作为一名教职工,通常会被要求编写教案,借助教案可以提高教学质量,收到预期的教学效果。那么问题来了,教案应该怎么写?下面是高考家长帮为朋友们整编的等差数列教学设计(优秀4篇),希望能够对大家的写作有一点帮助。
等差数列教案 篇一
教学目标
知识与技能目标:理解等差数列的定义;会根据等差数列的通项公式求某一项的值;会根据等差数列的前几项求数列的通项公式。
过程与方法目标:通过启发、讨论、引导、边教边练边反馈的方法提高学生思考问题、解决问题的能力。
情感、态度、价值观目标:培养学生的逻辑推理能力;培养学生在探索中学习知识的精神,增强学生相互合作交流的意识。
教学重点:会求等差数列的通项公式。
教学难点:等差数列的通项公式的推导。
教学准备:课件
教学过程:
一、创设情境,引入课题
如图1所示:一个堆放铅笔的V形架的最下面
一层放1支铅笔,往上每一层都比它下面一层多放1
支,这个V形架的铅笔从最下面一层往上面排起的
铅笔支数组成数列:1,2,3,4,……
②某个电影院设置了20排座位,这个电影院从第1排起各排的座位数组成数列:
38,40,42,44,46,……
③全国统一鞋号中,成年女鞋的各种尺码(表示以cm为单位的鞋底的长度)由大到小可排列为:25,24.5,24,23.5,23,22.5,22,21.5.
师生互动,探索新知
教师:请同学们仔细观察,你发现这三组数列有什么变化规律?
生:数列①从第2项起,每一项与它的前一项的差都等于 ;
数列②从第2项起,每一项与它的前一项的差都等于 ;
数列③从第2项起,每一项与它的前一项的差都等于 ;
[设计说明:采用边教学边反馈的方式,有利于教师及时了解学生理解新知识的程度,增强学生学好数学的信心]
教师引导学生观察上面的数列①、②、③的特点。
提出问题1:上面三个数列的共同特点是什么?
学生:从第2项起,每一项与它的前一项的差都等于同一个常数。
教师:这样我们就得到了等差数列的定义。
<一>等差数列的定义:如果一个数列从它的第2项起每一项与它的前一项的差都等于同一个常数,则这个数列叫做等差数列;这个常数叫做等差数列的公差,公差通常用字母d表示。等差数列的公差d的数学表达式为: 。
基础训练:1、上面数列①的公差d= ; 数列②的公差d= ;
数列③的公差d=
[设计说明:有利于学生扫除语言与符号转换的障碍]
2、下面的数列中,哪些是等差数列?若是,求出它的公差;若不是,则说明理由。
6,10,14,18,22,……;(2)9,8,7,6,5,4,3,2;(3)3,3,3,3,3,3;(4)1,0,1,0,1,0,1,0.
提出问题2:任何一个数列一定是等差数列吗?如果是等差数列,公差一定是正数吗?
师生讨论得出结论:
、一个数列是等差数列必须具有这样的特点: 从第2项起,每一项与它的前一项的差都等于同一个常数;
(2)等差数列的公差d可能是正数、负数、零。
[设计说明:从具体数列入手,有利于较多基础差的学生理解等差数的定义,判断数列是否为等差数列转换成具体的步骤:求后面一项与前面一项的差,看这些差是否相等]
提出问题3:等差数列 的公差d的数学表达式为: ,
揭示了求公差d可以用哪些式子表示?
师生共同活动: 等,
变式:
提出问题4:如果等差数列 只知道首项 ,公差d,那么这个数列的其他项如何表示?
