(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:高考家长帮小编精心为您整理了数学教案:完全平方公式【9篇】,希望能够对您的写作有一些启发。
数学《完全平方公式》教案 篇一
重点、难点根据公式的特征及问题的特征选择适当的公式计算。
教学过程
一、议一议
1、边长为(a+b)的正方形面积是多少?
2、边长分别为a、b拍的两个正方形面积和是多少?
3、你能比较(1)(2)的结果吗?说明你的理由。师生共同讨论:学生回答(1)(a+b) (2)a +b (3)因为(a+b) = a +2ab+b ,所以 (a+b) -(a +b )=a +2ab+b -a -b =2ab,即(1)中的正方形面积比(2)中的正方形面积大。
二、做一做
例1. 利用完全平方式计算1. 102 。
2、 197 师:要利用完全平方公式计算,则要创设符合公式特征的两数和或两数差的平方,且计算尽可能简便。学生活动:在练习本上演示此题。让学生叙述
教师板书。解:1.102 =(100+2) 2.197 =(200-3) =100 +2 lOO 2+2, =200 -2 2O0 3十3 ,=10000+400+4 =40000-1200+9 =10404 =38809 例2.计算:1.(x-3) -x
2、(2a+b- )(2a-b+ )师生共同分析:1中(x-3) 可利用完全平方公式。学生动笔解答第1题。教师根据学生解答情况,板书如下:解:1. (x-3) -x = x +6x+9-x =6x+9师问:此题还有其他方法解吗?引导学生逆用平方差公式,从而培养学生创新精神。学生活动:分小组讨论第(2)题的解法。此题学生解答,难度较大。教师要引导学生使用加法结合律,为使用公式创造条件。学生小组交流派代表进行全班交流。最后教师板书解题过程。解:2. (2a+b- )(2a-b+ )=[2a+(b- )][2a-(b- )]=(2a) -(b- ) =4a -(b-3b+ )=4a -b +3b-
三、试一试
计算:
1、 (a+b+c)
2、 (a+b) 师生共同分析:对于1要把多项式完全平方转化为二项式的完全平方,要使用加法结合律,为使用完全平方公式创造条件。如(a+b+c) =[a+(b+c)] 对于(2)可化为(a+b) =(a+b)(a+b) 。学生动笔:在练习本上解答,并与同伴交流你的做法。学生叙述。
教师板书。解:1. (a+b+c) =[a+(b+c)] =(a+b) +2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc
四、随堂练习
P38 1
五、小结
本节课进一步学习了完全平方公式,在应用此公式运算时注意以下几点。 1.使用完全平方公式首先要熟记公式和公式的特征,不能出现(ab) = a b 的错误,或(ab) = a ab+b (漏掉2倍)等错误。2.要能根据公式的特征及题目的特征灵活选择适当的公式计算。3.用加法结合律,可为使用公式创造了条件。利用了这种方法,可以把多项式的完全平方转化为二项式的完全平方。
六、作业
课本习题1.14 P38 1、2、3.
