古今来许多世家,无非积德。天地间第一人品,还是读书。下面是高考家长帮为您整理的一元一次方程数学教案(优秀3篇),希望能够为您的写作带来一些参考。
元一次方程 篇一
一、素质教育目标
(一)知识教学点
1.要求学生学会用移项解方程的方法。
2.使学生掌握移项变号的基本原则。
(二)能力训练点
由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力。
(三)德育渗透点
用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想。
(四)美育渗透点
用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美。
二、学法引导
1.教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛。
2.学生学法:练习→移项法制→练习
三、重点、难点、疑点及解决办法
1.重点:移项法则的掌握。
2.难点:移项法解一元一次方程的步骤。
3.疑点:移项变号的掌握。
四、课时安排
3课时
五、教具学具准备
投影仪或电脑、自制胶片、复合胶片。
六、师生互动活动设计
教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成。
七、教学步骤
(一)创设情境,复习导入
师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题。
(出示投影1)
利用等式的性质解方程
(1) ; (2) ;
解:方程的两边都加7, 解:方程的两边都减去 ,
得 , 得 ,
即 . 合并同类项得 .
【教法说明】通过上面两小题,对用等式性质解方程进行巩固、回忆,为讲解新方法奠定基础。
提出问题:下面我们观察上面方程的变形过程,从中观察变化的项的规律是什么?
(二)探索新知,讲授新课
投影展示上面变形的过程,用制作复合式运动胶片将上面的变形展示如下,让学生观察在变形过程中,变化的项的变化规律,引出新知识。
(出示投影2)
师提出问题:1.上述演示中,两个题目中的哪些项改变了在原方程中的位置?怎样变的?
2.改变的项有什么变化?
学生活动:分学习小组讨论,各组把讨论的结果派代表上报教师,最好分四组,这样节省时间。
师总结学生活动的结果:大家讨论的结论,有如下共同点:①方程(1)的已知项从左边移到了方程右边,方程(2)的 项从右边移到了左边;②这些位置变化的项都改变了原来的符号。
【教法说明】在这里的投影变化中,教师要抓住时机,让学生发现变化的规律,准确掌握这种变化的法则,也是为以后解更复杂方程打下好的基础。
师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项。这里应注意移项要改变符号。
(三)尝试反馈,巩固练习
师提出问题:我们可以回过头来,想一想刚解过的两个方程哪个变化过程可以叫做移项。
学生活动:要求学生对课前解方程的变形能说出哪一过程是移项。
【教法说明】可由学生对前面两个解方程问题用移项过程,重新写一遍,以理解解方程的步骤和格式。
对比练习:(出示投影3)
解方程:(1) ; (2) ;
(3) ; (4) .
学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解。
师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、合并同类项、检验。)
【教法说明】这部分教学旨在于使学生学会用移项这一手段解方程的方法,通过学生动手尝试,理解解方程的步骤,从而掌握移项这一法则。
巩固练习:(出示投影4)
通过移项解下列方程,并写出检验。
(1) ; (2) ;
(3) ; (4) .
【教法说明】这组题训练学生解题过程的严密性,故采取学生亲自动手做,四个同学板演形式完成。
(四)变式训练,培养能力
(出示投影5)
口答:
1.下面的移项对不对?如果不对,错在哪里?应怎样改正?
(1)从 ,得到 ;
(2)从 ,得到 ;
(3)从 ,得到 ;
2.小明在解方程 时,是这样写的解题过程: ;
(1)小明这样写对不对?为什么?
(2)应该怎样写?
【教法说明】通过以上两题进一步印证移项这种变形的规律,即“移项要变号”。要使学生认清这里的移项是把某项从方程的一边移到另一边而不是在同一边交换位置,弄懂解方程的书写格式是方程在变形,变形时保持“左右两边相等”这一数学模式。
(出示投影6)
用移项解方程:
(1) ; (2) ;
(3) ; (4) .
【教法说明】这组题增加了难度,即移项变形是左右两边都有可移的项,教学时由学生思考后再进行解答书写,可提醒学生先分组讨论,各组由一名同学叙述解题过程,教师归纳出最严密最精炼的解题过程,最后全体学生都做这几个题目。
学生活动:5分钟竞赛:规则是分两大组,基础分100分,每组同学全对1人加10分,不全对1人减10分,互相判题,学习委员记分。
(出示投影7)
解下列方程:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6) .
【教法说明】这组题用竞赛的形式,由学生独立完成是为了培养学生的解方程的速度和能力,同时激发学生的竞争意识,从而达到调动全体学生参与的目的,而互相评判更增加了课堂上的民主意识。
(五)归纳小结
师:今天我们学习了解方程的变形方法,通过学习我们应该明确两个方面的问题:①解方程需把方程中的项从一边移到另一边,移项要变号这是重点。②检验要把所得未知数的值代入原方程。
八、随堂练习
1.判断下列移项是否正确
(1)从 得 ( )
(2)从 得 ( )
(3)从 得 ( )
(4)从 得 ( )
2.选择题
(1)对于方程 ,移项正确的是( )
A. B.
C. D.
(2)对于方程 移项正确的是( )
A. B.
C. D.
3.用移项法解方程,并写出检验
(1) ;
(2) ;
(3) .