师生共同活动:
…,
[设计说明:问题3、问题4的提出训练学生的变形思想、递归思想,从而引出等差数列的通项公式及学生容易理解通项公式的变形公式]
<二>等差数列的通项公式:
高中等差数列的教学设计 篇二
教学目的:
1.明确等差数列的定义,掌握等差数列的通项公式。
2.会解决知道中的三个,求另外一个的问题。
教学重点:等差数列的概念,等差数列的通项公式。
教学难点:等差数列的性质
教学过程:
一、复习引入:(课件第一页)
二、讲解新课:
1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的 差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。
(课件第二页)
⑴.公差d一定是由后项减前项所得,而不能用前项减后项来求;
⑵.对于数列{ },若 - =d (与n无关的数或字母),n≥2,n∈n ,则此数列是等差数列,d 为公差。
2.等差数列的通项公式: 【或 】等差数列定义是由一数列相邻两项之间关系而得。若一等差数列 的首项是 ,公差是d,则据其定义可得: 即: 即: 即: …… 由此归纳等差数列的通项公式可得: (课件第二页) 第二通项公式 (课件第二页)
三、例题讲解
例1 ⑴求等差数列8,5,2…的第20项(课本p111) ⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
例2 在等差数列 中,已知 , ,求 , ,
例3将一个等差数列的通项公式输入计算器数列 中,设数列的第s项和第t项分别为 和 ,计算 的值,你能发现什么结论?并证明你的结论。
小结:
①这就是第二通项公式的变形,
②几何特征,直线的斜率
例4 梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。(课本p112例3)
例5 已知数列{ }的通项公式 ,其中 、 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?(课本p113例4)
分析:由等差数列的定义,要判定 是不是等差数列,只要看 (n≥2)是不是一个与n无关的常数。
注:
①若p=0,则{ }是公差为0的等差数列,即为常数列q,q,q,…
②若p≠0, 则{ }是关于n的一次式,从图象上看,表示数列的各点均在一次函数y=px+q的图象上,一次项的系数是公差,直线在y轴上的截距为q.
③数列{ }为等差数列的充要条件是其通项 =pn+q (p、q是常数)。称其为第3通项公式
④判断数列是否是等差数列的方法是否满足3个通项公式中的一个。
例6.成等差数列的四个数的和为26,第二项与第三项之积为40,求这四个数。
四、练习:
1、(1)求等差数列3,7,11,……的第4项与第10项。
(2)求等差数列10,8,6,……的第20项。
(3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由。
(4)-20是不是等差数列0,-3 ,-7,……的项?如果是,是第几项?如果不是,说明理由。
2、在等差数列{ }中,
(1)已知 =10, =19,求 与d;
五、课后作业:
习题3.2 1(2),(4) 2.(2), 3, 4, 5, 6 。 8. 9.
高中数学等差数列教案大全 篇三
等差数列的教学设计
教学理念: 数学教学是思维过程的教学,如何引导学生参与到教学过程中来,尤其是在思维上深层次的 参与 ,是促进学生良好的认知结构,培养能力,全面提高素质的关键。数学教学中的探究式对培养和提高学生的自主性、能动性和创造性有着非常重要的意义。
设计思想: 本节借助多媒体辅助手段,创设问题的情境,让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。
一、教材分析:高考资源网
教学内容:
高中数学必修第五模块第二章第二节,等差数列,两课时内容,本节是第一课时,研究等差数列的定义、通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。
教学地位:
本节是第二章的基础,为以后学习等差数列的求和、等比数列奠定基础,是本章的重点内容。在高考中也是重点考察内容之一,并且在实际生活中有着广泛的应用,它起着承前启后的作用。同时也是培养学生数学能力的良好题材。等差数列是学生探究特殊数列的开始,它对 后续 内容的学习,无论在知识上,还是在方法上都具有积极的意义。高考资源网
教学重点:
理解等差数列概念,探索并掌握等差数列的通项公式,会用公式解决一些简单的问题,体会等差数列与一次函数之间的关系。
教学难点:
对等差数列概念的理解及从函数、方程角度理解通项公式,概括通项公式推导过程中体现出的数学思想方法。
