作为一名默默奉献的教育工作者,有必要进行细致的教案准备工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么写教案需要注意哪些问题呢?高考家长帮为小伙伴们带来了倒数的认识优秀教案设计【优秀3篇】,希望能够对您的写作有一些启发。
倒数的认识优秀教案设计 篇一
教学目标:
1.通过自学、交流、错例讨论评析经历倒数的意义这一概念的形成过程,并理解倒数的意义。
2.通过写一写、说一说的形式,引导学生观察并寻找求一个数的倒数的方法。
3.培养学生推理和概括能力。
教学重点:理解倒数的意义,会求一个数的倒数。
教学难点:0为什么没有倒数。
教学过程:
设疑与探究:
师:同学们,我们今天要来学习一个新知识,学好〔kaoyantv.com〕了这个新知识能为我们后面分数除法的学习打下坚实的基础。一起来看看是什么新知识呢?请同学们翻开课本24页。(板书:倒数)请同学们带着下面几个问题先自学,看看你能自学到多少有关倒数的知识呢?把你学到的知识画下来。
①什么是倒数?(倒数的意义是什么?)
②怎样求一个数的倒数?(倒数有什么特点?)
③1的倒数是什么?0有倒数吗?为什么?
设计理念:这是一个新的概念,所以开课开门见山,强调概念的重要性,引起学生的重视,同时能直接进入新课的学习。另一方面,让学生带着问题自学文本。数学课程改革强调培养学生的自主学习能力,注重学生的自主发展,先学后教,在学生自学的基础上,教师再进行针对性教学。同时让学生带着问题去学,能够给自学作出一些指引。
反思:三个问题暗示了这节课学习的主要内容,能让学生仅仅围绕这几个问题去展开后面的学习。但是另一方面也限制了学生的思维,也许学生在自学的过程中会提出很多问题,老师可以从你能提出什么问题?你能解决什么问题?你还有哪里不明白?去引导,进而培养学生提出问题、解决问题和发现新问题的能力。课堂上围绕学生提出的问题去开展探究学习,能有效的利用课堂生成的动态资源,也能更好的开展课堂评价,这样的课堂会更活力。
(一)、揭示倒数的意义
1、自学文本,初步形成概念
学生自学文本,同桌交流。
2、探讨错题,理解概念
师:第一个问题,相信很多同学心里都已经有答案了。但是老师先要考一考你,请看下面的题。(判断,并说明理由)
①因为1/4+3/4=1,所以1/4和3/4互为倒数。( )
生:因为乘积是1的两个数叫做互为倒数,而这里是和是1。(板书乘积是1)
②因为1/24/33/2=1,所以1/2、4/3、3/2互为倒数。( )
生:因为倒数是两个数,而这里是三个数。(板书两个数)
③因为2/55/2=1,所以2/5是倒数。( )
生:因为倒数是两个数相互依存的关系。(板书互为倒数)
进一步形成概念,全班读一遍倒数的意义:乘积是1的两个数互为倒数。
设计理念:概念教学要把握概念本身的基本特性。要掌握倒数这个概念需要抓住三个特性:乘积是1、两个数、互为。学生通过初步的自学很难去准确把握这三点,因此设计这三个错例,旨在让学生充分把握这三个特性,进而形成和理解概念。
反思:对于什么是倒数?学生通过自学,肯定都没有问题,但是我没有(或者说不让)让他们回答这个问题,这样一下子抑制了他们想回答但是不能回答的情绪,转而先考一考你,吸引他们看问题,激发他们在判断的时候终于有话可说。这样很好的调动了学生的好胜心。但是在 互为的理解上,没有充分探讨,可以引导学生从下面两句话去理解:( )和( )互为倒数、( )是( )的倒数。
评价与生成:
3、多种练习,深化概念
(1)口头回答
3/4( )=1,( )6/5=1,7( )=1
设计理念:学生初步理解概念,需要一个逐渐消化的过程。设计这题一是给学生提供模仿的过程,二是能直观的把概念具体化。