七、教后反思
1.9 整式的除法第一课时 单项式除以单项式教学目标1.经历探索单项式除法的法则过程,了解单项式除法的意义。
2、理解单项式除法法则,会进行单项式除以单项式运算。重点、难点重点:单项式除以单项式的运算。难点:单项式除以单项式法则的理解。
数学教案:完全平方公式 篇二
一、教材分析
本节内容在全书及章节的地位:《完全平方公式》是人教版数学八年级上册第十四章的内容。在此之前,学生已学习了多项式的乘法,这为过渡到本节的学习起着铺垫作用。本节课通过学生合作学习,利用多项式相乘法则和图形解释而得到完全平方公式,进而理解和运用完全平方公式,对以后学习因式分解,解一元二次方程都具有举足轻重的作用。
作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透换元思想和数形结合思想 。
二、学情分析
学生刚学过多项式的乘法,已具备学习和运用完全平方公式的知识结构,但是由于学生初步学习乘法公式,认清公式结构并不容易,因此教学时要循序渐进。
三、教学目标
知识与技能
1.完全平方公式的推导及其应用。
2.完全平方公式的几何证明。
过程与方法
经历探索完全平方公式的过程,进一步发展符号感和推理能力。
情感态度与价值观
对学生观察能力、概括能力、语言表述能力的培养,以及数学思想的渗透。
四、教学重点难点
教学重点
完全平方公式的推导过程;结构特点与公式的应用。
教学难点
完全平方公式结构特点及其应用。
五、教法学法
多媒体辅助教学,将知识形象化、生动化,激发学生的兴趣。教学中逐步设置疑问,引导学生动手、动脑、动口,积极参与知识全过程。
六、教学过程设计
师生活动
设计意图
一。复习多项式与多项式的乘法法则
1、多项式与多项式的乘法法则内容。
2、多项式与多项式的'乘法练习。
二。讲授新课
完全平方公式的推导
1、利用多项式与多项式的乘法法则和几何法推导完全平方(和)公式
附:有简单的填空练习
2、利用多项式乘法则和换元法推导完全平方 (差)公式
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
二、总结完全平方公式的特点
介绍助记口诀:首平方,尾平方,首尾两倍乘积放中央。
三、课堂练习
1、改错练习
2、例题讲解(总结利用完全平方公式计算的步骤)
第一步选择公式,明确是哪两项和(或差)的平方;
第二步准确代入公式;
第三步化简。
计算练习
(1)课本110页第一题
(2) (x-6)2 (y-5)2
四、课堂小结:
1、应用完全平方公式应注意什么?
在解题过程中要准确确定a和b,对照公式原形的两边, 做到不丢项、不弄错符号、2ab时不能少乘以2。
2、助记口诀
复习多项式与多项式的乘法法则为新课的学习做准备。
利用不同的的方法来推导完全平方公式,让学生认知数学中的不同解题方法。
利用助记口诀帮助学生更加准确的掌握完全平方公式的特点。
通过课堂练习,使学生掌握用完全平方公式计算的步骤,加强学生解题的准确率。
强调应用完全平方公式解题的注意点和助记口诀,提高学生解决问题的能力和解题的准确率。
《完全平方公式与平方差公式》教学设计 篇三
授课教师:
授课时间:
课型:新授
课题:3.4探究实际问题与一元一次方程组
教学目标基础知识:掌握一元一次方程得解法,了解销售中的数量关系。
基本技能:能够分析实际问题中的数量关系,找相等关系,列出一元一次方程。
基本思想
方法:通过将实际问题转化成数学问题,培养学生的建模思想;
基本活动经验体会解决实际问题的一般步骤及盈亏中的关系
重点探索并掌握列一元一次方程解决实际问题的方法,
教学
难点找出已知量与未知量之间的关系及相等关系。
教具资料准备教师准备:课件
学生准备:书、本
教 学 过 程自备
补充集备
补 充
一、创设情景 引入新课
观察图片引课(见大屏幕)
二、探究
探究销售中的盈亏问题:
1、商品原价200元,九折出售,卖价是 元。
2、商品进价是30元,售价是50元,则利润
是 元。
2、某商品原来每件零售价是a元, 现在每件降价10%,降价后每件零售价是 元。
3、某种品牌的彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为 元。
4、某商品按定价的八折出售,售价是14.8元,则原定售价是 。
(学生总结公式)
熟悉各个量之间的联系有助于熟悉利润、利润率售价进价之间联系
三、探究一
某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25?,另一件亏损25?,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
分析:售价=进价+利润
售价=(1+利润率)×进价
练习(1)随州某琴行同时卖出两台钢琴,每台售价为960元。其中一台盈20%,另一台亏损20%。这次琴行是盈利还是亏损,或是不盈不亏?
(2)某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%。这次交易中的盈亏情况?