二、学习者分析:
高二学生已经具有一定的理性分析能力和概括能力,且对数列的知识有了初步的接触和认识,对数学公式的运用已具备一定的技能,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻。他们的思维正从属于经验性的逻辑思维向抽象思维发展,但仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。
三、教学目标:高考资源网
知识目标:
理解等差数列定义,掌握等差数列的通项公式。
能力目标:高考资源网
培养学生观察、归纳能力,在学习过程中,体会数形结合思想、归纳思想和化归思想并加深认识;通过概念的引入与通项 公式 的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力。
情感目标:
①通过个性化的学习增强学生的自信心和意志力。
②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。
③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。
四、教法和学法的分析:高考资源网
通过探究式教学方法充分利用现实 情景 ,尽可能的增加教学过程的趣味性、实践性。利用多媒体课件和实例等丰富学生的学习资源,强调学生动手操作试验和主动参与,在教师的启发指导下,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而使学生即获得知识又发展智能的目的。
2、 在学法上,引导学生多角度,多层面认识事物,学会探究。教师是学生的学习的组织者、促进着、合作者,在本节课的备课和教学过程中,为学生的动手实践,自主探索与合作交流的机会搭建平台,鼓励学生提出自己的见解,学会提出问题解决问题,通过恰当的教学方式让学生学会自我调适,自我选择。
五、教学媒体和教学技术的选用
多媒体计算机和几何画板
通过计算机模拟演示,使学生获得感性知识的同时,为掌握理性知识创造条件,这样做,可以使学生有兴趣地学习,注意力也容易集中,符合教学论中的直观性原则和可接受性原则。本节课打破传统的一言堂的格局代之以人为本、民主、开放、特色和建立在信息网络平台上的现代教学格局。
六、教学程序:
(一)设置问题,引导发现形成概念w。
师:看大屏幕。高考资源网
情景1(播放奥运会女子举重场面)
2008年北京奥运会,女子举重共设置7个级别,其中较轻的4个级别体重组成数列(单位:kg):
48,53,58,63
情景2 水库的管理员为了保证优质鱼类有良好的生活环境,定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m)
18,15.5,13,10.5,8,5.5
情景3 我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:
本利和=本金 (1+利率 存期)
时间 年初本金(元) 年末本利和(元) 第1年 10000 10072 第2年 10000 10144 第3年 10000 10216 第4年 10000 10288 第5年 10000 10360 例如,按活期存入10000元,年利率是0.72%,那么按照单利,5年内各年末本利和分别是:如下表(假设5年既不加存款也不取款,且不扣利息税)
各年末本利和(单位:元)高考资源网
10072,10144,10216,10288,10360
师:思考上述各组数据反映了什么样的信息?
每行数有何共同特点?请同学们互相讨论。
(学生纷纷议论,有的几个人在一起商量)高考资源网
(从宏观上 : 情景1 让学生体验成功申办奥运会的喜悦心情,激发勇于拼搏的坚强意志;情景2让学生认识到保护水资源,保护生态平衡的意识;情景3 倡导节约意识,纳税意识。)
从微观上,数学研究的对象是数,我们抛开具体的背景,从表格中抽象出一般数列。
48 53 58 63 18 15.5 13 10.5 8 5.5 10072 10144 10216 10288 10360 师:(启发学生)你能用数学语言来描述上述数列的共同特征吗?
学生1:后一项与它的前一项的差等于常数。
师:反例:1,3,5,6,12,这样的数列特征和上述数列的特征一样吗?
学生1:不一样,要加上同一个常数。
学生2:每一项与它的前一项的差等于同一个常数。
师:反例:1,3,4,5,6,7,这样的数列特征和上述数列的特征一样吗?
学生2:不一样,必须从第二项开始。
学生3:从第二项起,每一项与它的前一项的差等于同一个常数。
(教师把学生的回答写在黑板上,通过反例,使学生深刻理解几组数列的共同特征:
= 1 GB3 ① 同一个常数; = 2 GB3 ② 从第二项起)
师:能不能用数学语言表示?