九、布置作业
课本第205页A组1.(1)(3)(5).
十、板书设计
随堂练习答案
1.× × × √
2.D C
3.略
作业 答案
(5)
解:移项得
合并同类项得
检验:略
探究活动
运动与学习成绩
班里共有25个学生,其中17人会骑自行车,13人会游泳,8人会打篮球。全部掌握这三种运动项目的学生一个也没有。在这25个学生中,有6人数学成绩不及格。而参加以上运动的学生中,有2人数学成绩优秀,没有数学不及格的(学习成绩分优秀、良好、及格、不及格).问:全班数学成绩优秀的学生有几名?既会游泳又会打篮球的有几人?
参考答案:
全班数学成绩及格的学生有25-6=19(人),参加运动的人次共有17+13+8=38,因没有一个学生掌握三个运动项目,且数学没有不及格的,所以参加运动的学生共19人。每人掌握两个运动项目,19人中有17个会骑自行车,只有两个学生同时会游泳又会打篮球。
参加运动的共19人,且数学成绩全部及格,不参加运动的数学全不及格,所以全班数学成绩优秀的学生
有2名。
元一次方程教学反思 篇二
20xx年学初开学已经三个礼拜了,我和同学们共同学习了第七章一元一次方程的教学内容。在解一元一次方程时,同学们出现了各种各样的问题,现就同学们在解一元一次方程时时常容易犯的错误进行列举一下。
有的同学在移项时容易忘记改变符号,导致结果错误;有的同学在合并同类项时出项这样那样的错误;有的同学在解带有分母的一元一次方程时去分母显得有困难,尤其是各项中有一项为单独一个数字1时去分母往往就把这项忘记乘以公分母了;还有的。同学在遇到具有百分之几的时候显得手足无措,不知道把百分号化成小数来计算,尤其是遇到x%时就更蒙了。
针对这些问题我除了自己出了一些相关的习题让同学们加强训练并讲解之外,还组织每个小组的组长有针对性的给同学们出题并随时指导,采取兵练兵的方案,这样同学们对解一元一次方程有了很大的进步。同学们由怕解方程慢慢的开始喜欢解方程了,同学们显得很有自信心,对此我感觉非常欣慰。
在今后的教学中我会随时搜集同学们容易出现问题的地方,强化讲解,对症下药,让同学们都能越学越有乐趣,越学越有自信。当然让每一个同学都能学的好,学的快,还不是一个简单的问题,我会继续努力!
初中七年级上册数学《解一元一次方程》教案优质 篇三
教学目标
1.知识与技能
(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;
(2)能把一些立体图形的问题,转化为平面图形进行研究和处理,•探索平面图形与立体图形之间的关系。
2.过程与方法
(1)经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力。
(2)经历问题解决的过程,提高解决问题的能力。
3.情感态度与价值观
(1)积极参与教学活动过程,形成自觉、认真的学习态度,•培养敢于面对学习困难的精神,感受几何图形的美感;
(2)倡导自主学习和小组合作精神,在独立思考的基础上,•能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。
重、难点与关键
1.重点:从现实物体中抽象出几何图形,•把立体图形转化为平面图形是重点。
2.难点:立体图形与平面图形之间的转化是难点。
3.关键:从现实情境出发,通过动手操作进行实验,•结合小组交流学习是关键。
教具准备
长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个)教学挂图
教学过程
一、引入新课
1.打开课本,看第117页城市的现代化建筑,学生认真观看。
2.提出问题:有哪些是我们熟悉的几何图形?
二、新授
1.学生在回顾刚才所看的图后,充分发表自己的意见,并通过小组交流,补充自己的意见,积累小组活动经验。
2.指定一名学生回答问题,并能正确说出这些几何图形的名称。 学生回答:有圆柱、长方体、正方体等等。
教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征。
3.立体图形的概念。
(1)长方体、正方体、球、圆柱、圆锥等都是立体图形。
(2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)
(3)用教学挂图展示图4.1-4
(4)提出问题:在挂图中中,包含哪些简单的平面图形?
(5)探索解决问题的方法。
①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案。
②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等。
4.平面图形的概念。
长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形。 注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形。
5.立体图形和平面图形的转化。
(1)从不同方向看:出示课本图4.1-7(1)中所示工件模型,•让学生从不同方向看。
(2)提出问题。
从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?
(3)探索解决问题的方法。
①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形。
②进行小组交流,评价各自获得的结论,得出正确结论。 ③指定三名学生,板书画出的图形。
6.思考并动手操作。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。