在教学工作者开展教学活动前,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案应该怎么写才好呢?快回答分享了7篇六年级数学下册教案,希望对于您更好的写作六年级下册数学教案有一定的参考作用。
六年级数学下册教案 篇一
教学目标:
1.使学生在具体情境中初步理解图形的放大和缩小,学会利 用方格纸把一个简单图形按指定的比放大或缩小。
2.使学生在观察、比较、思考和交流等活动中,感受图形放大、缩小在生活中的应用,初步体会图形的相似,进一步发展空间观念。
教学重点:
理解图形的放大和缩小,能利用方格纸把一个简单图形按指定的比放大或缩小。
教学难点:
使学生在观察、比较、思考和交流等活动中,感受图形放大、缩小,初步体会图形的相似,进一步发展空间观念。
教学过程:
一、创设情境,引入新课。
1.出示图景
看上面的图片,你们能说一说,图中反映的是什么现象?哪些是将物体放大?哪些是将物体缩小?
根据学生回答的情况,谈话导入生活中存在许多放大与缩小的现象,现在我们就来研究图形的放大与缩小。
例4:按2:1画出下面三个图形放大后的图形。
讨论如何解决问题?把图形按2:1的比放大是什么意思?
就是把图形的每条边放大到原来的2倍。
直角思考:三角形的斜边不能直接看出是多少格,怎么办?
是不是只要把两直角边放大到原来的2倍,就可以了?
比较两幅图的长有什么关系?宽呢?
让学生画出放大后的图形,画直角三角形时,可以引导学生画完后,可以让学生通过数一数或量一量的方法,发现放大后的斜边长度是放大前的2倍。之后让学生观察对比原图形和放大后的图形,看发生了什么变化。结合具体图形,通过讨论、交流,了解到一个图形按2∶1的比放大后,图形各边的。长度放大到原来的2倍,但图形的形状没变。(图形的周长扩大到原来的2倍,面积扩大到原来的4倍。)
问题:如果把放大后的这组图形的各边再按1∶3缩小,图形又会发生什么变化?
得出图形缩小了,但形状不变,缩小后的图形各条边分别缩小到原来长度的。
在此基础上,引导学生归纳出图形的各边按相同的比放大或缩小后,只是大小发生了变化,形状没变。
独立完成做一做,交流是怎样思考与操作的,并及时纠正错误。
2.总结
问题:把放大和缩小后的图形与原来的图形相比,你有什么发现?
放大和缩小后的图形与原来的图形相比,大小变了,但形状没变。(放大和缩小后的图形长与宽的比与原来图形的长和宽的比是完全一样的。)
二、巩固练习
让学生按要求在方格纸上画出缩小后的图形,再让学生说一说是怎样画的,缩小后有关边的长度是原来的几分之几,各应画几格?
三、全课小结。
什么是图形的放大和缩小。要遵循什么原则?放大和缩小后的图形与原来的图形有什么关系?通过本课的学习,你有哪些收获?
六年级数学下册教案 篇二
教学内容:
教材第72页、第73页的例1、2、3题,练习十四第1--3题。
教学目标:
1.比较系统地掌握有关整数、分数、小数、百分数和负数的基础知识,进一步弄清概念间的联系与区别。
2.使学生熟练地掌握十进制计数法和整数、小数数位顺序表,并能正确地熟练地读、写整数与小数,会比较熟的大小。
3、通过整理和复习,感悟数学知识之间的内在联系和区别,初步学会知识的整理。
教学重点:
使学生比较系统地掌握整数、小数、分数、百分数和负数的基础知识。
教学难点:
弄清概念间的联系和区别。
教具准备:
多媒体课件
教学过程:
一、提问引入
(一)回顾知识
1.课件出示P72情境图
学生提取信息
总计人数10500名运动员
花费4.96亿英镑
约占总人数的3.77%
金牌数约占总数302枚的八分之一
第29届奥运会出现了25.5%的负增长
提问:这些都是什么数?每个数有什么含义?完成73页做一做
2.同学们课下都收集了一些数据,请你汇报生活中用这些数的例子,并说说每个数的具体含义。(学生边说,教师边板书)
提问:有什么感受?
3.请你给这些数进行分类。
好,我们来看这些数,如果把这些数分类,可以怎样分?
教师监控 1
①学生按照整、小、分、百、分类。
②这些数叫整数还可以叫什么?(自然数)
③什么叫自然数?
