作为一位杰出的教职工,时常要开展教案准备工作,编写教案助于积累教学经验,不断提高教学质量。那要怎么写好教案呢?下面快回答为大家整理了9篇有理数优秀教案,希望可以帮助您更好的写作有理数教案。
有理数优秀教案 篇一
学习目标:
1.理解有理数加法意义
2.掌握有 理数加法法则,会正确进行有理数加法运算
3.经历探究有理数有理数加法法则过程,学会与他人交流合作
学习重点:和 的符号的确定
学习难点:异号两数相加的法则
学法指导:
在探讨有理数的加法法则问题时,利用物体在同一直线上两次运动的过程,理解有理数运算法则。先仔细观察式子的特点,找到合理的运算步骤,使加法运算简便。
学习过程
(一)课前学习导引:
1. 如果向东走5米记作+5米,那么向西走3米记作
2. 比较 大小:2 -3,-5 - 7,4
3. 已知a=-5,b=+ 3, 则︱a ︳+︱ b︱=
(二)课堂学习导引
正有理数及0的加法运算,小学已经学过,然而实 际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它 们的和叫做 净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球。于是
(1)红队的净胜球数为 4+(-2) ,
(2)蓝队的净胜球数为 1+(-1) 。
这里用到正数和负数的加法。那么,怎样计算4+(-2),1+(-1)的结果呢?
现在让我们借助数轴来讨论有理数的加法:某人从一点出 发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?规定向东为正,向西为负,请同学们用数学式子表示
①先向东走了5米 ,再向东走3米 ,结果怎样?可以 表示为
②先向西走了5米,再向西走了3米,结果如何?可以表示为:
③先向东走了5米,再向西走了3米,结果呢?可以表示为:
④先向西走了5米,再向东走了3米,结果呢?可以表示为:
⑤先向东走了5米,再向西走了5米,结果呢?可以表示为:
⑥先向西走5米,再向东走5米,结果呢?可以表示为:
从以上几个算式中总结有理数加法法则:
(1)、同号的两数相加,取 的符号,并把 相加。
(2).绝对值不相等的异号两数相加, 取 的加数 的 符号, 并用较大的绝对值 较小的绝对值。 互为相反数的 两个数相加得 .
(3)、一个数同0相加,仍得 。
例1 计算(能完成吗,先自己动动手吧!)
(-3)+( -9) (2)(-4.7)+3.9
例2 足球循环赛中,
红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算 各队的 净胜球数。
解:每个队的进球总数记为正数,失球总数记为负数,这 两数的和为这队的净胜球数。
三场比赛中,
红队共进4球,失2球,净胜球数为(+4)+(2)=+(42 )= ;
黄队共进2球,失4球,净胜球数为(+2)+(4)= (4
蓝队共进( )球,失( )球, 净胜球数为 = 。
(三)课堂检测导引:
(1)(-3)+(-5)= ; (2)3+(-5)= ;
(3)5+(-3)= ; (4)7+(-7)= ;
(5)8+(-1)= ; (6)(-8)+1 = ;
(7)(-6)+0 = ; (8)0+(-2) = ;
(四)课堂学习小结
1.本节课中你学到了什么知识?
2.你觉得有理数加法比较难掌握的是哪里?
(五)学后拓延导引
1.计算:
(1)(-13)+(-18); (2)20+(-14);
(3)1.7 + 2.8 ; (4)2.3 + (-3.1);
(5) (- )+(- ); (6)1 +(-1.5 );
(7)(-3.04)+ 6 ; (8) +(- ).
2.判断题:
(1)两个负数的和一定是负数; ( )
(2)绝对值相等的两个数的和等于零; ( )
(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数; ( )
(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数。 ( )
3.当a = -1.6,b = 2.4时,求a+b和a+(-b)的。值。
有理数优秀教案 篇二
[教学目标]
1.掌握有理数的概念,会对有理数按照一定的标准进行分类;
2.了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3.体验分类是数学上常用的处理问题的方法。
[教学重点]
正确理解有理数的概念
[教学难点]
正确理解分类的标准和按照定的标准进行分类
[教学过程]
一、创设情境,引入新课(2分钟)
在前两个学段,我们已经学习了很多不同类型的数,通过上节课的学习,又知道了现在的数包括了负数。现在请同学们任意写出3个数(找3个同学在黑板上写),把它们分类,并说出你的理由。
二、出示自学提纲(8分钟)
认真阅读课本P7-8内容,完成P8练习并回答下面的问题:
有理数有几种分类方法?分类的标准是什么?
