作为一位优秀的人民教师,通常需要用到教案来辅助教学,借助教案可以更好地组织教学活动。怎样写教案才更能起到其作用呢?下面是高考家长帮为朋友们整编的六年级数学下册教案【最新3篇】,希望能够给您的写作带来一定的启发。
人教版六年级下册数学教案 篇一
教材分析:
本课是一节数学综合应用的实践活动课,是课程标准实验教材新增加的一个内容。培养学生用数学解决问题的能力是义务教育阶段数学课程的重要目标之一,因此解决问题教学在数学教学中有着重要的作用。它既是发展学生数学思维的过程,又是培养学生应用意识、创新意识的重要途径。本册教材设计了确定起跑线这个数学综合运用活动,让学生通过小组合作的探究性活动,综合运用所学的数学知识和方法(如:圆的知识),动手实践解决问题,体会数学在日常生活中的应用价值,增强学生应用数学的意识,不断提高学生的实践能力和解决问题的能力。
学生分析:
在教学本课之前,大部分学生已经掌握圆的概念、圆的画法还有圆周长的计算方法等知识。学生具备一定的小组自我探究的能力,可以利用小组合作的形式进行学习。
学生对体育活动也很喜欢,相当一部分学生去过体育场,对体育场的跑道和起跑线并不陌生。通过电视节目学生对起跑时运动员不能站在同一起跑线的现象也有一定的认识,但具体这样做是为什么、相邻两跑道起跑线该相差多远呢?学生可能很少从数学的角度去认真的思考。也很难通过经验和观察得到,需要学生收集相关的数据,具体分析起跑线的位子与什么有关。所以在教学中学生可能会在相邻跑道相差多远这一点上有些困难。
教学目标:
1、通过该活动让学生了解椭圆式田径场跑道的结构,学会确定起跑线的方法。
2、通过活动培养学生利用小组合作,探究解决问题的能力。
3、通过活动让学生切实体会到探索的乐趣,感受到数学在体育等领域的广泛应用。
教学重点:运用圆的有关知识计算。
教学难点:
结合具体问题,让学生独立思考,提高解决简单问题的能力。
关键:体会数学知识在体育中的应用。
教学过程:
一、汇报调查,引入课题(8分钟)
1、汇报调查情况
课前,我让大家调查运动场的情况,你们得到了哪些信息?
2、课件显示如下情境图:
师:图上画的是什么?指名学生回答,并引导得出:运动员进行跑步比赛。
师:在一些短跑比赛中,运动员所在的起跑位置是不一样的,你知道为什么吗?引导学生回答:弯道处外圈比内圈长一些。
3、揭示课题,下面我们就用几个具体的例子来验证同学们想法是否正确。
二、结合实例、探究问题(24分钟)
实例一:
课件显示:
淘气和笑笑分别从A,B处出发,沿半圆走到C,D。他们两人走过的路程一样长吗?
(1)笑笑所走路线的半径为10米,她走过的路程是()米。
(2)淘气所走的路线半径为()米,他走过的路程为()米。
(3)两人走过的路相差()米。
1、理解题意
根据这幅情境图,你能获得哪些信息?指名回答。
2、小组讨论
先让学生独立思考,待大多数学生基本解决上面3个小题后,在组织学生在小组内交流。
3、全班交流
抽生汇报,教师板书。
实例2:
课件显示: (一)了解跑道结构:出示完整跑道图(跑道最内圈为400米)
1、观察跑道由哪几部分组成?
2、在跑道上跑一圈的长度可以看成是哪几部分的和?
(板书:跑道一圈长度=圆周长+2个直道长度)
(二)简化研究问题:
1、85.96米是指哪部分的长度?一条直道吗?
2、讨论:运动员沿跑道跑一圈,各跑道之间的差距会在跑道的哪一部分呢?
3、小结:既然与直道无关,为了便于我们更好的观察,暂时将直道拿走看看差距在那里,好吗?(课件:直道消失,屏幕上只剩下左右两个弯道。)
(三)寻求解决方法:
1、左右两个半圆形的弯道合起来是一个什么?
2、讨论:你怎样找出相邻弯道的差距?相邻弯道差距其实就是谁的长度之差?
3、交流小结:只要计算出各圆的周长,算出相邻两圆相差多少米,就是相邻跑道的差距,也就是相邻起跑线相差多少米。
(四)、动手解决问题:
1、计算圆的周长要知道什么?(直径)
2、课件出示:第一道的直径为72.6米,第二道是多少?第三道呢?
3、教师带领学生填写表格的前两道,注意计算第1道和第2道相差米数,应指导学生完成。
引导学生将3.14159换成进行计算
汇报结论:相邻起跑线相差都是2.5,也就是道宽2。说明起跑线的确定与道宽最有关系。
4、计算相邻起跑线相差的具体长度:2.5=2.53.14=7.85米
师:同学们通过努力找到了起跑线的秘密,运动员们的比赛应该把起跑线依次提前7.85米才公平。
三、巩固练习、实践应用(3分钟)
400米的跑步比赛,道宽为1.5米,起跑线该依次提前多少米?
四、拓展延伸、自我评价(5分钟)
1、解决问题:在运动场上还有200米的比赛,道宽为1.25米,起跑线又该依次提前多少米?
2、课后自学课本第45页你知道吗?