④自然数和整数有什么关系?
⑤小学阶段我们研究的。自然数就是整数,但以我们现在学习的知识来看整数还不只这些,我们还研究了负整数。
⑥想一想,整数和自然数的范围哪个更大?
过渡:这节课我们就对这些数的知识进行复习,整理。
二、小组合作,整理概念
(一)小组合作,进行数的整理
出示整理提示
1.根据数的特点找到数之间的联系,并用树形图的形式进行整理。
2.先小组讨论它们之间的联系,然后分工合作,汇报时要说清整理的理由。
3.如果不能够面面俱到,可以选取一部分数进行整理。
六年级数学下册教案 篇三
教学目标
1.理解本金、利息和利率的含义,掌握利息的计算方法,会正确的计算存款利息。
2.使学生初步认识储蓄的含义,感受到储蓄给人们生活带来的方便及益处。
3.使学生感受数学在生活中的作用,培养学生初步的理财意识和实践能力。
教学重难点
1.利息和本息和的计算。
2.利息和本息和的计算。
教学过程
1.谈话。
大家的压岁钱是怎么管理的?为什么把钱存入银行?
2.导入。
把钱存入银行,会获取一部分利息,怎么计算利息呢?这就是我们今天要学习的内容。
1.探究有关储蓄的知识。
(1)储蓄的好处。
(2)储蓄的方式。
(3)什么是本金、利息、利率以及三者之间的`关系?
2.深入理解有关储蓄的知识。
课件出示:小红20xx年9月1日把100元钱存入银行,整存整取一年,到20xx年9月1日,小红不仅可以取回存入的100元,还可以得到银行多付给的3元,共103元。
引导学生找出题中的本金和利息。
3.探究利息、利息与本金和的计算方法。
(1)分析题意,引导学生探究利息的计算方法。
(2)组织学生尝试解题,交流汇报。
巩固实践爸爸妈妈给贝贝存了2万元教育存款,存期为三年,年利率为5.40%,到期一次支取,支取时凭非义务教育的学生身份证明,可以免征储蓄存款利息所得税。
(1)贝贝到期可以拿到多少钱?
(2)如果是普通三年期存款,应缴纳利息税多元?
板书设计
利率
本金:存入银行的钱叫做本金。
利息:取款时银行多付的钱叫做利息。
利率:利息与本金的百分比叫做利率。
利息=本金×利率×存期
方法一:方法二:
5000×3.75%×2=375(元)5000×(1+3.75%×2)
5000+375=5375(元)=5000×(1+0.075)
=5000×1.075
=5375(元)
六年级数学下册教案 篇四
教学目标:
1、渗透转化思想,培养学生的自主探索意识。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
3、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
教学重点:
掌握圆柱体积的计算公式。
教学难点:
圆柱体积的计算公式的推导。
教学准备:主题图、圆柱形物体
教学过程:
一、复习:
1、长方体的体积公式是什么?
(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)
2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。
3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
二、新课:
1、圆柱体积计算公式的推导:
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)
(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。
(课件演示将圆柱细分,拼成一个长方体)
(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)
2、教学补充例题:
(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?
(2)指名学生分别回答下面的问题:
① 这道题已知什么?求什么?
② 能不能根据公式直接计算?
③ 计算之前要注意什么?
(计算时既要分析已知条件和问题,还要注意要先统一计量单位)
(3)出示下面几种解答方案,让学生判断哪个是正确的.
①V=Sh
50×2.1=105(立方厘米)
答:它的体积是105立方厘米。
②2.1米=210厘米
V=Sh
50×210=10500(立方厘米)
答:它的体积是10500立方厘米。
③50平方厘米=0.5平方米
V=Sh
0.5×2.1=1.05(立方米)
答:它的体积是1.05立方米。
④50平方厘米=0.005平方米
V=Sh
0.005×2.1=0.0105(立方米)
答:它的体积是0.0105立方米。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.
(4)做第20页的'“做一做”。
学生独立做在练习本上,做完后集体订正。
3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(V=πr2h)
4、教学例6:
(1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)
(2)学生尝试完成例6。
① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)
5、比较一下补充例题、例6有哪些相同的地方和不同的地方?
