1. 主页 > 范文大全 >

《平均数》教案(最新8篇)

在生活中,我们经常用到平均数的概念,那么大家知道怎么开展平均数的教学吗?高考家长帮小编精心为大家整理了《平均数》教案(最新8篇),希望能够帮助到小伙伴们。

《平均数》教案 篇一

第一步:课堂引入

设计的几个问题如下:

(1)、请同学读P140探究问题,依据统计表可以读出哪些信息

(2)、这里的组中值指什么,它是怎样确定的?

(3)、第二组数据的频数5指什么呢?

(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。

第二步:应用举例:

例1:为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,得到下表:

载客量/人组中值频数(班次)

1≤x<21113

21≤x<41315

41≤x<615120

61≤x<817122

81≤x<1019118

101≤x<12111115

这天5路公共汽车平均每班的载客量是多少?

分析:根据上面的频数分布表求加权平均数时,统计中常用的各组的组中值代表各组的实际数据,把各组频数看作相应组中值的权。例如在1≤x<21之间的载客量近似地看作组中值11,组中值11的权是它的频3,由此这天5路公共汽车平均每班的载客量是:

思考:从表中,你能知道这一天5路公共汽车大约有多少班次的载客量在平均载客量以上吗?占全天总班次的百分比是多少?

分析:

由表格可知,81≤x<101的18个班次和101≤x<121的15个班次共有33个班次超过平均载客量,占全天总班次的百分比为33/83等于39、8%

活动:使用计算器说明,操作时需要参阅计算器的使用说明书,通常需要先按动有关键,使计算器进入统计状态;然后依次输入数据x1,x2,…,xn,以及它们的权f,f2,…,fn;最后按动求平均数的功能键(例如键),计算器便会求出平均数的值。

例2:下表是校女子排球队队员的年龄分布:

年龄13141516

频数1452

求校女子排球队队员的平均年龄(可使用计算器)。

答:校女子排球队队员的平均年龄为14、7岁

平均数教学设计 篇二

教学内容:本课内容是人教版义务教育课程标准实验教科书四年级下册90页的内容。

学习目标分析:

1、认知目标:在具体问题情境中,感受求平均数是解决一些实际问题的需要,理解平均数的意义,初步学会简单的求平均数的方法。

2、能力目标:能运用平均数的知识解释简单的生活现象,解决简单的实际问题。积累分析和处理数据的方法,发展统计观念。

3、情感目标:增强与同伴交流的意识与能力,体会平均数在生活中的实际应用,积累学习数学的情感。

教学重、难点:

本节课的教学重点是理解平均数的含义和简单求平均数的方法。根据教材内容特点并结合四年级学生的认知基础,我将本课的教学难点定为:理解平均数在统计学上的意义和作用。

教学资源与工具设计

多媒体课件

教学过程

一、创设情景导入新课

1、 李明和王小飞两位同学要进行篮球的定点投篮比赛。

(课件出示)比赛规则:每人各进行3次1分钟的定点投篮,以每次投中个数为成绩。

(课件出示)比赛成绩统计图:

观察,你从统计图中知道了什么?

问题:谁赢了?为什么?

2、 王小飞再投一次,(课件出示成绩统计图)

问题:现在谁赢了?为什么?

发现问题:次数不同,比总数不公平。从而引出新课

二、新知探究

(一)、认识平均数

1、合作讨论

讨论问题:次数不同,比总数不公平时,该怎样比才公平?

2、 探索求平均数的方法

想一想:(以李明三次投球为例)能计算出李明三次投球成绩的平均数吗?

教师适时板书:(7+3+8)÷3

=18÷3

=6(个)

问题:(1)、“6”是哪几个数的。平均数?

(2)、我们是怎样求出7、3、8这三个数的平均数的?

小结方法:先求和再平分。

3、理解平均数的意义

(1)、引导:不计算,有办法找到李明三次投球成绩的平均数吗?

小组讨论

根据学生回答,课件出示移动变化的过程和结果。

说一说:根据刚才以多补少找平均数的过程,说说你对平均数的理解。

想一想:“6”表示的是李明三次都投中6个球吗?“6”表示什么?

在学生回答的基础上引导学生理解平均数的含义,认识平均数的特征。

3、 即时练习

学生独立完成求王小飞平均每次投中球的数量。

组织汇报,交流方法

结论:通过比较平均数,谁赢了?

通过这次比赛的经历,你有什么感受或体会?

4、 沟通平均数与生活的联系

想一想:在平时的生活中,你们见过平均数吗?

三、联系实际,拓展应用

1、判断下列说法正确吗?为什么?

(1)、不会游泳的小明身高140cm,他要到平均水深110cm的河里游泳不会有危险。

(2)、小明家去年4个季度的用水量分别是16吨、24吨、35吨、21吨。小明家平均每月用水量是(16+24+35+21)÷4=24(吨)。

2、你能想办法求出他的语文成绩吗?

(1)、先估测一下:语文成绩可能是多少?

