这就是我们今天要和大家共同探讨的——小数乘整数。0.8×3等于多少呢?你是怎么想的呢?(停留片刻)
把你自己的想法在小组里交流一下。
反馈交流:谁来说说自己的方法?(小组讨论时到学生中间去指导)
生1:连加法:0.8+0.8+0.8(利用乘法的意义)
生2:把元转化成角。0.8元是8角。
8×3=24(角),24角=2元4角,2元4角=2.4元
生3:0.8看成8个十分之一,8个十分之一乘3就是24个十分之一,即2.4。
反思:利用学生爱吃西瓜引入生活情景,和学生的生活实际自然连接起来,学生很快进入学习状态。夏天3千克的西瓜的价钱, 0.8×3,是学生没有遇见过的,这时就产生了认知上的冲突,而学生借助已有的生活经验,这个冲突可以在一定程度上得到突破,因为它在学生的最近发展区内。通过学生自主的探索与交流,了解可以有多种办法来算出0.8×3的结果。感受到了算法的多样化以及解决问题的策略的多样化。
片断二:
出示:
师:仔细观察:这些算式完整吗?
生:结果还没有点小数点呢!
师:那你说该怎么点?
生说出积的小数点的点法。
师:这下完整了吗?
生1:过程中还没有点呢!
生2:计算过程中不要点!
学生争论。
师:谁能说说自己的理由!
生1:小数乘的过程当然要点小数点。
生2:我们是把小数看作整数来乘的,所以不要点小数点。
教师走向前,握住孩子的手,你真是会思考的小数学家呀!
师:用计算器验证。
师:得出:因数中有几位小数,积就有几位小数。
师:说一说:小数和整数相乘应该怎样算呢?先在小组里说一说!
(计算小数乘整数时,一般可以先按整数乘法算,再看因数里有几位小数,就从积的右边起数出几位,并点上小数点。)
反思:这里的设计,跳出了教材,又深化了教材,实在教学目标的导向下灵活处理教材的体现。学生再次利用自己猜测得到的积的位数与因数位数的关系去试着得出积的位数,然后用计算器计算小数与整数相乘的积,最终得出了小数乘整数的笔算法则。借助计算器这个计算工具,学生能很快发现积和因数的小数位数之间的关系,这也是新课程中提倡的利用计算工具帮助学生寻找规律的很好体现,也符合了新课标下学生猜想验证的学习方法。