正整数、0、负整数统称_______,正分数和负分数统称__________
整数和分数统称____________
三、检查自学效果(10分钟)
1.把下列各数填入它所属于的集合的圈内:
15,-,-5,,,0.1,-5.32,-80,123,2.333.
2.把下列数填在相应的大括号里:
-4,0.001,0,-1.7,15,.
正数集合{…},负数集合{…},
正整数集合{…},分数集合{…}
3.0是整数吗?自然数一定是整数吗?0一定是正整数吗?整数一定是自然数吗?
四、讨论更正,合作探究(8分钟)
1.学生自由更正,各抒已见。
2.引导学生讨论,说出错因和更正的道理。
3.引导学生归纳,上升为理论,指导以后的运用。
五、课堂小结(2分钟)
教师指导学生总结归纳本节课所学知识
六、当堂检测(见下页)(12分钟)
七、布置作业
预习P8-9数轴,完成P14习题1.2第1题
当堂检测内容:
1.下列各数,哪些是整数?哪些是分数?哪些是正数?哪些是负数?
+7,-5,,,79,0,0.67,,+5.1
3.最小的自然数是_______,最大的负整数是_______,最小的非负整数是_______。
4.-2.18是。
(A)是负数不是分数(B)不是分数是有理数
(C)是负数也是分数(D)是分数不是有理数
5.下列说法正确的是。
(A)零是最小的整数(B)有这样的一种数,它既是正数也是负数
(C)有这样的一种数,它既不是正数也不是负数(D)有理数中有最小的数,没有最大的数
6.在下列各数中,所属集合正确的是。
-2,0.23,-,0,8,-0.1,3,-2.5
(A)正整数集合:{0,3,8}(B)整数集合:{-2,0,3,8}
(C)负数集合:(D)负分数集合:
初一上册数学《有理数》教案 篇三
教学目标:
1、明白生活中存在着无数表示相反意义的量,能举例说明;
2、能体会引进负数的必要性和意义,建立正数和负数的数感。
重点:通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。
难点:对负数的意义的理解。
教学过程:
一、知识导向: 本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。
二、新课拆析: 1、回顾小学中有关数的范围及数的分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。 如:0,1,2,3,…,,
2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的对立面。
如:汽车向东行驶 3千米和向西行驶2千米
温度是零上10°C和零下5°C; 收入500元和支出237元; 水位升高1.2米和下降0.7米; 3、上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的数很难区分具有相反意义的量。
一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“—”号来表示。
如:在表示温度时,通常规定零上为“正”,零下为“负”即零上10°C表示为10°C,零下5°C表示为-5°C 概括:我们把这一种新数,叫做负数,如:-3,-45,… 过去学过的那些数(零除外)叫做正数,如:1,2.2… 零既不是正数,也不是负数 例:下面各数中,哪些数是正数,哪些数是负数, 1,2.3,-5.5,68,-,0,-11,+123,…
三、阶梯训练: P18 练习:1,2,3,4。
四、知识小结:
从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。
五、作业巩固:
1、每个同学分别举出5个生活中表示相反意义量的的例子;并用正、负数来表示; 2、分别举出几个正数与负数(最少6个)。 3、P20习题2.1:1题。
初一上册数学《有理数》教案 篇四
教学目标:
知识能力:理解有理数的概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。
过程与方法:经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。
情感态度与价值观:通过本课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:掌握有理数的两种分类方法
教学难点:会把所给的各数填入它所属于的集合里
教学方法:问题引导法
学习方法:自主探究法
一、情境诱导
在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的做出下面的题目。
1.有下面这些数:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33
(1)将上面的数填入下面两个集合:正整数集合{ },负整数集合{ },填完了吗?
(2)将上面的数填入下面两个集合:整数集合{ },分数集合{ },填完了吗?
把整数和分数起个名字叫有理数。(点题并板书课题)
二、自学指导
学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
附:自学提纲:
1.___________、____、_______统称为整数,
2._______和_________统称为分数
3.____ ______统称为有理数,
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数: 、分数: ;正整数: 、负整数: 、正分数: 、负分数:.