(2)、同桌合作讨论。语文成绩究竟是多少?

四、拓展延伸

我校的舞蹈队参加市舞蹈比赛,评委亮分96、91、95、96、84、99、97,算一算,我校舞蹈队的最后所得平均分是多少?

激发认知矛盾:平均分是94分,可评委却宣布最后得分是95分。这是为什么?

师:请孩子们带着这个问题下课后自己去寻找答案。

板书设计:

《平均数》数学教案 篇三

一、教材分析

1、教材的地位和作用

在信息社会“数字”社会里,常常需要在不确定的情况下,根据大量纷繁杂芜的数据做出一个合理的决策,而统计正是通过对数据的收集、整理和分析,为人们更好地制定决策提供依据及建议,数学教案-平均数、中位数和众数(第二课时)]。平均数,众数,中位数是描述一组数据的集中趋势的3个统计特征量,是帮助学生学会用数据说话的基本概念。本节内容是继平均数学习之后的后续内容,既是对前

面所学知识的深化与拓展,又是联系现实生活培养学生应用数学意识和创新能力的良好素材。

2、课时安排和说明

参照新教材教师用书建议:“10.2平均数、中位数和众数”这一节准备安排三个课时,第一课时主要承上启下地回顾探索平均数的一些性质及简单应用。第二课时探索得到众数和中位数的概念,并会正确计算众数和中位数,了解平均数、众数和中位数的各自适用范围。 第三课时是练习实践课,目的是巩固和深化本节知识及会用计算器计算平均数,用计算机计算平均数、众数和中位数。本次说课内容为第二课时。

3、教学重点和难点

教学重点:众数和中位数两概念的形成过程及两概念的简单运用。

教学难点:利用收集的数据整理分析,对刚接触统计不久的学生来说,他们原有的认知结构中尚缺乏这方面的知识经验,因此,对统计数据从多角度进行全面分析,使学生形成一定的统计观念(即数据感)是教学难点。

二、学情分析

认知分析:学生已初步了解统计的意义,理解平均数的含义及会计算平均数,这两者形成了学生思维的“最近发展区”。

能力分析:学生已初步具备一定的归纳、猜想能力,但在数学的应用意识与应用能力方面尚需进一步培养。

情感分析:多数学生对数学学习有一定的兴趣能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生的学习主动性不够强,尚需通[www.kaoyantv.com]过营造一定的学习氛围,来加以带动。

基于以上分析,在学法上,引导学生采用自主探索与互相协作相结合的学习方式,尽量让每一个学生都能参与研究,并最终学会学习。

三、教学目标

根据教材分析和学生的认知特点,本节课设置的教学目标为:

知识目标:理解众数和中位数的含义,会正确计算众数和中位数。

能力目标:进一步发展学生类比、归纳、猜想等合情推理能力;让学生接触并解决一些现实生活中的问题,逐步培养学生的应用能力和创新意识。

情感目标:通过各种真实的,贴近学生生活的素材和适当的`问题情境,激发学生学习数学的热情和兴趣;在合作学习中,学会交流,相互评价,提高学生的合作意识与能力。

四、教学方法

根据本节课的教学内容和建构主义教学理论,从发展学生认识问题、探索问题、研究问题的能力角度考虑,准备采用“以问题为中心”的讨论发观法:即课堂上,教师或学生提出适当的数学问题,通过学生与学生(或教师)之间相互讨论,相互学习,在问题解决过程中发现概念的产生过程,思想方法的概括过程从而逐步建立完善的认知结构。

具体说本节课由五个基本环节组成:创设情境,提出问题--合作交流,探索问题--理性概括,构建新知――实践应用,鼓励创新――归纳小结,反思提高。

五、教学过程

1、 创设情境,提出问题

(1) 创设情境(用多媒体课件演示)

某小厂欲招工人一名,小张应征而来,经理告诉他:“我们这里报酬不错,平均工资水平是每周300元,初中数学教案《数学教案-平均数、中位数和众数(第二课时)]》。”小张工作几天后,找到经理说:“你骗我,多数工人的工资水平没有超过每周200元,”这时,工会主席过来说:“小张,经理说得没错,其实我们厂有一半人达到或超过中等工资水平即每周250元,不止每周200元的!不信,看看这张工资表。”看后,小张感慨:“难道是我错了?”

(2) 问题:真是公说公有理,婆说婆有理,平均数真能客观反映工人的真实工资水平吗?

基于学生原有认知结构的问题情境,更诱发了学生的认知冲突,从而引发学生提出问题:究竟什么数据能反映工人的真实工资水平?