(3)某商场把进价为1980元的商品按标价的八折出售,仍获利10%, 则该商品的标价为 元。
注:标价×n/10=进(1+率)
(4)2、我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2005年涨价30%后,2007降价70%至a元,
则这种药品在2005年涨价前价格为 元。
四、小结
通过本节课的学习你有哪些收获?你还有哪些疑惑?
亏损还是盈利对比售价与进价的关系才能加以判断
小组研究解决提出质疑
优生展示讲解质疑
五、作业布置:
板书设计 一元一次方程的应用-----盈亏问题
相关的关系式: 例题
课后反思售价、进价、利润、利润率、标价、折扣数这几个量之间的关系一定清楚,之后才能灵活运用,通过变式练习加强记忆提高能力。
数学《完全平方公式》教案 篇四
教学目标:完全平方公式的推导及其应用;完全平方公式的几何解释;视学生对算理的理解,有意识地培养学生的思维条理性和表达能力.
教学重点与难点:完全平方公式的推导过程、结构特点、几何解释,灵活应用。
教学过程:
一、提出问题,学生自学
问题:根据乘方的定义,我们知道:a2=aa,那么(a+b)2应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?
(1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;
(2)(p1)2=(p1)(p1)=_______;(m2)2=_______;
学生讨论,教师归纳,得出结果:
(1)(p+1)2=(p+1)(p+1)=p2+2p+1
(m+2)2=(m+2)(m+2)=m2+4m+4
(2)(p1)2=(p1)(p1)=p22p+1
(m2)2=(m2)(m2)=m24m+4
分析推广:结果中有两个数的平方和,而2p=2p1,4m=2m2,恰好是两个数乘积的二倍(1)(2)之间只差一个符号.
推广:计算(a+b)2=__________;(ab)2=__________.
得到公式,分析公式
结论:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2
即:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.
二、几何分析:
你能根据图(1)和图(2)的面积说明完全平方公式吗?
图(1)大正方形的边长为(a+b),面积就是(a+b)2,同时,大正方形可以分成图中①②③④四个部分,它们分别的面积为a2、ab、ab、b2,因此,整个面积为a2+ab+ab+b2=a2+2ab+b2,即说明(a+b)2=a2+2ab+b2。
《完全平方公式》教案 篇五
学习任务
1、了解完全平方公式的特征,会用完全平方公式进行因式分解。
2、通过整式乘法逆向得出因式分解方法的过程,发展学生逆向思维能力和推理能力。
3、通过猜想、观察、讨论、归纳等活动,培养学生观察能力,实践能力和创新能力。
学习建议教学重点:
运用完全平方公式分解因式。
教学难点:
掌握完全平方公式的特点。
教学资源
使用电脑、投影仪。
学习过程学习要求
自学准备与知识导学:
1、计算下列各式:
⑴(a+4)2=__________________⑵(a-4)2=__________________
⑶(2x+1)2=__________________⑷(2x-1)2=__________________
下面请你根据上面的等式填空:
⑴a2+8a+16=_____________⑵a2-8a+16=_____________
⑶4x2+4x+1=_____________⑷4x2-4x+1=_____________
问题:对比以上两题,你有什么发现?
2、把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来就得到__________________和__________________,这两个等式就是因式分解中的完全平方公式。它们有什么特征?
若用△代表a,○代表b,两式可表示为△2+2△×○+○2=(△+○)2,△2-2△×○+○2=(△-○)2.
3、a2-4a-4符合公式左边的特征吗?为什么?
4、填空:a2+6a+9符合吗?______相当于a,______相当于b.
a2+6a+9=a2+2()()+()2=()2
a2-6a+9=a2-2()()+()2=()2
可以把形如a2+2ab+b2与a2-2ab+b2的多项式通过完全平方公式进行因式分解。
学习交流与问题研讨:
1、例题一(准备好,跟着老师一起做!)
把下列各式分解因式:⑴x2+10x+25⑵4a2-36ab+81b2
2、例题二(有困难,大家一起讨论吧!)