(相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积。)
三、巩固练习:
1、做第26页的第1题:
2、练习五的第2题:
这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。
四、全课总结:
六年级数学下册教案 篇五
教材简析:
本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。例4是圆柱的体计算公式的直接运用,是圆柱体积计算的基本,但这题又给学生设置了单位不统一的障碍,让学生在直接应用公式计算的同时注意计量单位的统一。例5是圆柱体积计算公式的扩展练习,意在让学生加深理解容积的概念,使之明确求水桶的容积就是求水桶内部的体积。例5除了在意义上扩展外,公式的运用中也有加深,水桶的底面积没有直接给出,因此要先求出水桶的底面积,再求出水桶的体积。
教学目的:
1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力
4.借助实物演示,培养学生抽象、概括的思维能力。
教 具:圆柱体、长方体彩图各一张,圆柱的体积公式演示教具。
学 具:小刀,用土豆做成的一个圆柱体。
教学过程:
一、复习铺垫
1.说说长方体的体积计算公式,正方体的体积计算公式,把这两个体积公式统一成一个又是怎样的?这个公式计算体积的物体有什么特征?
2.指出圆柱各部分的名称。说一说圆柱有多少条高?有几个底面?每个1自由的面积如何计算?这个计算公式是怎样推导出来的?
二、设疑揭题
我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
[评析:复习抓住教学重点,瞄准学习新知识所必须的旧知识,、旧方法进行铺垫,沟通了知识之间的内在联系,衔接自然。新课引入教师引出了学习新知识的思路,导出了解决问题的方法,从而调动了学生学习的积极性,激发了学生探求新知识的欲望。
三、新课教学
1.探究推导圆柱的体积计算公式。
(l)自学第43页第二自然段,然后按照书中要求,两人一组将于中的圆柱切开拼一拼,再说一说你拼成三个近似什么形状的立方体?
(2)请学生演示教具,学生边演示边讲解切割拼合过程。
(3)根据学生讲解,出示圆柱和长方体的彩图。
(4)学生观察两个立体图,找出两图之间有哪些部分是相等的?
(5)依据长方体的体积计算公式推导出圆柱的体积计算公式。板书:V=sh
(6)要用这个公式计算圆柱的体积必须知道什么条件?
[评析:在教学中充分让学生动手、动脑、动口,让学生在操作中感知,在观察中理解,在比较中归纳。教师的导、放、扶层次分明,充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力]
2.教学例4
(1)出示例4。
(2)默读题目,看题目告诉了什么条件?要求什么?想一想你将如何计算?谁愿意试一试?
(3)请一名同学板演,其余同学在作业本上做。
(4)板演的同学讲解自己的解题方法,说一说在做这道题的过程中遇到了什么问题,是怎样解决的?
(5)教师归纳学生所用的解题方法。强调在解题的过程中要注意单位统一。
3.教学例5
(1)请同学们想一想,如果已知圆柱底面的半径r t和高h,怎样求圆柱的体积?请学生自学并填写第44页第一自然段的空白部分。
(2)出示例5,指名读题。请同学们思考解题方法。
(3)请学生讲解题思路讨论、归纳统一的解题方法。
(4)让学生按讨论的方法做例5。
(5)教师评讲、总结方法。
(6)学生讨论。比较例4、例5有哪些相同和不同点。
[评析:引导学生通过实际操作,由观察、分析、比较,再进行计算,达到运用新知、巩固新知的目的。]
四、新知应用
1.做第44页下面做一做的题目。两人板演,其余在自己作业本主做,做完后及时反馈练习中出现的错误,并加以评讲。
2.刚才同学们在做例4时,还有下面几种解法,请大家仔细思考,这些解法是对还是错?试说明理由。
(1)V=sh=5O2.1=105
答:它的体积是105立方厘米
(2)2.l米=210厘米
V=sh=50210=10500
答:它的体积是10500立方厘米。
(3)50立方厘米=0.5立方米
V=sh=0.52.1=1.05(立方米)
答:它的体积是l.05立方米。
(4)50平方厘米=0.005平方米。
V=0。00521=0.01051
答:它的体积是0.01051(立方米)。
五、全课总结
问:这节课里我们学到了哪些知识?根据学生回答教师总结。
六、学生作业
练习十一的第l 、2题。
[总结实:本节课的教学体现了三个主要特点:一、利用迁移规律引入新课,为学生创设良好的学习情境;二、遵循学生的认知规律,引导学生操作、观察、思考、说理,调动多种感观参与学习;三、正确处理两主关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。总之,本节课教师引导得法,学生学得灵活,体现了重在思,贵在导,导思结合的原则,体现了教是为了不教,学会是为了会学的素质教育思想]
六年级数学下册教案 篇六
教学目标:
1、结合具体问题,经历认识成反比例关系的量的过程。
2、知道反比例的意义能判断两种量是否成反比例关系,能找出生活中成反比例量的实例,并进行交流。
3、对现实生活中成反比例关系的事物有好奇心,在判断成反比例量的过程中,能进行有条理的思考。
课前准备:
找一本《安徒生童话》,把四个人看书表格画在小黑板上(图用文字),找一张10元人民币。
教学过程:
一、问题情境
1、师:同学们,老师知道你们都喜欢读书,许多同学特别喜欢读童话故事,老师今天带来了一本童话故事书,你们看是什么?