2、 合作交流,探索问题

在导出以上问题后,分三人小组开小型辩论会(三人分别充当经理、小张、工会主席三个角色展开辩论)。各小组再拿出最能反映工人真实工资水平的数据全班交流。

学生会用人数最多的工种的工资200元或中等水平工资250元来回答,从而引出:今天要学习的内容----众数和中位数。

通过学生合作交流,相互完善,在自主探索中发现概念的形成过程。让学生体验生活中的角色,认识到研究数据的必要性。

3、理性概括,构建新知

(!)启发建构

在上述数据中象“200”这样的数我们就叫做这组数据的众数,象“250” 这样的数我们就叫做这组数据的中位数,它们与其它几个数相比是不同的,有何不同?我们能用自己的语言来描述它们吗?在学生描述的基础上为加深印象,教师可适时补充说明:“众数”中“众”即多,也就是某个数据在一组数据中出现次数最多;而“中位数”中“中位”是指位置居于中间,即某个数据在按照大小顺序排列的一组数据中,位置处于最中间。形象语言的描述更易新知的构建。

(2)完善建构

练习:

① 在一次英语考试中,11名同学得分如下:80 70 100 60 80 70 90 50 80 70 90 请指出这次英语考试中,11名同学得分的中位数和众数。

② 10名工人某天生产同一零件,生产的件数是:13 15 10 14 19 17 16 14 12

你能说出这一天10名工人所生产零件数的众数和中位数吗?

学生独立思考后讨论回答。

结合学生回答的实际情况,对练习追问:a、能说出1 2 3 4 5 6 的众数吗?b、如何求一组数据的中位数?c、在一组数据中平均数,众数和中位数会都是同一个数吗?d、实话实说,对平均数、众数和中位数知道多少?谈谈它们的区别和共同特点、

归纳探索结果:

众数、中位数都是用来描述一组数据的集中趋势。众数是一组数据中出现次数最多数据;一组数据中的众数可能不止一个,也可能没有。中位数是指:将一组数据按大小依次排列,处在最中间位置的一个数据(或最中间两个数的平均数),一组数据中的中位数是惟一的。

这一环节,由浅入深设置问题链,使学生思维分层递进,目的是突出本节重点;通过追问层层引导,又把学生的探索逐步引向最近发展区,启发学生运用类比、归纳、猜想等思维方法探究问题,揭示概念的实质,不断完善新的知识结构。同时体验了知识的形成过程和发现的快乐,继而转化为进一步探索的内驱力。

4、实践应用,鼓励创新

请你当厂长

某鞋厂生产销售了一批女鞋30双,其中各种尺码的销售量如下表所示:

《平均数》说课稿 篇四

各位评委、老师们:

大家好!我是南排河镇后徐小学教师高红娜,今天我说课的内容是人教版小学数学三年级下册第三单元内容《平均数》,设计本课我遵循学生的认知特点,依据《数学新课程标准》中数学来源于生活,应用于生活的基本理念,下面我将从教材、教学目标、教学重难点、教法、学法、教学过程等环节进行说课。

一、说教材

平均数是统计中的一个重要概念。在统计中,平均数常用于表示统计对象的一般水平,它是描述数据集中程度的一个统计量。用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常用到。

二、说教学目标:

基于以上理论依据,确立三维目标:

1、知识和技能目标

使学生能理解移多补少求平均数的方法,能根据数据列出算式求平均数;

2、过程与方法目标

帮助学生掌握平均数的意义和求平均数的方法;

3、情感态度与价值观目标

体验数学与生活的密切联系,培养学生科学分析问题的能力。

三、说教学重、难点:

1、重点:掌握平均数的意义和求平均数的方法。

2、难点:能根据数据列出算式求平均数。

四、说学情

由于学生已经具备平均分的基础知识,所以应着重让学生理解平均数的意义,在此基础上学生能容易列出算式进行计算。

五、说教法和学法:

由于平均数意义比较抽象、难以理解,我尽量通过动手操作,自主探索和合作交流的方法,创造有利于学生主动求知的学习环境。

在学法指导上,我重视观察法、比较法、发现法和讨论法等应用,充分调动学生各种感官,通过多媒体教学帮助学生积极思维,发展智力,培养学生善于思考,并相信自己有能力找到获取新知的途径。

六、教学过程

一、创设情境、激趣引入。

课的引入部分我设计了拍球比赛,由3个女生与3个男生拍球的数量,抛出问题:根据统计数据,你认为哪组获得了胜利?学生通过观察、比较和计算总数的方法得到答案,获胜队欢呼起来。这时我参与到失败的一队,把我拍球的数量加到他们队的数量上,再比较两队的输赢。这时有同学提出质疑不公平,因为两队人数不同,比总数不合理,我抓住时机设疑:那怎样才能公平合理呢?鼓励学生充分发表自己的意见,引导总结出最佳方法是通过求平均每人拍球个数来比较。从而引出课题平均数。

(设计意图:从学生喜爱的课外活动入手,创设这样的情境不仅吸引了学生的兴趣,也活跃了气氛,更贴近了学生的生活,从而能达到引出平均数的效果。)

二、探究新知、建构感知

追问什么是平均数?请同学们举例说明在平常生活中自己见到或听到的平均数。

(设计意图:通过举例,使学生进一步感受平均数与社会生活的密切联系)

出示课件1:在一个方形鱼缸中,设置3块挡板,把鱼缸分成4块相等的水域,且每一块水域的水的高度各不相同,由此提问:把挡板拿开,里面的水会怎么样呢?