把下列各式分解因式:⑴16a4+8a2+1⑵(m+n)2-4(m+n)+4
3、变式训练:若把16a4+8a2+1变形为16a4-8a2+1会怎么样呢?
4、运用平方差公式、完全平方公式,把一个多项式分解因式的方法叫做运用公式法。分析:重点是指出什么相当于公式中的a、b,并适当的改写为公式的形式。
分析:许多情况下,不一定能直接使用公式,需要经过适当的组合,变形成公式的'形式。
强调:分解因式必须分解到每一个因式都不能再分为止。
练习检测与拓展延伸:
1、巩固练习
⑴下列能直接用完全平方公式分解的是()
A、x2+2xy-y2B、-x2+2xy+y2C、x2+xy+y2D、x2-xy+y2
⑵分解因式:-a2+2ab-b2=_________,-a2-2ab-b2=_________.
⑶课本P75练一练1、2.
2、提升训练
⑴简便计算:20042-4008×20xx+20052
⑵已知a2-2a+b2+4b+5=0,求(a+b)20xx的值。
⑶若把a2+6a+9误写为a2+6a+9-1即a2+6a+8如何分解?
3、当堂测试
补充习题P42-431、2、3、4.
分析:许多情况下,不一定能直接使用公式,需要经过适当的组合,变形成公式的形式。
课后反思或经验总结:
1、本节课是在学生已经了解因式分解的意义,掌握了提公因式法、平方差公式的基础上进行教学的,是运用类比的方法,引导学生借助上一节课学习平方差公式分解因式的经验,探索因式分解的完全平方公式法,即先观察公式的特点,再直接根据公式因式分解。
《完全平方公式》教案 篇六
一、教学目标
(1)知识与技能;学生通过推导完全平方公式,掌握公式结构,能计算。
(2)过程与方法目标;学生探究完全平方公式,体会数形结合。
二、教学重点;公式结构及运用。
三、教学难点;公式中字母AB的含义理解与公式正确运用。
四、教具;自制长方形、正方形卡片
五、教学过程;
教师活动
学生活动
1、1、创设情景,提出问题,引入课题
(1)想一想
一位老人很喜欢孩子,每当孩子到他家做客时,老人都拿出糖招待他们,来了几个孩子老人就会每个孩子几块糖。
(1)第一天,a个男孩去看老人,老人共给他们几块糖?
(2)第二天,个女孩子去看望老人,老人共给他们多少块糖?
(3)第三天,()个孩子一起去看望老人,老人共给他们多少块糖?
(4)第三天比前二天的孩子得到糖总数哪个多?多多少?为什么?(分组讨论)
1、1、学生四人一组讨论。
填空:
(1)第一天给孩子块糖。
(2)第二天给孩子块糖。
(3)第三天给孩子块糖。
男孩子第三天多得块糖
女孩第三天多得块糖。
教师活动
学生活动
(2)做一做、请同学拼图
a
教师巡视指导学生拼图
2、2、教师提问:
(1)、大正方形边长?(2)每一块卡片的面积是多少?(3)用不同形式表示正方形总面积,比较发现什么?
3、3、想一想
(1)(a+b)用多项式乘法法则说明
(2)(a-b)
4、请同学们自己叙述上面的等式
5、说一说,ab能表示什么?
(□+○)□+2□○+○
6、算一算
(1)(2X-3)(2)(4X+5Y)
请同学们分清ab
7、练一练
(1)(2X-3Y)(2)(2XY-3X)
8、试一试(a+b+c)
作业:P1351、2
学生2人一组拼图交流
2、学生观察思考
(1)大正方形边长?
(2)四块卡片的。面积分别是
(3)大正方形的总面积是多少?