出示《安徒生童话》,可了解一下谁读过这本书。
师:猜一猜,这本书有多少页?
学生猜测,然后实际看一看,说出页数。
师:你们知道吗?我们书中的四个同伴都读过这本书,而且记录下了他们每人读书的情况。请同学们看小黑板。
小黑板出示:亮亮红红聪聪丫丫
每天看的页数12 15 18 20
看的天数15 12 10 9
2、让学生观察统计表,师:观察这个统计表,从表中你了解到哪些信息?
学生可能说出很多,如:
●亮亮每天看12页,看了15天。
●红红每天看15页,看了12天。
●聪聪每天看18页,看了10天。
●丫丫每天看20页,看了9天。
●丫丫看得最快,只用了9天,亮亮看得最慢,用了15天。
二、认识反比例
(一)读书问题
1、师:观察表中的数据,你发现了什么规律?
预设:●每天看的页数越多,看的天数就越少。
●每天看的页数越少,看的天数就越多。
●每天看的页数乘看书的天数,积是一定,都是180。
第三种意见学生没有提出,教师启发:
师:把他们每天看书的页数和看的天数分别乘一下,看发现了什么。(每天看书的页数与看书天数的乘积就是这本书的页数),你们能总结出一个数量关系式吗?根据学生回答,教师随即板书:
每天看的页数×需要的天数=书的总页数(一定)
2、师:谁能用自己的话说一说,当书的总页数一定时,每天看的页数和看的天数之间有什么变化规律?(学生自由发言)
师:在四个同伴看同一本书这件事情中,看书需要的天数是随着每天看书的页数的变化而变化的,每天看的页数扩大,需要的天数就缩小;反之,每天看的页数缩小,需要的天数就扩大。而且,每天看的页数和需要的天数的乘积一定,我们就说每天看的页数和需要的天数这两种量成反比例。
板书:成反比例的量
3、师:像这样两种相关联的量,一种量扩大,另一种量缩小,而且他们的乘积相等的事例,在我们的日常生活中还有许多。下面我们就共同来看一个换零钱的问题。教师出示表格,并拿出一张10元的人民币。
师:老师这有一张10张的人民币,如果要把它换成5元的,能换几张?如果换成1元的呢?那要换成5角的,2角的,1角的呢?
学生说,教师填在表格中。
面值5元1元5角2角1角
张数2 10 20 50 100
师:仔细观察表中数据,你都发现了什么?
学生可能会说:
●换的钱的面值越大,需要的张数就越少;换的面值越小,需要的张数就越多。
●表中面值与张数的积是一定的。
师:你们能总结出这里的数量关系式吗?
学生回答,教师随机板书:
钱的面值×张数=10(元)
4、提出“议一议”的问题,让学生判断并得出零钱的面值与换的张数这两种量是否成反比例。
学生可能会说:
●10元钱是一定的,钱的面值和换的张数是变化的,钱的面值变大,钱的张数就变小;钱的面值变小,张数就变大。
●钱的总数是一定的,钱的面值与换的张数是是变化的,钱的面值越大,换的张数就越小。反之,钱的面值越小,钱的张数就越多。
师:通过看书的事情,我们知道了什么样的两个量叫反比例,现在老师提一个问题:零钱的面值与换的张数这两种量成反比例吗?为什么?和同桌说一说。
学生讨论后,多请几人发言。
5、师:现在请同学们分析一下上面的两个例子和数量关系式,你发现它们有什么共同点?
