1. 主页 > 范文大全 >

三年级数学《平均数》教学设计(最新7篇)

作为一名教师,有必要进行细致的教学设计准备工作,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那么你有了解过教学设计吗?高考家长帮小编精心为朋友们分享了三年级数学《平均数》教学设计(最新7篇),希望能够帮助到朋友们。

三年级数学《平均数》教学设计 篇一

教学内容:

冀教版小学数学三年级下册53页例1

教材简析:

教材从学生最熟悉、最感兴趣的投球游戏入手,将生活素材贯穿于整个教学活动的始终,始终遵循数学与生活密不可分的理念。众所周知,从《教学大纲》到《课程新标准》“平均数”也经历了从应用题到统计学的统计量的迁移,我更觉得这才是平均数的真正回归,因此我在设计本节教学时着重体现它的意义,深挖其价值和产生的必要性。

学情分析:

之前学生虽然对统计有了粗浅的认识,那也只是停留在简单的统计数量、比较多少、再或者就是两个统计量的累加。此时的学生对于统计中的一个很重要的统计量——平均数的认知就感觉很抽象,学习时必须要依据实际经验和亲身经历,借助具体形象的支持,对平均数有初步的了解并到认可。根据三年级学生好胜心强、求知欲旺,有一定的探索意识,故在教学过程中设计了多个学生熟知可操作的活动,以便理解和总结,教师作为参与者、合作者从而引导探索并感悟,以便达标。

设计理念:

兴趣是最好的老师,学生的学习必须建立在有趣的基础上,学生富于挑战,乐于争胜,因此设计学生感兴趣的、或参与、或经历、或pk等活动。本着参与远远高于旁听的效果,尽量多的增加参与度和参与效果,在新课标的理念下,结合我校三三三高效课堂模式设计了“创设情境、自主学习、合作探究、理解感悟、应用巩固、堂清检测”这样的学习过程。

学习目标:

1、引导学生在实际生活情景中理解平均数产生的必要性及平均数的意义。

2、理解平均数算法的多样性,养成从数学角度思考问题的习惯。

3、学会与他人合作交流,获得积极的数学学习的情感。

教学重点:

1、理解平均数的意义和产生的必要。

2、理解平均数的算法的多样性。

教学难点:

平均数的区间范围以及它的“虚拟性”

易考点:

平均数的计算。

易错点:

平均数的计算公式必须是总数除以与之对应的总份数。

易混点:

已知甲数比乙数多几,使两数相等,则甲数给乙数几个?

一、综合预设目标、学情分析。

学习目标:

1、引导学生在实际生活情景中理解平均数产生的必要性及平均数的意义。

2、理解平均数算法的多样性,养成从数学角度思考问题的习惯。

3、学会与他人合作交流,获得积极的数学学习的情感。

学情分析:之前学生虽然对统计有了粗浅的认识,那也只是停留在简单的'统计数量、比较多少、再或者就是两个统计量的累加。此时的学生对于统计中的一个很重要的统计量——平均数的认知却很抽象,必须要依据实际经验和亲身经历,借助具体形象支持,对平均数有初步了解并认可。

二、课堂教学活动设计、指导方案

知识层面、时间预设

教师行为预设

学生行为预设

设计意图

一、激趣导入(5分钟)

二、自学交流+展示+感悟(30分钟)

1、自主学习:仔细看情境图,认真找寻信息,发现总结新信息,或提出疑惑……先是对子交流,然后有问题的组内解决。

2、通过活动,或参与,或经历,展示、争论、比较、总结、感悟出新知。

三、检测(5分钟)

学生认真审题、仔细推敲,回顾、理解并巩固平均数的意义及特点。

四、堂清(5分钟)

通过总结和课后练习,同学们会对平均数的意义、特点以及计算有更进一步的理解和巩固。

1、今早听到一报道:说某市统计三年级女生身高普遍高于男生:我也想测测咱们班学生身高情况:请出我们班最高的3名男生和三名女生,测量他们的身高。如何确定男生高还是女生高呢?