出示课件2:有3排小球,个数分别为6、7、2,

由此提问:怎样移动才能使每排小球个数同样多?

(设计意图:通过方形鱼缸中的水和移动小球两个动画课件让学生初步感知平均数,并渗透“移多补少”法。让学生明白把多的分给少的,这样的方法叫“移多补少”。)

三、深化理解、巩固新知

1、出示课件(课本例1):学生们收集旧塑料瓶的图画和统计图

要求:

①首先让学生说出自己发现的一些信息(对应图画)

②能运用“移多补少”的方法进行操作。(指名学生上台指着统计图说自己的操作方法)

设置认知冲突,平均数可以通过移多补少的方法得到,那是不是任何情况下都可以用这个方法呢?我来到学生中间,

叫起一名同学和他比身高,问到如果求我们两人的平均身高用这个方法行吗?学生们在一片哄笑声中说出不行,那有更好的方法吗?迫使学生打破以形成的思维定势,从而获得还能用计算的方法。

③用计算的方法求出平均数(此步可采取同学之间相互讨论、互相帮助获得答案,因为对于个别同学而言还是有一定困难,集体订正时让学生明确先算出总个数,再平均分,这种方法称为先合后分,最后叮嘱学生列综合算式时必须加上括号并写答语)

在同学们掌握了求平均数的方法以后,回来解决拍球游戏中还没解决的问题。同学们轻而易举地解决了问题。随之教师引导学生在一组数据中发现平均数在哪些数据范围之内。

(平均数一定在最大数和最小数之间)

四、综合运用、拓展延伸

(设计意图:通过练习,使学生巩固知识,形成技能,发展创新思维。为了使课内的练习起到促进掌握知识,锻炼能力的双重效果,我在设计练习的时候注意了以下两点:一是练习的形式多样,持续学生学习的兴趣;二是练习的难度逐步加深,不断提高学生的认知水平。)

1、出示课件:快速找出平均数。

(运用以上所学方法来解决,着重说最后一题,以此训练学生处理问题的灵活性。)

2、出示课件:四(1)班学生参加植树活动,第一组种了180棵,第二组种了166棵,第三组种了149棵,平均每组种了()棵。

A:181B:165c:145

(平均数一定在最大数和最小数之间)

3、出示课件:一本书,小明第一天读了12页,第二天上午读了8页,下午读了6页,他平均每天读多少页?

①(1286)÷2

②(1286)÷3

(这道题使学生对求平均数的份数加深印象)

4、出示课件:◇游泳池的平均水深是120厘米,小明身高140厘米,他在游泳池中学游泳,会不会有危险?为什么?

(这道题与生活实际相联系,让学生感觉平均数和我们的生活是密切相关的,并会用已学知识解决问题。)

整个教学设计,我根据教材特点与学生实际,做了很多的预设。因为学生是具有不同知识经验的生命个体,备课时我充分考虑不同的学生有着哪些不同的思考方法,可能会出现哪些解决问题的方案,从而设计出不同的教学策略。争取在课堂教学中,在组织学生讨论、评价,让学生在生成知识的同时,生成学习经验,生成情感体验,使整个课堂充满生命的活力。

《平均数》教案 篇五

一、 复习铺垫,导入新课

小明利用五一假期,查找了一些有关小动物寿命的数据,并制作成了下面这张统计表。请同学们看大屏幕。

出示动物寿命统计表:

小猫老鼠大象乌龟

寿命/年6251152   提问:看了这张统计表,你发现了什么?(乌龟的寿命最长,老鼠的寿命最短。)

谈话:借助统计,我们常常能发现一些有趣的现象和规律。今天我们继续研究统计。(板书:统计)

【说明:利用动物寿命统计表这一学生感兴趣的材料,复习相关旧知,导入新课,自然贴切,有利于调动学生学习的积极性和主动性。】

二、 创设情境,自主探索

1. 呈现套圈情境。

多媒体演示“套圈比赛”的场景。

谈话:三年级第一小组的男、女生在进行套圈比赛,每人套15个圈,这两张统计图分别表示男生和女生套中的个数。

2. 引入平均数。

出示男、女生套圈成绩统计图。

①提问:从统计图中,你知道了什么?

结合学生的想法,相机进行引导。

想法一:男生有4人,女生有5人。(为比较总数预设)

想法二:男生每人套中的个数,谁来介绍女生没人套中的个数。

②男生套得准一些还是女生套得准一些?你有什么方法?

和你的同桌说说自己的想法。

想法一:女生套得准一些,因为套中的最多的是吴燕。

追问:那套中的个数最少是男生还是女生,所以套中最多的是女生,套中最少的也是女生。用一个人的成绩代表整个队的成绩,这样合适吗?还有其他的方法吗?