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.
2.判断下列说法是否正确,并说明理由。
(1)有理数包括有整数和分数。
(2)0.3不是有理数。
(3)0不是有理数。
(4)一个有理数不是正数就是负数。
(5)一个有理数不是整数就是分数
3.所有的正整数组成正整数集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):
杨桂花:1.2.1有理数教学设计
正数集合:{ …} 负数集合:{ …}
正整数集合:{ … } 负分数集合:{ …}
4.下列说法正确的是( )
A.0是最小的正整数
B.0是最小的有理数
C.0既不是整数也不是分数
D. 0既不是正数也不是负数
5、下列说法正确的有( )
(1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数和负分数(4)正数和负数统称为有理数(5)一个有理数,它不是整数就是分数
五、总结与反思:通过本节课的学习,你有什么收获?
六、作业:必做题:课本14页:1、9题
初一上册数学《有理数》教案 篇五
教学目标:
1、理解有理数的概念,懂得有理数的两种分类,及对一个有理数进行分类判别;
2、在数的分类中,应加强对负数的理解及对零在数分类中的特殊意义的理解。
重点:在引进负数后,能对已有的各种数进行概括,理解有理数的意义,及有理数的两种不同分类的重要意义。
难点:在对有理数的认识上,应加强对负数及零的重视,明确两者在有理数集的地位与作用。
教学过程:
一、知识导向:
通过上节课对“负数“概念的引入,通过对数范围的补充及扩大,进一步引入了有理数的概念,并对扩大后的数的范围进行重新分类。
二、新课拆析:
1、引例:(1)请学生说出负数的特征,并指出实例说明。
(2)以第(1)题中,学生所回答的数进一步分析,不同数的不同特点。
2、通过对“负数”的引入,从我们所接触的数可发现有这样几类:
正整数:如1,2,34,…
零:0
负整数:如-1,-3,-5,…
正分数:如 …
负分数:如 -0.3,…
由此我们有:
概括:正整数、零和负整数统称为整数;
正分数、负分数统称为分数;
整数和分数统称为有理数。
然后根据我们的概括,我们可以对有理数进行如下的分类
分类一: 分类二:
正整数 正整数
整数 零 正有理数 正分数
有理数 负整数 有理数 零
分数 正分数 负有理数 负整数
负分数 负分数
3、有关集合的简单知识:
概括:把一些数放在一起,就组成一个数的集合,简称为数集;
所有的有理数组成的数集叫做有理数集;
所有的整数组成的数集叫做整数集;……
例:把下列各数填入表示它所在的数值的圈里:
-18,3.1416,0,20__,-0.142857,95%
正整数 负整数
整数集 有理数集
三、巩固训练: P20 ,练习:1,2,3
四、知识小结:
从有理数的分类入手,就着重于各类数的特点,特别是正,负及零的处理。
五、作业:
P20-21 习题2.1:2,3,4
有理数优秀教案 篇六
【目标】:
1、掌握正数和负数概念;
2、会区分两种不同意义的量,会用符号表示正数和负数;
3、体验数学发展是生活实际的需要,激发学生数学的兴趣。
【重点难点】:
正数和负数概念
【导学指导】:
一、知识链接:
1、小学里学过哪些数请写出来:
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)
回答下面提出的问题:
3、在生活中,仅有整数和分数够用了吗有没有比0小的数如果有,那叫做什么数
二、自主学习
1、正数与负数的产生
(1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子: 。
(2)负数的产生同样是生活和生产的需要
2、正数和负数的表示方法
(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个+(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上(读作负)号来表示,如上面的3、8、47。
(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示、
3、正数、负数的概念
1)大于0的数叫做 ,小于0的数叫做 。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【课堂小练】:
1、 P3第一题到第四题(直接做在课本上)。
2、小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,—4万元表示________________。
3、已知下列各数: 3、14,+3065,0,—239;
则正数有_____________________;负数有____________________。