2、看来同学们评判得很正确,有没有信心再来当一次真正的裁判呢?自学课本53页,努力找寻并挖掘数学信息和问题,如何解决?(因为学生对投球可能了解不多,老师可以顺势引导:据我所知,投球时,以10个为标准,投进篮筐为投中,当然这需要一定的技术。)

3、自由发言并将加分记录到评价栏中。

4、那组成绩好呢?

5、通过学生说出要求平均数,板书课题——《平均数》并简单的告诉同学们今天的学习目标并板书{逐渐补充其意义和算法。

6、找临近8位同学上讲台排成不同学生数的两行,让学生想办法排成学生数相同的两行。(老师在黑板上草书列表比较,表格内项目包括每组的最大数、最小数、以及待填充的平均数)

7、如果学生没能交流出“移多补少”时,教师指出:原来两行学生数不一样多时,经过移多补少,使两行的学生同样多,这种把几个不同数经过移多补少,得到的相同数就是这几个不同数的平均数。根据学生的疑问,从而引出平均数实际是一个虚数,并非一个实实在在的数,比如:某市统计家庭拥有孩子数目,结果平均每个家庭一个半孩子(因为此时学生还未涉及小数,只能说一个半了),你说谁家有一个半孩子呀!要么没有,要么有一个,再要么有两个?……因此平均数它既不是某一个具体的数,只能反应一组数据的一般情况。(根据同学们的总结和理解,顺势板书:虚数反应一般情况平均数在本组数据中的取值区间:比最大数小,又比最小数大)

8、要求学生迅速有序的摆放教科书。

9、解决53页两组投球那组优胜的问题时刻提醒同学们:注意平均数的取值区间、“总合均分”——总和不变均分相应的份数。据此一定要先估后算哟!(同时将刚刚学生用平均数可以比较两组的成绩,也只有用平均数来解决这个总数不同、份数也不同的问题——板书:比较和平均数产生的必要性)

10、小老师读题——检测题

11、学生自由发言总结今天收获。平均数的用处可真大呀!我们还可以根据平均数进行预测——预测输赢、预测天气等,这对我们的生活有一定的指导作用,日常生活中处处有数学,只要我们多留心,我们的数学本领就会越来越大!

12、课末,让学生当评委给自己的这节课打分,最后计算出自己所在组的平均分,(能明白并能叙述基础知识得6分、四个检测题全对得4分)争取每组的平均分不少于8分哟!

《平均数》 教案 篇二

教学内容:

教学目标:

1.通过观察、比较、计算等方法,理解平均数含义。

2.引导学生探索求平均数的一般方法。

3.理解平均数的特征,体验平均数的价值。

教学重点:

理解平均数的含义。

教学难点:

理解平均数的特征。

教学过程:

一、谈话引入

二、探究

1.平均数的意义

出示:某工厂两个生产小组进行制作海宝比赛。

每位工人1时加工情况如下:

第一组

第二组

1)你认为哪一组工人获胜?

2)比总数公平吗?怎么比比较合理?

3)你有什么办法能知道平均每人加工的个数?(揭题:平均数)

a.用移多补少(根据学生的回答演示课件)

b.列式计算

(7+8+6)3=7(个)

(3+7+4+10)4=6(个)

4)观察:6是哪个工人加工的个数?

5)归纳:在人数不相等的情况下,比哪一组的成绩好,一般比平均结果比较公平。

2.平均数的概念 出示条形统计图:上海世博会9月1日至9月5日参观人数统计图。

1)尝试计算

2)观察交流:什么是平均数?

3)归纳:将一组资料中数值的总和除以这组数值的个数,所得到的数叫做这组数值的平均数。

3.平均数的计算方法:平均数=总和个数

4.平均数的特征 出示10月1日至10月5日参观人数统计图

1)估计平均数

2)计算、交流、分析

3)观察讨论:观察一下这几个平均数,你发现了什么? 归纳:也就是说,一组数据的平均数,它的大小是在这一组数据的最小值与最大值之间。

4)思考:9月份5天的'平均数代表什么?是某一天入园的人数吗?你怎样理解这个数?10月份的呢?这两个39万人的意义相同吗?