想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。

③追问:这种想法的可取之处是已经注意到从整体的方面去比较,但是他们两队人数不相等,这样比公平吗?因为参与套圈的人数不相等,比较总数,是不公平的。

可以怎么办呢?

想法三:分别求出男、女生平均每人套中的个数,哪个队平均每人套中的个数多,哪个队就套得准。(比平均数)。

追问:这样比公平吗?(公平)我们就用这种方法试一试。

【说明:富有启发性的“追问”,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】

4. 理解平均数。

④操作:你知道男生平均每人套中多少个圈吗?

请同学们仔细观察统计图,先在小组里讨论怎样找出每个队的平均成绩,再试一试。看哪些小组想的办法又多又好。

学生可能出现两种方法:一是移多补少;二是先求和再求平均数。

⑤引入:男生中谁套中得最多?谁套中得最少?根据这个信息,你有什么好方法求出男生平均每人套中多少个圈?

可以把张明套中的一个移给李小刚,另一个移给陈晓燕。——移多补少

反馈时,学生边讲解移多补少的过程,教师利用课件动态演示。

⑥还有其他的方法吗?

引导列式:6 + 9 + 7 + 6 = 28(个)⑦28表示什么?

28 ÷ 4 = 7(个)⑧7表示什么意思?(图中的红色线条就表示了男生套中的平均数)

⑨你能看出,7比谁套中的个数多?比谁套中的个数少?

小结:平均数比的数小,比最小的数大

【说明:将学生对平均数的探求发端于操作,让学生在活动中获得有关平均数的多种求法。】

⑩提问:根据你的发现,谁能猜一猜女生队平均每人套中的个数一定在什么范围之内?(在5~9之间)可以通过哪些方法来验证?

⑾谈话:女生平均每人套中多少个圈呢?你是怎样知道的?请你独立完成在书上。10+4+7+5+4=30(个)

30÷5=6(个)

⑿说说为什么要除以5而不除以4?(女生有5人,要用5人的总数平均分成5份)

⒀现在求出女生平均每人套中6个圈,是不是女生每人都套中6个呢?为什么?

仔细观察女生套圈成绩统计图,得出结论:平均数代表的是一个整体水平。

提问:现在你能判断男生套得准还是女生套得准吗?

⒁在解决男生、女生平均套中多少个圈这两个问题,有什么相同和不同?

相同:⑴求平均数的方法,得出数量关系。(板书:总数÷份数=平均数)

⑵平均数比的数小,比最小的数大。

⑶平均数都是代表了一个整体的水平。

不同:总数不同,人数不同,平均数也不同。

【说明:多媒体演示与学生的交流有机结合,使学生对求平均数的方法——移多补少、先合后分,平均数的意义及取值范围等建立清晰的表象。同时,将平均数学习嵌入一个完整的统计活动中,较好地突出了平均数的统计意义。】

三、 巩固深化,拓展应用

1.下面我们要利用刚才所学的关于统计和平均数的知识,解决一些实际问题。请你 判断下面哪些说法是不合理的。

(1)小丽走8步,共走了560厘米,她每步都走70厘米。(70厘米表示小丽平均每步走了70厘米)

(2)电梯有8个人,她们体重的和是400千克,平均每个人的体重是50千克。(求平均数的方法)

(3)两班共栽树120棵,每班不可能超过60棵。(平均每班栽树60棵,可能一个班栽树70棵,一个班栽树50棵)

和你同桌讨论一下。

2完成“想想做做”第1题。

①从图中你知道了什么?(先数一数每个笔筒里笔的枝数)

②你想怎样求出“平均每个笔筒里有多少枝”铅笔?

③还有其他的方法吗?

学生列式计算,汇报结果。

4、完成“想想做做”第2题。

④从图中你知道了什么?②你想怎么求?

独立解答,汇报结果。

⑤说说你第一步求的是什么?第二步求的什么?

3. 完成“想想做做”第3题。

学校篮球队队员的平均身高是160厘米。

李强是学校篮球队队员,他身高155厘米,可能吗?⑥你是怎么想的?

学校篮球队可能有身高超过160厘米的队员吗?

请你判断,和同桌交流你的想法。

5. 完成“想想做做”第4题。

⑦仔细观察统计图,互相说说你知道了什么?

指名回答第一题,⑧回答这个问题你看的是哪一张统计图?(答句说完整)

第2个问题⑨你是怎么想的?只要看在哪一天卖出的苹果和橘子的箱数相等就可以了。

⑩请学生读第2题,你会计算吗?完成在课堂作业本上。(竖式列在草稿本上)

⑾你还能提出什么问题?(同桌讨论)

【说明:练习设计既重视平均数的求法,更重视对平均数意义的深刻理解。通过估计、预测、判断等一系列数学活动,沟通了数学与现实生活的联系,强化了学生对平均数意义的理解,较好地发展了学生的统计观念和应用意识。】

四、 课堂总结(略)

今天你学会了哪些知识?学会了求平均数的方法有2种。

五、课后拓展

小芳,小丽,小华三人在进行口算比赛。小芳说:“我是冠军,小丽是第三名。我们3人平均一分钟完成了10道口算,每人完成的数量相差一题。” 你知道她们一分钟各完成了多少道口算题吗?