3、(1)学生运用多项式乘法法则推导
(a+b)=a+2ab+b说出每一步运算理由
(2)学生自己探究交流
4、学生用语言叙述公式
5、师生共同a、b对应项教师书写
6、学生独立完成练一练展示结果
7、学生四人一组讨论交流
8、有兴趣的同学可以探
《完全平方公式》教案 篇七
运用乘法公式计算:
(l) (2)
(3) (4)
学生活动:采取比赛的方式把学生分成四组,每组完成一题,看哪一组完成得快而且准确,每组各派一个学生板演本组题目.
【教法说明】这样做的目的是训练学生的。快速反应能力及综合运用知识的能力,同时也激发学生的学习兴趣,活跃课堂气氛.
(四)总结、扩展
这节课我们学习了乘法公式中的完全平方公式.
引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.
八、布置作业
《完全平方公式》教案 篇八
一、教材分析:
(一)教材的地位与作用
本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。它是在学生学习了代数式的概念、整式的加减法、幂的运算和整式的乘法后进行学习的,其地位和作用主要体现在以下几方面:
(1)整式是初中代数研究范围内的一块重要内容,整式的运算又是整式中一大主干,乘法公式则是在学习了单项式乘法、多项式乘法之后来进行学习的;一方面是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,乘法公式的推导是初中代数中运用推理方法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。
(2)乘法公式是后续学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习因式分解、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的功能。
(3)公式的发现与验证给学生体验规律发现的基本方法和基本过程提供了很好模式。
(二)教学目标的确定
在素质背景下的数学教学应以学生的发展为本,学生的能力培养为重,尤其是创新、创造能力,以及培养学生良好的个性品质等。根据以上指导思想,同时参照义务教育阶段《数学课程标准》的要求,确定本节课的教学目标如下:
1、知识目标:
理解公式的推导过程,了解公式的几何背景,会应用公式进行简单的计算。
2、能力目标:
渗透建模、化归、换元、数形结合等思想方法,培养学生的发现能力、求简意识、应用意识、解决问题的能力和创新能力。
3、情感目标:
培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质。
(三)教学重点与难点
完全平方公式和平方差公式一样是主要的乘法公式,其本质是多项式乘法,是学生今后用于计算的一种重要依据,因此,本节教学的重点与难点如下:
本节的重点是体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。
本节的难点是从广泛意义上理解公式中的字母含义,判明要计算的代数式是哪两数的和(差)的平方。
二、教学方法与手段
(一)教学方法:
针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用自主探索,启发引导,合作交流展开教学,引导学生主动地进行观察、猜测、验证和交流。同时考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的发展。边启发,边探索边归纳,突出以学生为主体的探索性学习活动和因材施教原则,教师努力为学生的探索性学习创造知识环境和氛围,遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中。
采用小组讨论,大组竞赛等多种形式激发学习兴趣。
(二)教学手段:
利用投影仪辅助教学,突破教学难点,公式的推导变成生动、形象、直观,提高教学效率。
(三)学法指导:
在学法上,教师应引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培养学生学习的主动性和积极性。
三、教材处理
根据本节内容特点,本着循序渐进的原则,我将以“边长为(a+b)的正方形面积是多少?”这个实际问题引入新课,关于两数和的平方公式通过实例、推导、验证几个步骤完成。关于两数差的平方公式,我将为学生提供三种不同的思路,由学生自己选择学习、理解,然后再归纳的方法进行,再通过分层次练习,加以巩固。
四、教学程序
教 学 过 程
设计意图
一、创设情境,引出课题
如图,有一个边长为a米的正方形广场,则这个广场的面积是多少?
a
若在这个广场的相邻两边铺一条宽为10米的道路,则面积是多少?