归纳:所以说平均数并不代表某一个具体的数量,它指的是一组数据的总体水平。

4.小结:通过刚才的学习,

我们知道了什么叫平均数,也知道通常情况下可以用总和除以个数来计算平均数,一般情况下,一组数据的平均数,它的大小是在这一组数据的最小值与最大值之间;平均数并不代表一个具体的数量,它指的是一组数据的总体水平。

归纳总结 篇三

1、通过今天的分一分,算一算,同学们有什么收获?

2、现在谁来说一说四(1)班和四(2)的“平均分”是怎么回事?

板书设计:

平均数

男生 女生

6+9+7+6=28(个) 10+4+7+5+4=30(个)

28÷4=7(个) 30÷5=6(个)

平均数: 7 平均数: 6

教学难点: 篇四

平均数概念的引入及平均数的计算。

综合练习 篇五

1.做练习二十三第11题。

指名一人板演,其余学生做在练习本上。集体订正,让学生说说是按怎样的数量关系列算式的,(总路程除以时间等于平均速度)每一步求的什么数量。追问:为什么总路程是1402?为什么时间是4.5加5.5的和?指出:解答时要认真看题,弄清题意,理解条件和问题的意思。

2.做练习二十三第12题。

让学生默读题目。提问:三人的平均成绩是110分是什么意思?怎样才能求出另一位同学的成绩是多少分?指名学生口答算式,老师板书。追问:1103表示什么?为什么三人的总分数要用110乘3?

3.做练习二十三第13题。

指名学生说一说统计图的意思。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的。追问:为什么要用12做除数?说明:要根据问题要求的结果,确定应该用哪个量做被除数,哪个量做除数。

4.做练习二十三第14题。

让学生观察统计图。提问:你从图里了解了哪些情况?想到了哪些问题?请大家在小组里估计一下,平均每月水费、电费大约各要多少元,并且说说怎样想的。指名学生交流估计的结果和想法。再让学生求出平均数。