《平均数》 教案 篇六

设计理念

《义务教育数学课程标准(20xx年版)》指出,解决问题要让学生初步学会从数学的角度发现问题,提出问题,并能综合运用所学的知识和技能解决问题,密切数学与生活的联系,增强学生的应用意识,形成解决问题的一些基本策略,体验解决问题策略的多样性,培养简单的数据分析能力和运算能力,发展统计观念。

教学内容

人教版四年级下册第90页—92页“做一做”及练习二十二中部分习题。

学情及教材分析

学生在三年级已经学过简单的统计表,本节课是把已学的统计知识和认识平均数结合起来,学会求平均数的基本方法移多补少,引导学生进一步体会到平均数是解决问题的有效方法之一,以帮助学生灵活运用平均数的知识解决生活中的实际问题,并通过多种练习让学生加深对平均数意义的多角度理解和先求和再平分的求平均数一般方法的掌握。从整个小学阶段的数学学习来看,平均数是一个持续的学习内容,今后还要学习稍复杂的平均数以及其他常见的统计量。因此,我觉得这节课的目的不仅仅是让学生学会求简单的平均数,更要引导学生从数据处理分析的角度把握求平均数的方法,体会平均数的意义,用平均数进行比较,描述分析一组数据的状况和特征,感受平均数的应用价值。本节课是在学习认识简单统计表和条形统计图的基础上,教学最基础的数据整理分析,平均数的知识为今后进一步学习统计数据的分析和整理打下基础,新教材明显地加重了对平均数意义理解的份量,突出了平均数的统计学意义,既平均数反映了一组数据的整体水平。

教学目标

1.在具体情境中,通过实践操作和思考体会平均数的意义,能用自己的语言解释其意义,体会平均数的作用,感受求平均数是解决一些实际问题的需要,能计算平均数。

2.运用平均数的知识解释简单生活现象、解决简单实际问题,进一步积累分析和处理数据的方法,发展统计概念。

3.在活动中,进一步增强与他人交流的意识和能力,体验运用已学的统计知识解决问题的兴趣,建立学习数学的信心。

教学重点

理解平均数的实际意义,掌握求平均数的方法。

教学难点

体会平均数的特征,用平均数解释简单的生活现象。

一、谈话引入,激发兴趣

你乘车买票吗?六岁以前买票吗?你对乘车是否买票这方面的常识了解吗?我们把1.2米这条线叫“儿童乘车免票线”。看,就是这条线,经过相关部门研究决定,六岁以下儿童乘车免票线为1.2米。你知道怎么去确定这个标准吗?调查谁?如果数据来了,有高的,有矮的,如何处理?让我们一起通过这节课的学习来解决这些问题。

(设计意图:通过学生熟悉的生活实例,让学生带着问题自然进入课堂,激发学生的学习兴趣,学生体会为什么要学  上个月我校开展了保护环境,争优环保小队活动,我班成立了三个小分队:快乐队、天使队、阳光队。

1.相同数据,初步体会平均数的代表性。

出示快乐队数据:宁宁12个,丁丁12个,冰冰12个。

你能提出什么数学问题?要表示快乐队每个人的收集情况,用哪个数比较合适呢?

小结:快乐队每人都收集了12个矿泉水瓶。12能代表快乐队每个人的收集情况。

2.不同数据,深入体会平均数的意义。

出示天使队数据:小红12个,小兰14个,小丽11个,小明15个。

你看到了什么信息?你能提出什么问题?现在,每个人收集的数量各不相同,该用哪个数据代表第二小队每人的收集情况呢?14能代表吗?12呢?(如果每人同样多就好了)怎样把他们的瓶子变成同样多?

小组合作学习,用学具摆一摆。并在组内说一说你是怎么把它们变的同样多的。

交流汇报。

学情预设:

生1:可以移动瓶子,将小红移1个给小兰,小明移2个给小亮,然后每个人就一样多了。(刚才这些同学都是通过把多的瓶子移出来,补给少的同学,让每个同学的瓶子数量同样多,这种方法就叫“移多补少”。板书:移多补少)

生2:计算的方法(14+12+11+15)÷4=13.说说你是怎么想的。

(先把四个人的瓶子数合起来,再平均分给四个人)为什么要除以4?除以3可以吗?4表示什么。括号里的表示什么?关系式:总数量÷份数。板书:先求和再平分)

总结:其实无论是移多补少,还是先求和再平分,目的只有一个,那就是使原来不同的数变得——同样多。在数学上,我们把这个数叫做平均数。(板书课题:平均数)

3.追问中理解平均数的虚拟性。

继续看天使队的收集情况:13是小红收集的数量吗?是小兰收集的`数量吗?是小明收集的数量吗?