a 10
引导学生利用图形分割求面积。
另一方面:正方形
10 10a 102 面积为(a+10)2, 所以:
(a+10)2=a2+20a+102
a a2 10a
a 10
b ab b2 把10替换为b,
(a+b)2=a2+2ab+b2
a a2 ab 提出课题
a b
通过较为简单的几何图形面积计算和较熟悉的整式乖法计算。引入本节学习内容(a+b)·(a+b)
(根据初一学生年龄特点,采用图形变化来激发学生学习兴趣)
问题是知识、能力的生长点,通过富有实际意义的问题能激活学生原有认知,促使学生主动地进行探索和思考。
对公式(a+b)2=a2+2ab+b2的形式进行初步认识,接触
二、交流对话,探求新知
1、推导两数和的完全平方公式
计算(a+b)2
解:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2
2、理解公式特征
①算式:两数和的平方
②积:两个数的平方和加上这两个数积的2倍
3、语言叙述
(a+b)2=a2+2ab+b2用语言如何叙述
4、公式(a-b)2=a2-2ab+b2教学
①利用多项式乘法 (a-b)2=(a-b)(a-b)
②利用换元思想 (a-b)2=[a+(-b)]2
③利用图形
b
a
(a-b) b
a
5、学生总结、归纳:
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
这两个公式叫做完全平方公式,两数和(或差)的平方,等于这两数的平方和,加上(或减去)这两数积的2倍。
6、公式中的字母含义的理解。(学生回答)
(x+2y)2是哪两个数的和的平方?
(x+2y)2=( )2+2( )( )+( )2
(2x-5y)2是哪两个数的差的平方?
(2x+5y)2=( )2+2( )( )+( )2
变式 (2x-5y)2可以看成是哪两个数的和的平方?
利用多项式乘法推导公式,使学生了解公式的来源以及理解乘法公式的本质。
组织学生小组讨论,使学生明确公式特征,加深对公式表象的理解。
由学生对公式
(a+b)2=a2+2ab+b2进行口头语言叙述。
(1)说明:教师提供三种模式,由学生选择一种去解决。培养学生学习的主动性,开阔学生的思路。(2)同时对渗透数形结合思想、换元思想,也是分散、分步突破本节的难点的第一个层次;(3)体会辩证统一的唯物主义观点;(4)正确引导学生学习时知识的正迁移。
使学生学会对公式的正确表述,有利于学生正确用于计算之中,此时也可以让学生对两个公式特点进行讨论归纳,适当总结一定的口诀:“头平方,尾平方,两倍的乘积中间放。”
加深学生对公式中的字母含义的理解,明确字母意义的广泛性
三、整理新知形成结构
1、完全平方公式并分析公式左右的'特征。
2、换元的基本想法
四、应用新知,体验成功
1、例1教学:用完全平方公式计算
(1)(a+3)2 (2)(y-)2 (3)(-2x+t)2 (4)(-3x-4y)2
学生直接运用公式计算,教师板演,讲评时边口述理由,针对第(4)题(-3x-4y)2可以看成是-3x与4y差的平方,也可以看成-3x与-4y和的平方
提出以下问题:
(1)可否看成两数和的平方,运用两数和的平方公式来计算?
(2)可否看成两数差的平方,运用两数差的平方公式来计算?
(3)能不能进行符号转化?如(-3x-4y)2=(3x+4y)2
2、公式巩固
(1)同桌同学互相编一道用完全平方公式计算题目,然后解答。
(2)下列各式的计算,错在哪里?应怎样改正?
①(a+b)2=a2+b2 ②(a-b)2=a2-b2
③(a-2b)2=a2+2ab+2b2
3、练习:运用完全平方公式计算:(学生板演)
①(a+5)2 ②(3+x)2 ③(y-2)2 ④(7-y)2
⑤(2x+3y)2⑥(-2x-3y)2 ⑦(3- )2 ⑧(- - )2
4、例2,运用完全平方公式计算:(1)1012 (2)982
5、练习:运用完全平方公式计算
(1)912 (2)7982 (3)(10 )2
6、讨论:(1-2x)(-1-2x), (x-2y)(-2y+1)如何计算
五、公式拓展,鼓励探究
1、a2+b2=(a+b)2-______ a2+b2+ _______=(a+b)2
a2+b2+ ________ =(a-b)2
2、(a+b)2-(a-b)2=______ 3、(a+b+c)2=________
4、提出思考题:(a+b)3=? (a+b)4=?