平均数 篇六

教学内容:p92-94教材简析:这部分教材是在学生已具有一定的收集和整理数据能力的基础上教学比较简单的求平均数问题,其中包括平均数的意义和算法。教材选择一个小组男、女生进行套圈比赛的情景作为教学素材,分两个层次安排教学内容。第一层次先放手让学生从多种角度用数据描述各组套中的情况,在尝试中促使学生产生求平均数的心理需求。第二层次则倡导让学生自主探索平均数的意义和计算方法,然后安排交流。在第二层次里有两个重点:一是通过条形统计图中涂色方块的移多补少,直观地揭示平均数的意义。二是揭示“先求和再平均分”的求平均数的一般方法。“想想做做”中既安排了巩固求平均数计算方法的练习,也安排了加深对平均数意义的理解的练习。教学目标:1、使学生在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。3、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,建立学习数学的信心。教学重点:理解平均数的意义,学会求简单数据的平均数。教学准备:光盘教学过程:一、创设情境,提出问题。1、谈话:同学们,你们玩过套圈的游戏吗?(boys and qirls, have you ever play games like this ,look…)2、谈话:看,三年级第一小组的同学进行了男、女生套圈比赛,每人套15个圈。下面的统计图表示他们套中的个数。(光盘出示)3、从图中你知道了些什么?(what do you know in the picture?)和同桌说一说,指名回答,相机板书:(tell your partner)who want to say? tell us please .男生:6+9+7+6=28(个)女生:10+4+7+5+4=30(个)4、提问:男生套得准一些还是女生套得准一些?男生套中28个,女生套中30个。是不是女生套得准一些呢?女生中有人最多套中10个。是不是女生套得准一些呢?are you agree? is it fair?指名回答,追问:那怎样比才公平呢? 二、自主探索,解决问题。1、提问:怎样才能说明男生套得准一些还是女生套得准一些呢?小组讨论,指名回答。(please share your method with your partner,ok?)(要分别求出男生、女生平均每人套中多少?)2、提问:男生平均每人套中多少个?小组再讨论,(first, you can discuss in your group; then you can share your method with your partner.)交流:please tell us your method.(1)移多补少法。提问:怎么移?移动以后的每人7个表示什么意思?谁能给这个方法起个名字?(2)先求和,再求平均数法。(板书:28/4=7(个))你是怎么想的,为什么除以4?3、男生平均每人套中7个,是不是每人都套中7个?4、提问:观察平均数“7”和每个男生套中的个数,你发现了什么?(平均数比每人套中的个数中最大的数小,比最小的数大。)5、那你能根据这个规律来猜猜看女生平均每人套中多少个?指名回答。can you guess?谁猜得最准确呢?你是怎么知道的?把你的方法和你的同桌说一说。who is right? how do you know?板书:30/5=6追问:为什么除以5?6、提问:现在你知道男生套得准,还是女生套得准一些了吗?7、小结:刚才我们学会了用移多补少法和先求和、再求平均数的方法计算平均数,准确地知道了男生套得准一些还是女生套得准一些。当解决问题的方法有多种时,我们要针对不同的实际情况选择最恰当的方法。 三、练习巩固,学以致用1、做“想想做做”第1题。出示三筒铅笔。谈话:你能知道平均每个笔筒里有几枝铅笔吗?先分别数数。提问:怎样求平均每个笔筒里有多少枝?同桌讨论,指名回答。谈话:这两种方法都能得出平均数,你喜欢用哪一种,就用哪一种。2、做“想想做做”第2题。指名板演,其余学生做在练习本上。集体校对讨论:平均数“18”和每根丝带的长度有什么关系?3、做“想想做做”第3题。光盘出示题目。在小组内讨论。指名回答,要求说出理由。4、做“想想做做”第4题。(1)仔细观察统计图,互相说说你知道些什么。(2)指名回答问题(1)。(3)把第(2)个问题解答在练习本上。(4)提问:你还能提出什么问题? 四、全课总结1、这节课学习了什么知识?板书:平均数你对平均数有什么看法?你能用今天学的知识解决生活中的问题吗?2、(手指一组同学)提问:要想知道这一组同学的平均身高怎么办?指名回答。请同学们课后去量一量自己的身高,在小组里交流并求出你们小组成员的平均身高。

《平均数》教案 篇七

第一步:课堂引入

设计的几个问题如下:

(1)、请同学读P140探究问题,依据统计表可以读出哪些信息

(2)、这里的组中值指什么,它是怎样确定的?

(3)、第二组数据的频数5指什么呢?

(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。

第二步:应用举例:

例1:为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,得到下表:

载客量/人组中值频数(班次)

1≤x<21113

21≤x<41315

41≤x<615120

61≤x<817122

81≤x<1019118

101≤x<12111115

这天5路公共汽车平均每班的载客量是多少?

分析:根据上面的频数分布表求加权平均数时,统计中常用的各组的组中值代表各组的实际数据,把各组频数看作相应组中值的权。例如在1≤x<21之间的载客量近似地看作组中值11,组中值11的权是它的频3,由此这天5路公共汽车平均每班的载客量是:

思考:从表中,你能知道这一天5路公共汽车大约有多少班次的载客量在平均载客量以上吗?占全天总班次的百分比是多少?

分析:

由表格可知,81≤x<101的18个班次和101≤x<121的15个班次共有33个班次超过平均载客量,占全天总班次的百分比为33/83等于39、8%

活动:使用计算器说明,操作时需要参阅计算器的使用说明书,通常需要先按动有关键,使计算器进入统计状态;然后依次输入数据x1,x2,…,xn,以及它们的权f,f2,…,fn;最后按动求平均数的功能键(例如键),计算器便会求出平均数的值。

例2:下表是校女子排球队队员的年龄分布:

年龄13141516

频数1452

求校女子排球队队员的平均年龄(可使用计算器)。

答:校女子排球队队员的平均年龄为14、7岁

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。