13到底是什么呢?是哪个同学收集矿泉水瓶的数量吗?

小结:13是天使队平均每人收集的数量。它代表天使队收集矿泉水瓶的一般水平。

(设计意图:由浅入深,快乐队每人收集12个,用12代表每人的收集数量;天使队每人的数量各不相同,该用哪个数代表呢?学生体会到:都不合适,如果和快乐队一样,每人同样多就好了。通过移多补少或求和平分,用一个虚拟的13来代表。这样由浅入深、层层递进,让学生慢慢体会平均数良好的代表性。在追问中让学生感受平均数的虚拟性特征,以加深对平均数意义的理解。)

(二)在具体情境中体会平均数的作用

出示阳光队收集矿泉水瓶统计表。阳光队一共收集了多少个?哪个小队能评为“环保小队”呢?和你的同桌说一说。

学情预设:

生1:快乐队收集了36个,天使队收集了52个,阳光队收集了60个,第三小队收集的多。

生2:他们人数不同,这样不公平!

生3:人数不同,应该比较平均数。怎么求阳光队的平均数呢?

学生列式:(13+11+14+10+12)÷5=12(个)

12代表什么?哪个小队能评为“环保小队”?

小结:在人数不相等的情况下,用平均数作比较更公平!

平均数13能代表天使队的一般水平,12能代表快乐队、阳光队的一般水平。(板书:反映一组数据的一般水平)

(设计意图:人数不等,哪个队能评为“环保小队”?引导学生展开辩论。在辩论中学生清楚:比总数不公平,而平均数能代表每队收集的一般水平,所以用平均数作比较更公平。从而加深对平均数作用的理解。)

(三)思考交流,理解平均数的敏感性

如果阳光小队的王林收集的瓶子变多了或变少了,平均数会怎样呢?你发现了什么?

小结:平均数就是这么敏感!这组数据中任何一个数发生变化,都能引起平均数的变化。

结合平均数观察表格,平均数处于什么位置呢?

平均数正如你们所说,可以代表一组数的一般水平,而且知道平均数在值和最小值之间,相信大家对平均数有了一定的认识。

(四)首尾呼应,引起共鸣。

相关部门是怎么确定这个儿童乘车免票线的呢?和你们想的一样,相关部门就是参照了平均身高确定免票线的。据统计:6岁男童平均身高119.3厘米,6岁女童平均身高118.7厘米。

看来,平均数的作用真不小,连确定免票线的高度都可以参照它。

(五)联系生活,体会平均数的用途。

生活中在哪儿用到过平均数呢?出示平均数资料。如果学校订做校服,用平均身高订做可以吗?平均数的用途很广泛,可是也要根据实际情况而定。

三、应用拓展,巩固提高

1、小明家每人每天月平均用水量是多少?

在严重缺水地区平均每人每天用水量约为3千克,你知道3千克的水有多少吗?

老师还给大家带来一则信息。

请选择正确答案。(2)第(1)式和第(3)式分别求的是什么呢?

小刚家平均每人每天用水88千克,严重缺水地区平均每人每天用水3千克,比较这两个数据,你有什么感受?

2、小明会遇到危险吗?

游泳池平均水深只有120厘米,小明身高130厘米,小明站在游泳池里学游泳,会不会有危险?为什么?

四、回顾反思,结束全课

谈谈你对这节课的收获,把你感受最深的一点说一说。

五、板书设计

六、教学反思

《数学课程标准》中将“统计与概率”安排为一个重要的学习领域,强调要培养学生从统计的角度思考问题的意识,重要途径就是要在教学中着力展示统计的广泛应用。这是因为随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。

这节课着眼于经历、体验、感受平均数的产生,理解平均数的本质意义,关注的是学习过程,让孩子学会思考,学会解题的策略,更加关注学生的情感态度和价值观。通过小组合作学习,让孩子在活动中“做数学”,给孩子提供大量的讨论合作、独立探索、实践操作的时间和空间,充分发挥学生的主体作用,让孩子们在“做中学”。从而理解平均数的意义,掌握求平均数的方法。

有关平均数的知识,教学中我没有只停留在“简单地给出若干数据,要求学生计算出它们的平均数”上,而是把理解平均数的意义作为教学的重点,紧密联系实际,课的导入用“儿童身高免票线”如何确定的问题串,使学生体会到为什么要学  怎样才能使四年级的小学生感受到学  最后,为了加深学生对平均数意义的理解及特征的把握,我联系学生生活实际,和开头相互呼应,学生梳理思路,明白了相关部门从调查收集数据——整理数据——求平均身高,最后呈现6岁以下儿童平均身高,因此确定“儿童乘车免票线”为120厘米。

通过以上教学,使学生切实感受到数学的魅力与应用价值,为树立应用意识奠定了良好的基础,使学生初步形成了解决日常生活工作中的数学问题的能力,并通过这一应用过程学会用数学的眼光观察世界,将数学课中的统计与生活有机的结合,体会到数学中的生活,生活中的数学,充分调动了学生学习的积极主动性。