5、已知 求 的值。
6、已知: ,求 , 的值。
6. 已知 ,求x和y的值。
(1)遵循及时巩固原则。(2)针对初一学生注意力不能持久的特点。(3)形成知识网络,有利于学生进一步学习公式的运用
(1)直接运用公式进行计算。(2)进一步帮助学生掌握换元法。(3)进行符号转化的变换,加深学生对公式理解的深度,也为进一步学习其它知识打好基础。
对这几个式子的辨析目的在于防止学生对以前学过的如(ab)2=a2b2的公式的负迁移作用
讲练结合
(1)合作学习,四人小组讨论(教师逐步引导到运用完全平方公式计算)学生讲自己解题的想法和步骤,培养语言表达能力。(2)体会公式实际运用作用,增加学习兴趣
进一步辨析完全平方公式与平方差公式的区别
公式变形利于各种计算
提出一个问题,引导学生用学习研究完全平方公式的方法去研究公式的拓展变形问题。如:三项式的平方,两项式的立方、四次方等,培养学生的严谨的治学态度和钻研精神。
六、小结提高,知识升华
1、两个公式 (a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
2、两种推导方法:多项式乘法导出;图形面积导出
3、换元法与转化
七、作业布置,分层落实
1、阅读教材 6.17内容
2、见省编作业本 6.17
3、对(a+b)2,(a+b)3 ……的展开式从项数、系数方面进行研究
由学生自己小结本节所学知识、方法等。教师根据学生回答情况作出补充。
(1)作业1主要以培养学习良好的学习习惯为目的。(2)结合学生实际情况,贯彻面向全体学生,因材施教原则。作业2要求全体学都能完成。作业3为选做题,部分学有余力的学生可选做。在减轻学生的课业负担同时,注重人本思想,以学生的能力发展为重。 也能满足不同层次学生的不同要求。
附:板书设计与时间大致安排
屏 幕
课题
公式……例题
学生板演
本课时的时间大致安排:
引入课题3分钟左右,探求新知15分钟左右,整理新知2分钟左右,应用新知15分钟左右,公式拓展5分钟左右,小结作业布置约5分钟。
设 计 说 明
本节课的教学设计注重体现以教师为主导、学生为主体,以发展学生为本的思想。遵循初一学生的心理特点(形象思维大于抽象思维)和认知规律(从特殊到一般)。结合学生实际学习情况(已较熟练掌握多项式乘法,并且本节之前也已经学习了平方差公式)进行本课设计的。下面就设计作几点简单说明:
1、完全平方公式的本质是多项式乘法,它的推导方法与平方差公式推导方法是一样的,根据乘方的意义与多项式乘法法则,就可以推导出完全平方公式。因此在两数和的平方公式推导中,采取先由学生自己计算(a+b)2,然后教师点题的方式,再加上引课时已经由几何图形面积的计算得出的结论(a+b)2=a2+2ab+b2,学生是容易接受的。在两数差的平方公式推导中,更进一步,由学生自主选择一种模式解决、验证,增加了数学课堂的开放性。
2、充分发挥学生自主学习、探究的能力。从引入时图形变换的教师启发引导,到公式验证、推导时的学生自主探索,再到学生与学生之间的合作交流学习,都突出了学生是探索性学习活动的主体。在公式拓展中还提出了思考题(a+b)3=?(a+b)4=?……(a+b+c)2=?培养学生严谨的治学态度和钻研探索的精神。同时让学生明确本节课不仅要学会完全平方公式,更加要学会完全平方公式的推导方法,即授学生以渔,让学生学会学习。
3、在练习设计与作业布置中都体现了分层次教学的要求,让不同层次的学生都能主动的参与并都能得到充分的发展。同时也遵循了面向全体与因材施教相结合的教学原则。
4、充分挖掘本课时教材中的隐含的各种数学思想,在教学中渗透如建模思想、数形结合思想、换元思想、化归思想,注重培养学生的发现问题、解决问题的能力、求简意识、应用意识、创新能力等各方面能力。