4、下列结论中正确的是 ( )
A、0既是正数,又是负数 B、O是最小的正数
C、0是最大的负数 D、0既不是正数,也不是负数
5、给出下列各数:—3,0,+5+3、1,2004,+2010;
其中是负数的有 ( )
A、2个 B、3个 C、4个 D、5个
【要点归纳】:
正数、负数的概念:
(1)大于0的数叫做 ,小于0的数叫做 。
(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【拓展训练】:
1、零下15℃,表示为_________,比O℃低4℃的温度是_________。
2、地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为—5米,其中最高处为_______地,最低处为_______地、
3、甲比乙大—3岁表示的意义是______________________。
4、如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。
初一上册数学《有理数》教案 篇七
教学目的:
1.了解计算器的性能,并会操作和使用;
2.会用计算器求数的平方根;
重点:用计算器进行数的加、减、乘、除、乘方和开方的计算;
难点:乘方和开方运算;
教学过程:
1.计算器的使用介绍(科学计算器)
初一上册数学一单元教案。png
2.用计算器进行加、减、乘、除、乘方、开方运算
例1用计算器求下列各式的值。
(1)(-3.75)+(-22.5) (2)51.7(-7.2)
解(1)
初一上册数学一单元教案。png
(-3.75)+(-22.5)=-26.25
(2)
初一上册数学一单元教案。png
51.7(-7.2)=-372.24
说明输入数据时,按键顺序与写这个数据的顺序完全相同,但输入负数时,符号转换键要放在数据之后键入。
随堂练习
用计算器求值
1.9.23+10.2 2.(-2.35)×(-0.46)
答案1.37.8 2.1.081
有理数优秀教案 篇八
【教学目标】
知识目标:
1.理解自然数、分数的产生和发展的实际背景。
2.通过身边的例子体验自然数与分数的意义和在计数、测量、标号和排序等方面的应用。
能力目标:
1.通过同学之间的交流、讨论,以面对面互动的形式,完成合作交流,培养良好的与人合作的精神,感受集体的力量,体验成功的喜悦。
2.从具体的例子使学生感受数学来源于生活,生活离不开数学,从而增加学习数学的兴趣。
【教学重点、难点】
重点:自然数和分数的意义及运用自然数、分数的计算解决简单的实际问题。
难点:用自然数、分数(小数)的计算解决简单的实际问题。
【教学过程】
一、新课引入
小学里,我们学习了自然数和分数,这节课我们就来回顾一下这部分的内容:从自然数到分数。
二、新课过程
用多媒体展示杭州湾大桥效果图,并显示以下报道:世界上最长的跨海大桥杭州湾大桥于2003年6月8日奠基,这座设计日通车量为8万辆,全长36千米的6车道公路斜拉桥,是中国大陆的第一座跨海大桥,计划在5年后建成通车。
师问:你在这段报道中看到了哪些数?它们都属于哪一类数?
学生很快解决这两个问题之后,由上面这几个数,师生共同得出自然数的几个应用:
⑴属于计数如8万辆、5年后、6车道 ⑵表示测量结果如全长36千米 ⑶表示标号和排序如2003年6月8日、第一座等
显示以下练习让学生口答
下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?
(1)2002年全国共有高等学校2003所。 (标号和排序 计数)
(2)小明哥哥乘1425次列车从北京到天津,然后乘15路公交车到了小明家。(标号和排序 标号和排序)
(3)香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止是世界上第5高楼。 (测量结果,计数,标号和排序,标号和排序)
做完练习之后师:随着生活和生产的需要,自然数已经不能满足实际需要了。如
(1)小华和她的7位朋友一起过生日,要平均分享一块生日蛋糕,每人可得多少蛋糕?(18 )
(2)小明的身高是168厘米,如果改用米作单位,应怎样表示?(1.68米)
由于分配和测量等实际需要而产生了分数(如第(1)题)和小数(如第(2)题),它们是表示量的两种不同方式,分数小数之间可以互相转化。分数可以化为小数,因为分数可以看作两个整数相除 如35 =35=0.6,13 =0.333反过来小学里学过的小数都可以化为分数,如0.31=31100
三、典例分析
利用自然数、分数的运算可以解决一些实际问题
例1 (多媒体展示)详见书本合作学习第1题
师:请同学们分小组进行讨论,帮助小惠合理地安排时间,在列算式之前,首先解决以下几个问题
(1)从温州出发到21:40在杭州上火车,这一段时间包括哪几部分时间?
(2)市内的交通和检票进站要花30到40分钟,这两个数据在计算时用哪个数据?
(3)最迟的含义是什么?