总之,新的课程改革要求我们老师要以学生的发展为本,要给孩子提供自主探索的时间和空间。在平均数的教学中,学生对平均数的认识,经历了从探索中发现,从发现中体验,从体验中发展的全过程。教师起到了一个组织者的作用,但交流者的作用体现不足,如能更好的与学生达到互动,能给孩子以富有个性的评价,相信效果会更好。在这节课中,学生一次又一次的认识了平均数,他们感到平均数就在身边,并获得了一次次成功的体验,学得兴趣盎然。

平均数 篇七

平均数(1)教学内容 第42页例1

教学目标1、  使学生理解平均数的意义,初步学会简单的平均数的方法。2、  理解平均数在统计学上的意义。3、  培养应用所学知识合理、灵活解决简单的实际问题。教学重点   使学生理解平均数的意义,初步学会简单的平均数的方法。教学难点     培养应用所学知识合理、灵活解决简单的实际问题。教学过程:

一、创设学校“捡回一个希望”角学生参加收集矿泉水瓶情境,谈话导入。

1、他们在干什么?其中有一个红领巾小队收集的情况是这样的(给出数据、7个  、5个   、4个    、8个、)。

2、看了这些数据,你获得了那些信息?你是怎么发现的?

二、探索新知

1、刚才有同学发现了这四位同学平均每人收集了6个矿泉水瓶,谁能说说平均是什么意思?

2、这四位同学收集的个数如果都一样多的话,每个人收集了6个,这个数,你能给他取个名字吗?

3、他是怎么得到平均每人收集6个的呢?请同学们拿出学习材料,四人小组讨论一下。最后,推选一位同学介绍你们小组的学习成果。

小组汇报

1、他们用到了估算的方法,我们一起来估算一下,(教师把一根水平线移到7块的高度),平均数会是这么多吗?(继续往下移动水平线到4块的位置)会是这么多吗?(继续把水平线慢慢往上移)体验平均数。为什么呢?

2、通过这样的方法,使得不一样多的数量,在总数不变的情况下同样多,就得到了他们的平均数。你们能给这种方法取个名字吗?

(板书)还有其他方法吗?(以多补少)

3、那平均数是不是就是以前学过的每份数呢?为什么?(7+5+4+8)表示什么?

总数量(板书)4又表示什么呢?总份数,那你们知道平均数可以怎么求吗?

4、刚才同学们通过自己讨论,尝试,发现了平均数,学会了求平均数。知道这个红领巾小队平均每人收集6个。如果我们全班40名同学都去参加,一次可以收集多少个呢?你是怎么想的?这就是平均数的一个用处。我们还可以推想出全年级的收集的个数。

三、巩固

1、  我们已经学会了求平均数的方法,你们能解决有关平均数的问题吗?老师这里有一组来自会展中心博览会的消息。出示下列信息:

(1)美食节开幕后,第一天参观的有3万人;第二天参观的有4万人;第三天参观的有1万人。

(2)李刚参加打靶比赛,第一次中了7环,第二次中了9环,第三次与第四次共中了16环。

2、你能求什么问题?请大家做在练习本上。

反馈时强调:我们在求平均数时要找准总数量与总份数之间的对应关系。

3、平均数问题在我们生活中有很广泛的应用,我从统计部门了解一组平均数。出示:

(1)1959年南宁市女性平均寿命是52岁,1999年南宁市女性平均寿命是72岁。

(2)1978年南宁市平均每人住房面积4平方米,1999年南宁市平均每人住房面积9平方米。你发现了什么? 是不是南宁市每个人都拥有住房面积9平方米呢?

我们同学家里的住房面积有多大?你们能算出你们家里平均每人的住房面积吗?

我们同学家里的人均住房面积比9平方米大的有多少?

100%的同学都比9平方米大。生活是很幸福的,我们一定要珍惜这样幸福的日子,好好学习。

四、拓展

生活当中还有那些地方也用到平均数呢?谁举例

1、平均数在生活中的用处确实非常广泛,我们学校的校医非常关心我们同学的身体健康,经常要了解我们同学的平均体重,平均身高等,(出示班级座位图):

如果老师想要了解三(5)班第一组6位同学的平均身高的情况,你们想一想老师还需要了解些什么?

2、老师了解了这么些数据:(出示)你们能求出这一小组同学的平均身高吗?自己试一试。

3、请一位同学来说一说。

老师这里还有一组数,是第一排同学的身高,你能很快的求出平均身高吗?说说你是怎么求的?

4、这样同一个班里,抽取了两组数据,求出的平均身高是135厘米和130厘米,到底那一个更接近全班同学的平均身高呢?请认为是135厘米的同学说说理由。

五、总结

今天我们一起学习了什么?你有什么收获?

教学方法: 篇八

创设情景法、启发谈话法、尝试法、启发讲解法等。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。