(2)模仿创作
师:我们已经知道了什么是倒数,你能不能写出乘积是1的任意两个数?( )( )=1(生:能)我们就进行一个小小的比赛。请大家拿出堂上练习本,我给大家一分钟的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。(根据学生写的,选择性的板书4个,例如真分数的2/33/2=1,假分数的7/44/7=1,整数的61/6=1,小数的0.110=1。)
师:这么短的时间内就能写出这么多乘积是1的两个数,还是几种不同的类型,不错。 太厉害了!如果给你们充足的时间,你们还能写多少个这样的乘法算式?(生:无数个)
设计理念:学生有了第一题的具体直观练习,再通过比赛的形式鼓励学生进行模仿创作。因为每个学生创作的都不一样,这时老师可以有效的利用这些资源,为下面的观察倒数的特点和求各种类型的数的倒数的学习提供平台。
反思:在这一环节,学生都能写的是真分数的、假分数的和整数的,学生没有想到带分数的和小数的,这是我在课前就有思想准备的,于是我设计了下面师生互说互猜的环节,学生想不到的,可以由老师抛出问题让学生思考,这样有时候更能激发学生的思维。但是也有一个学生写的11=1是我没有想到的。其实学生能写出这个,就能为后面1的倒数是几找到答案。但是很可惜,我没有很好的处理这个式子的出现,也没有及时的对这位学生给出表扬,还是教学机智不够灵活。
(3)师生互说互猜
师:不过老师比你们更厉害。我不但能写出这么多算式,而且还能猜出你们写的是什么?只要你说出你写的第一个数,我就能猜出你写的第二个数是什么?生说师猜。反过来,师说生猜。(要求按照我说 ,我说 ,因为( )( )=1来回答,老师根据情况有选择的板书,例如板书小数的和倒数的。)
师:同学们,其实我们在创作和互说互猜的过程中,就是在找一个数的倒数。那通过练习和我们刚刚的自学谁来说说怎样找一个数的倒数呢?倒数有什么特点?
“倒数的认识”教学概念课设计理念:师生互说互猜的环节在前两个题的基础上,又是一个提升,同时师说生猜,老师能够根据学生没有想到的问题提出来,及时进行补充提升,进一步激发学生的思维。同时要求按照我说 ,我说 ,因为( )( )=1来回答,既能进一步抓住概念的本质,又能培养学生的推理和表达能力。通过口头回答模仿创作互说互猜的多种形式练习,由易到难逐步深化概念,符合学生的认知规律。
反思:在这一环节,出现了预想到的东西,也出现了很多散发性的东西。但是正是这些东西才构建了活力课堂的有效生成资源。同时一句老师比你们更厉害一下子触动了他们的情绪,很多学生表示我们也能,进而很好的调动了课堂。
(二)、探索求一个数的倒数的方法。
1、观察式子,发现特点,归纳方法
学生自己归纳方法:只要把分数的分子和分母交换位置。(板书)
追问:为什么求一个数的倒数,只要把分子和分母交换位置呢?
学生讨论得出:因为相乘时分子分母就可以完全约分,得到乘积是1。
师:如果我们用a/b表示一个分数,那么它的倒数就是b/a。(板书:a/b的倒数是b/a)
设计理念:概念首先是具体到抽象生成,进而是抽象到具体的上升。因此如果只是从概念本身出发去找特点很困难,于是让学生回到具体的式子,观察发现特点,归纳方法。同时追问为什么?引导学生抓住概念的本质乘积是1。充分体现方法都是以概念做基础,概念是构建理论大厦的基石。同时又把它具体到用字母表示,能更直观的体现倒数的特点。
反思:从学生自己归纳方法,到老师在此基础上进一步提升到用字母表示,能让学生更直观的发现倒数的特点。但是也有一点是没有处理好,因为字母可以表示任何数,应该写明a、b,这样就更严谨了。
2、解疑难点(求整数、带分数,小数的倒数)
师:老师还有几个问题,你们能帮帮老师吗?怎么求下面这几个数的倒数?