5、公式(a-b)2=a2-2ab+b2可以作为(a+b)2=a2+2ab+b2的一个应用,这样两个公式便统一为一个公式,这样做有助于学生的记忆和理解,但作为应用,实践表明还是把它们分开来用的好。因此,教学中在公式(a-b)2=a2-2ab+b2的推导过程就有意识的安排与(a+b)2=a2-2ab+b2统一,但又它与(a+b)2=a2+2ab+b2同等的对待。最后在小结时,对于两者的联系再加以说明,让学生领会到数学中的辩证统一思想。
《完全平方公式与平方差公式》教学设计 篇九
一、课 题 8.3.1实际问题与二元一次方程组
(一) 编写备课组
二、本课学习目标与任务:1、进步学习用二元一次方程组解决实际问题,提高解决复杂及开放性问题的能力。
2、培养学生独立探究和合作交流的学习习惯。
3、进行解题过程的规范训练。
4、理解估算的意义及估算与精确计算的关系。
三、知识链接:1、解方程组
2、两台大收割机和五台小收割机,两小时收割3.6公顷,三台大收割机和两台小收割机,五小时收割8公顷,1台大收割机和1台小收割机1小时各收割小麦多少公顷?
由题意可找两个相等的数量关系:
公顷数+ 公顷数=3.6公顷
公顷数+ 公顷数=8公顷
故可设两个未知数为:
四、自学任务(分层)与方法指导:1、养牛场原有30只大牛和15只小牛,1天约用饲料675kg;一周后又购进12只大牛和5只小牛,这时1天约用饲料940 kg,饲养员李大叔估计每只大牛1天约需饲料18~20 kg,每只小牛1天约需饲料7~8 kg,你能否通过计算检验他的估计?
分析:设每只大牛和每只小牛1天各约用饲料 kg和 kg,根据两种情况的饲料用量,找出相等关系,列方程组 ,解这个方程组,得 ,这就是说,每只大牛1天需饲料 kg,每只小牛1天约需饲料 kg。因此,饲养员李大叔对大牛的。食量估计 ,对小牛的食量估计 。
2、利用二元一次方程组解可设 个未知数,必须找到 个与所设未知数相关的等量关系。这几个等量关系必须具备两条件:
○1: ;○2: 。
3、课本中探究1的情景里的每只大牛和小牛估计,所需的饲料量其实是一个 数。
五、小组合作探究问题与拓展:1、在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴,村民小李购买了一台A型洗衣机,小王购买了一台B型洗衣机,两人一共得到财政补贴351元,又知B型洗衣机售价比A型洗衣机售价多500元。
求:(1)A型洗衣机和B型洗衣机的售价各是多少元?
(1)小李和小王购买洗衣机除财政补贴外实际各付款多少元?
六、自学与合作学习中产生的问题及记录
当堂检测题
1、某校运动员分组训练,若每组7人余3人,若每组8人,则缺5人,设运动员人数为 人,组数为 组,则列方程组( )
A、 B、 C、 D、
2、某地区“退耕还林”后,耕地面积和林地面积共180平方千米,耕地面积是林地面积的25%,设耕地面积为 平方千米,林地面积为 平方千米,根据题意,可得方程组
A、 B、 C、 D、
3、某人身上只有2元和5元两种纸币,他买一件物品需支付27元,则付款的方法有( )
A、1种 B、2种 C、3种 D、4种
4、古代有这样一个寓言故事,驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( )
A、5 B、6 C、7 D、8
5、某同学买了 枚1元邮票与 枚2元邮票共12枚,花了20元钱,求1元的邮票与2元的邮票各买了多少张?那么适合 的方程组为( )
A、 B、 C、 D、