学生4:
师:等价吗?
学生4:应加上(d是常数), .
(让学生充分讨论,注意文字语言与数学符号语言的转化的严谨性)
师:对式子进行变形可得 。
这样的数列在生活中的例子,谁能再举几个?
学生5:某剧场前8排的座位数分别是
52,50,48,46,44,42,40,38.
学生6:全国统一鞋号中成年女鞋的各种尺码分别是
21,21.5 ,22 ,22.5 ,23 ,23.5 ,24 ,24.5 ,25
学生7:马路边的路灯,相邻两盏之间的距离构成的数列。
师:如何用数列表示?
学生8:设相邻两盏之间的距离为a,该数列为
a,a,a,a,……,为常数列,即常数列都具有这种特征。
(让学生举例,加深感性认识)
师:满足这种特征的数列很多,我们有必要为这样的数列取一个名字?
学生(共同):等差数列。
师:(学生叙述,板书定义)高考资源网
一般的,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,d为公差,a1为数列的首相。
提出课题《等差数列》
对定义进行分析,强调: = 1 GB3 ① 同一个常数; = 2 GB3 ② 从第二项起。注意对概念严谨性的分析。
师:回到表格中,分别说出它们的公差。
学生9:依次是d=7,d=1,d=8,d=-6,d=5,d=-2.5,d=72.
师:在计算年末本利和的问题中求 时,能不能不按本利和=本金 (1+利率 存期)
求而按数列的特征求呢?
学生:若能求得通项公式,问题就很好解决。
(再提出问题,引导发现求通项公式的必要性)
(二)启发、引导推出等差数列的通项公式
师:把问题推广到一般情况。若一个数列 是等差数列,它的公差是d,那么数列 的通项公式是什么?高考资源网
启发学生:(归纳、猜想)可用首相与公差表示数列中任意一项。
学生10: 即:
即:
即:
由此可得:
师:从第几项开始归纳的?
学生10:第二项,所以n≥2。
师:n=1时呢?
高中等差数列的教学设计 篇四
教学目标
1、通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;
2、利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;
3、通过参与编题解题,激发学生学习的兴趣。
教学重点,难点
教学重点是通项公式的认识;
教学难点是对公式的灵活运用.
教学用具
实物投影仪,多媒体软件,电脑。
教学方法
研探式。
教学过程()
一。复习提问
前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?
等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用。
二。主体设计
通项公式 反映了项 与项数 之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 )。找学生试举一例如:“已知等差数列 中,首项 ,公差 ,求 。”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上。
1、方程思想的运用
(1)已知等差数列 中,首项 ,公差 ,则-397是该数列的第 项。
(2)已知等差数列 中,首项 , 则公差
(3)已知等差数列 中,公差 , 则首项
这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量。
2、基本量方法的使用
(1)已知等差数列 中, ,求 的值。
(2)已知等差数列 中, , 求 。
若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些等差数列是确定的,由 和 写出通项公式,便可归结为前一类问题。解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量。
教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定)。
如:已知等差数列 中, …
由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题
(3)已知等差数列 中, 求 ; ; ; ;…。
类似的还有
(4)已知等差数列 中, 求 的值。
以上属于对数列的项进行定量的研究,有无定性的判断?引出
3、研究等差数列的单调性,考察 随项数 的变化规律,着重考虑 的情况。 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果,这个结果与考察相邻两项的差所得结果是一致的,
4、研究项的符号
这是为研究等差数列前 项和的最值所做的准备工作。可配备的题目如
(1)已知数列 的通项公式为 ,问数列从第几项开始小于0?
(2)等差数列 从第 项起以后每项均为负数。
三。小结
1、 用方程思想认识等差数列通项公式;
2、 用函数思想解决等差数列问题。