五、全课小结:
谈一谈,这节课你有什么收获?
六、布置作业
人教版六年级下册数学教案 篇二
设计说明
“反比例”是在学生学习了“比和比例”和“正比例”的基础上进行教学的。本着“学生是学习的主体”的理念,在本节课的教学中,最大限度地为学生提供了自主探究的机会。
1.借助定义、实例,渗透函数思想。
教学伊始,借助正比例的意义和生活实例,使学生进一步体会函数思想,充分理解成正比例关系的两种量的比值不变的特点,为学生探究成反比例关系的两种量之间的关系以及理解反比例的意义和特点奠定良好的基础。
2.借助具体情境,在观察、讨论中发现规律。
教学中,通过具体情境,引导学生在观察、讨论中发现“把相同体积的水倒入底面积不同的杯子中,水面的高度不同”及“杯子的底面积×水的高度=水的体积”这一规律,使学生通过自己的努力,归纳、概括出反比例的意义及特点。
3.借助已有的学习经验总结反比例关系式。
因为正、反比例体现的都是两种相关联的量之间的关系,且正比例关系表达式学生已经掌握,所以在总结反比例关系表达式时,教师要引导学生根据已有的经验自己总结出反比例关系表达式,体验成功的喜悦。
课前准备
教师准备 PPT课件
学生准备 玻璃杯 直尺 水 实验记录单
教学过程
⊙复习引入
1.复习。
课件出示:一个圆柱形水箱,底面积是0.78平方米,高是1.2米,这个水箱能装水多少立方米?
(1)引导学生独立解决问题。
(2)提问:你是根据什么公式进行计算的?
预设
生:圆柱的体积=底面积×高。
(3)师追问:圆柱的体积、底面积和高之间还有怎样的数量关系呢?在什么情况下其中的两种量成正比例关系?
预设
生1:底面积=圆柱的体积÷高,高=圆柱的体积÷底面积。
生2:如果底面积一定,圆柱的体积与高就成正比例;如果高一定,圆柱的体积与底面积就成正比例。
2.引入课题。
如果圆柱的体积一定,那么底面积与高又成怎样的关系呢?这就是本节课我们要学习的内容。(板书课题:反比例)
设计意图:通过复习有关圆柱的体积问题以及列举圆柱的体积、底面积和高之间的关系,在培养学生思维完整性的同时,为新知的学习作铺垫。
⊙探究新知
1.在具体情境中初步感知成反比例关系的量。
(1)课件出示教材47页例2,引导学生结合问题进行观察。
师:观察情境图,理解图意后,观察下表,先一行一行地观察,再一列一列地观察,并思考下面的问题。
杯子的底面积与水的高度的变化情况如下表。
杯子的底面积/cm2
六年级数学下册教案 篇三
教学目标
1、进一步理解采用法定计量单位的重要意义。
2、复习长度、面积、体积、质量、时间单位。
3、复习各种计量单位间的进率。
教学重点
指导同学汇总整理学过的计量单位,牢固掌握各种计量单位及单位间的进率。
教学难点
掌握各种计量单位的实际大小及进率,正确使用计量单位。
教学步骤
一、直接导入。
提问导入:同学们,改革开放以来,我国采用了国际上通用的法定计量单位,你能说说这是为什么吗?(同学自由回答)
教师归纳:我国从1990年起废除原来的计量单位,采用国际上通用的法定计量单位,目的是为了便于国际交流,扩大开放,不断发展面向世界的外向型经济、因此,我们要认真学好有关计量的知识、这节课我们整理和复习量的计量。(教师板书课题)
二、归纳整理。
(一)启发同学回忆:我们学过了哪些量的计量?
教师板书:
长度质量时间
面积
体积(容积)
(二)复习长度、面积、体积单位及进率。
1、启发同学回忆:已学过的长度单位有哪些?每个长度单位实际有多大?相邻单位间的进率是多少?
2、启发同学回忆:已学过的面积单位有哪些?每个面积单位实际有多大?相邻单位间
的进率是多少?
同学讨论:相邻面积单位之间的进率为什么都是100?
师生归纳:面积单位是根据长度单位确定的,长度单位间的进率是10,面积单位间的进率就是100。
3、启发同学回忆:已学过的体积(容积)单位有哪些?相邻单位间的进率是多少?
同学思考:相邻体积单位之间的。进率为什么是1000?
教师说明:面积单位体积(容积)单位都是依据长度单位确定的,长度单位间的进率是10,面积单位间的进率是100,体积(容积)单位间的进率是1000,要注意它们之间的联系与区别,在实际计量时做到准确无误。
4、练习。
(1)在()里填上适当的计量单位名称。
一枝铅笔长176()一个篮球场占地420()
一张课桌宽52()一个火柴盒的体积是21()
一间教师的面积是48()一种保温瓶的容量是2()
(2)一个正方体的体积是1立方米,它的棱长是多少?它的每个面的面积是多少?
(3)用棱长1厘米的小正方体木块堆成一个棱长1分米的正方体,需要多少块?把这些小正方体木块排成一行,有多长?
(三)复习质量单位。
1、启发同学回忆:学过的质量单位有哪些?它们之间的进率是多少?(并填写下表)
2、练习。
①10麻袋大米约1()
②l个鸡蛋约6.5()
③1棵白菜约2.5()
④1名六年级同学体重是40()
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。