由一学生回答,而后给出解题思路
用自然数列: 400100=4(时)
21时40分4时40分=17时
用分数列: 400100=4(时)
2123 时4时23 时=17时
由上题可以看到许多实际问题可以通过自然数和分数的运算得到解决。
例2 (多媒体展示)详见书本合作学习第2题
师:请同学们思考我们要解决的问题涉及哪几个量?他们之间有怎样的数量关系?
生:有销售总额度,发行成本,社会福利资金,中奖者奖金
他们之间的关系:销售总额度=发行成本+社会福利资金+中奖者奖金
发行成本=15% 销售总额度
(1)中奖者奖金总额:4000-15%4000-1400=2000(万元)
(2)以小组为单位进行探究活动,而后由一学生回答给出解题思路
思路1:在社会福利资金提高10%,发行成本保持不变,中奖者奖金总额减少6%的情形下:
销售总额度为:600+1400(1+10%)+2000(1-6%)=40204000 所以方案不可行。
思路2:在销售总额度不变的条件下,为使社会福利资金提高10%,发行成本保持不变
这时中奖者奖金总额变为:4000-1400(1+10%)-600=1860(万元)
原来的奖金总额是2000万元,减少了(2000-1860)2000=7%6% 所以方案不可行。
思路3:销售总额度=发行成本+社会福利资金+中奖者奖金 在这个式子中,由于销售总额与发行成本保持不变,当提高的社会福利资金等于减少的中奖者奖金额时,这种方案可行,否则不可行。所以问题(2)可以用如下算式求解:20006%=120(万元) 140010%=140(万元)因为120140,所以方案不可行。
也可以用20006%-140010%=120-140
算式中被减数小于减数,能否用已学过的自然数和分数来表示结果?看来数还需作进一步的扩展,这就是我们下节课要讲的内容,在很多实际生活中,还存在着许多自然数、分数还不能满足人们生活和生产实际的需要的例子,请举个例子?(气温零上温度与零下温度的表示,飞机上升5米与下降5米的表示等)
课内练习见书本1和2 (注第2题首先让学生了解一米有多长,再估计)
四、探究学习
1 .由于商场在搞活动,一件衣服的价格先上涨了10%,后又下降了10%,则此时这件衣服的价格比原价是贵了还是便宜了?
五、小结
可采用先让学生谈谈本节课所学,然后教师补充的形式。本节课主要讲了自然数、分数的意义及会用自然数、分数的计算解决简单的实际问题。
六、布置作业
有理数优秀教案 篇九
一、知识与能力
掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力
二、过程与方法
经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算
三、情感、态度、价值观
培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性*快回答 www.kuaihuida.com*
四、教学重难点
一、重点:熟练进行有理数的乘除运算
二、难点:正确进行有理数的乘除运算
预习导学
通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律
五、教学过程
一、创设情景,谈话导入
我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律
二、精讲点拨质疑问难
根据预习内容,同学们回答以下问题:
1.有理数的乘法法则:
(1)同号两数相乘___________________________________
(2)异号两数相乘_____________________________________
(3)0与任何自然数相乘,得____
2.有理数的乘法运算律:
(1)乘法交换律:ab=_________
(2)乘法结合律:(ab)c=_______
(3)乘法分配律:(a+b)c=________
3.有理数的除法法则:
除以一个不等于0的数,等于乘这个数的__________
比较有理数的乘法,除法法则,发现_________可能转化为__________
三、课堂活动强化训练
某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?
注:学生分组讨论练习,教师在巡视过程中,引导、辅导部分基础较差的学生后,各小组进行交流,总结
四、延伸拓展,巩固内化
例2.(1)若ab=1,则a、b的关系为( )
(2)下列说法中正确的个数为( )
0除以任何数都得0
②如果=-
1,那么a是非负数若若⑤(c≠0)⑥( ) ⑦1的倒数等于本身
A 1个B 2个C 3个D 4个
(3)两个不为零的有理数相除,如果交换被除数与除数的关系,它们的商不变( )
A两数相等B两数互为相反数
C两数互为倒数D两数相等或互为相反数
熟读唐诗三百首,不会做诗也会吟。以上就是快回答给大家分享的9篇有理数优秀教案,希望能够让您对于有理数教案的写作更加的得心应手。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。