4?(生:把整数看作分母是1的分数)
1又3/7呢?(生:先化成假分数)
0.5呢?(生:化成分数)
老师根据学生的回答,板书具体的例子。
3、师:那1的倒数是几呢? 0有倒数吗?为什么?
生1:1的倒数是1,因为11=1;0没有倒数,因为0( )=0。
4、师生共同小结方法:求一个数(0除外)的倒数,只要把分子和分母交换位置。
生齐读求一遍数倒数的方法。
设计理念:当学生不能提出新问题的时候,老师可以转变角色,提出问题,引导学生新的思考。
反思:因为有了前面概念和方法较为抓实的掌握,学生在这一环节能很快的找到方法,接下来就是加强练习了。
运用与分享:
师:我们学习到了那么多倒数的知识,赶紧去做一些练习吧。
1、课本24页做一做:写出下列各数的倒数。
4/11,16/9,35,7/8,4/15
(规范:( )的倒数是( )。)
2、填空:
①7( )=15/2( )=()3又2/3=0.17( )=1
②一个数和它倒数的和是2,这个数是( )
③最小的质数的倒数是( )?
设计理念:两个练习由易到难,既能检查学生对基础知识和方法的掌握程度,也能提高学生运用知识和方法的能力。
反思:第1题的设计缺乏针对性,例如前面讲到的带分数和小数的没有。同时在规范书写上,好多学生出现问题,例如 4/11=11/4, 4/11 11/4,4/1111/4。说明了前面教学在书写规范上的疏忽,但是也正是由于这些暴露出来不规范的书写,通过师生之间的交流和纠正,更进一步加深了学生对书写规范的印象。
小结:
师:同学们通过今天的学习,你学到了什么?还有什么问题?
设计理念:学生的分享过程是学生重整和提炼知识的过程,同时给学生质疑的机会,既能发现学生还存在的问题,也能更好的为后面的学习做好铺垫和研究。
板书设计:
倒数的认识
乘积是1的两个数互为倒数 2/33/2=1
分子和分母交换位置 7/44/7=1
a/b的倒数是b/a 61/6=1
1的倒数是1(11=1) 1又3/7=10/7, 10/77/10=1
0的倒数是0(0( )=0) 0.1=1/10,1/1010=1
倒数的认识优秀教案设计 篇二
教学内容倒数的认识
教学目标
1.通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2.使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
3.通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
教学重难点
教学重点:理解倒数的意义,学会求倒数的方法。
教学难点:发现倒数的一些特征。
教具准备课件
设计意图
教学过程
特色设计
通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。
一、猜字游戏引入新课
找找下面文字的构成规律
呆———杏 土———干吞———吴
按照上面的规律填数
——( ) ——( ) ——( )
能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数
二、新知探究
(一)探究讨论,理解倒数的意义。
1.课件出示算式。
开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。
我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
2.出示倒数的意义:乘积是1的两个数互为倒数。
3.你是怎样理解互为倒数的呢?能举例吗?
(二)深化理解。
1.乘积是1的两个数存在着怎样的倒数关系呢?
2.互为倒数的两个数有什么特点?
3.想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?
因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
又因为0与任何数相乘都不等于1,所以0没有倒数。)
(三)运用概念。
1.讨论求一个数的倒数的方法。
出示例2:写出其中3/5、7/2两个分数的倒数。
学生试做讨论后,教师将过程。
小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)
2.怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)
三、巩固练习
(一)完成教材第28页的“做一做”
(二)完成教材第29页练习六的第1-5题。
四、课堂小结
今天我们学习了有关倒数的哪些新知识?