学生可能会说:
●它们都是乘积一定,一个量变大,另一个量变小。
师:像上面这样两种相关联的量,一种量变化,另一种量也随着变化,如果两种量相对应的积也一定,就说这两种量成反比例,这两种量就叫做成反比例的量。它们的关系称为反比例关系。这段话在课本第13页,请同学们自己读一读。
学生自己读书。
6、师:我们已经知道了什么叫成反比例关系的量,谁来说一说,成反比例的量需要具备什么条件?
学生可能会说:
●是两个相关联的量。
●这个量的乘积一定。
●一个量变大,另一个就变小;一个量变小,另一个就变大。
三、尝试应用
1、让学生自己判断“试一试”中的三组数量。
师:现在,请同学们看“试一试”,自己判断一下,每题中的两种量是否成反比例。同学们可以互相讨论,要说明判断的理由。
给学生独立思考、交流的时间。
2、师:谁来汇报一下你判断的结果,并说一说判断的依据是什么?
重点让学生一说判断的理由,学生如果有其它说法,只要是对的就给予肯定。
3、师:我们认识了什么叫做反比例关系的量,你能举一个生活中反比例的例子吗?先和同学交流一下。
学生交流,然后指名举例并说明理由。
4、师:同学们,今天我们认识了成反比例关系的量,下面请看练一练第1题,自己判断一下,每题中的两种量是否成反比例,要说明理由。
给学生独立思考,互相交流的时间,说一说是怎样判断的,结论是什么。
学生可能会说:
●乒乓球的总个数一定,就是说每盒装的个数和需要的盒子乘积一定,每盒装的越多,需要的盒子就越少,反之,每盒装的越少,需要的盒子就越多。所以乒乓球总个数一定,每盒装的个数和需要的盒数成反比例。
●全班的总人数一定,男生和女生人数是相关联的两种量,但他们不是相乘的关系。
学生如果有其他说法,只要意思对,就给予肯定。
四、课堂练习
1、练一练第2题,先让学生自己读题并判断,然后指名汇报。
2、练一练第3题,完成表格再判断,交流时说出自己的想法。
3、练一练第4题,先帮助学生理解题,让学生明白大齿轮与小齿轮转数的关系,因为30:10=3,所以大齿轮转一圈,小齿轮转3圈,然后,说明在工业生产中,齿轮转的周数叫转机,让学生填表,并回答问题。
五、知识拓展
介绍成反比例的量可以用方格纸上的图表示,让学生课下自己阅读。
师:在学习正比例的时候,我们知道成正比例关系的量可以在方格纸上画图表示出来,其实成反比例的量也可以在方格纸上画图来表示。请同学们课下自己看一看知识窗里的内容,了解成反比例的量怎样用方格纸上的图表示。
六年级下册数学教案 篇七
教学目标:
通过复习使学生进一步理解角、垂直与平行、三角形和四边形的概念,掌握它们的特征和性质,以及各图形的联系。‘
教学过程:
1、直线、射线、线段。
提问:
1)分别说一说什么叫直线、射线、线段?
2)直线、射线和线段有什么区别?
完成123页上面的“做一做”。(学生笔做)
提问:
1)什么叫做角?
2)角的大小与什么有关?
整理:把表中的空格填写完整。
完成123页下面“做一做”的1题、2题。
2、锐角直角钝角平角周角
大于0°
小于90°
垂直与平行
提问:
1)在同一平面内,两条直线的相互位置有哪几种情况?
2)什么样的两条直线叫做互相垂直?
什么样的两条直线叫做互相平行?
回答:下面几组直线中,哪组的两条直线互相垂直?哪组的两条直线互相平
完成教材124页的“做一做”
提问:
1)什么叫做三角形?
2)在下面的三角形中,顶点A的对边是指哪一条边?
动笔做:以顶点A的对边为底,画出三角形的高,并标出底和高。(前页一幅图)
在下面的表中填写三角形的名称和各自的特征。
名称
图形
特征
回答:锐角三角形、直角三角形、钝角三角形的联系与区别。
3、四边形
提问:什么叫四边形?
回答:看图说出下面各图的特点,再说一说图中各字母表示什么
想一想:为什么说长方形、正方形都是特殊的平行四边形?为什么说正方形是特殊的长方形?
完成125页“做一做”中的1、2题。
夫参署者,集众思,广忠益也。上面这7篇六年级数学下册教案就是快回答为您整理的六年级下册数学教案范文模板,希望可以给予您一定的参考价值。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。