倒数的认识优秀教案设计 篇三
教学目标:
1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。
2、培养学生的数学思维。
教学重点:理解倒数的意义,求一个数的倒数。
教学难点:,从本质上理解倒数的意义。
教学过程:
一、呈现数据,先计算,再观察发现。
1、出示:3/8×8/37/15×15/7 5×1/5 0.25×4
2、计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)
二、交流思辨,抽象概念。
1、汇报。乘积都是1。
2、你能根据上面的观察写出乘积是1的另一个数吗?
3/4×( )=1 ( )×9/7=1
说说你是怎样写得,有什么窍门?
你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数)
你是怎样想的?如0。5、1.7
3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。
4、让学生说说上面的数(用两种说法)。
5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。
学生讨论:分数的分子分母调了一下位置;
师:那么5×1/5 0.2×5乘积也是1哟!怎么?把整数和小数也化成分数。
6、沟通:分子分母倒一下跟乘积是1有联系吗?
7、现在你对倒数有了怎样的认识?
三、求一个数的倒数。
1、找一个数的倒数。
5/11的倒数是( ),( )的'倒数是4/7,( )和15是互为倒数。
你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)
2、会找了吗?你能找到下列数的倒数吗?
3/5 4/9 6 7/2 1 1。25 1。2 0学生独立完成,然后交流。
(1)先说说你找到的这个数的倒数的,你是怎样找的?
(2)在找这些数的倒数中,你有什么想说的?
3、现在你对倒数有了什么新的认识?(0没有倒数,其他的数都有,1的倒数就是1。)
四、巩固深化。
1、做一做,写出下面各数的倒数,并说说你是怎样想的。
2、同桌互说倒数,你说一个数,让同桌说他的倒数。汇报几组。
3、判断题。书上第25页的第3题。
补充:(3)2/5×5/2=1,那么2/5是倒数。
(4)任何一个数都有倒数。
(5)如果一个数是A(0除外),那么这个数的倒数就是1÷A。
重点讨论:一个数的倒数一定比这个数小。
那么哪些数的倒数比原数小、大或相等。
4、完成作业:作业本第12页的1、2、3题。
五、课堂小结。今天这节课我们认识了倒数,你对倒数有什么认识?
《倒数》教学的想法和反思
今天学习《倒数》一课,内容简单,在其他数学版本中只是一个练习内容。倒数对于学生来说,虽然是新的,但是却相当地容易,只要会分数乘法、分数、小数的相关知识就行了。但是在教学中学生往往会产生这样的认识,倒数就是两个数分子分母倒一下就行了。这样就会带来对知识本质的偏离,只关注事物的表象。如何来改变学生这一认识呢?
结合自己的个人研究重点:
1、关注数学概念的内涵和外延的关系。
2、关注学生学习数学过程中的思维活动。
先给自己提几个问题?
1、倒数的内涵是什么?分子分母颠倒位置的外延与内涵的关系?如何处理两者的关系?
倒数的内涵是乘积是1的两个数。分子分母颠倒位置是倒数的外在表现,正因为分子分母颠倒了位置,那么他们的乘积就是1了,或者说因为乘积是1了,所以两个数成互为倒数就会产生这样现象。
内涵决定着外延,外延是内涵的一种表现,两者关系密切。如果让倒数的外延更丰富,那么对内涵的理解也就更充分。其实乘积是1和分子分母颠倒位置是有因果联系。
2、概念教学,一般是建立表象,然后逐步地去非本质的特征,抽象概括,最后变式巩固。但是由于倒数这一知识的本质是乘积是1,而学生往往会忽视这一本质,注重其分子分母颠倒位置的现象。因此要改变这样的教学过程。
于是,决定先直接对本质进行提练抽象(因为比较简单),然后在进一步观察现象、比较沟通(为什么叫倒数,是什么现象决定两个数的乘积是1)逐步地丰富,不断地理解本质。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。