1. 主页 > 知识大全 >

小数乘整数教学设计(优秀8篇)(小数乘整数教学方案撰写实例)

作为一名优秀的教育工作者,有必要进行细致的教学设计准备工作,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。一份好的教学设计是什么样子的呢?为了让大家更好的写作小数乘整数相关内容,快回答精心整理了8篇小数乘整数教学设计,欢迎查阅与参考。

小学五年级数学《小数乘整数》教案 篇一

教学目标:

1、正确进行小数乘整数的竖式计算。

2、通过转化、对比的方法理解小数乘整数竖式计算的算理。

3、培养转化的思想方法和探究新知的本领。

教学重点:

正确进行小数乘整数的竖式计算。

教学难点:

理解小数乘整数竖式计算的算理。

教学准备:

多媒体课件等。

教学过程:

一、谈话导入:

同学们,你们经常到超市买东西吗?会算价钱吗?今天也有两个小朋友到超市买了一些东西,我们来替他们算一算所买物品需要多少钱,行吗?

多媒体出示:

1、口答 :

(1)一个风筝3.5元,小红买两个这样的风筝,一共需要多少钱?

(2)橡皮每块0.8元,小刚买3块这样的橡皮需要多少钱?

学生思考后,指名学生说说答案。

师:这两道题和我们以往的题目有什么不同?(学生回答)

师:小数乘法在我们的生活中应用非常广泛,这节课我们将继续学习小数乘整数的计算方法。板书:小数乘整数

二、新授

探究一:推导小数乘整数的计算原理。

1、7.2×3=?

师:你是怎么想的?(小组讨论)

待学生思考后,指名回答。

师引导学生复述:先将7.2扩大10倍得到72,72×3=216,再将216缩小10倍(缩1小到它的)得到21.6 10

2、师: 0.72×3=?又该怎样转换呢?

指名回答。出示答案。比较两道题的异同。

小结:计算小数乘整数时,先将小数转化成整数,再计算。

3、0.072×3=?

探究二:小数乘整数的竖式计算。

如果用竖式计算,该怎样列式呢?

1、尝试练习

竖式计算:7.2×3=?

(学生可能的答案:

2、学生尝试竖式计算:0.72×5=?

教师巡视,学生独立完成,反馈时教师给出完整板书。重点:让学生结合板书讲清算理,)

(整体板书:

7 2 5 1 × ) 3.6 3 6 0 0.7 2 5 × 扩大到它的100倍 (集体纠错,教师板演。) 7. 2 2 1. 6

师:关于小数乘整数的竖式计算,你还有什么疑问?你认为哪个地方最容易出错?

不计算你能判断出积是几位小数吗?你是怎么判断的?(随机出示几道题让学生判断如:1.2×12,0.023×34, 76×2.04 )

归纳:小数乘整数的竖式计算。先把小数扩大到它的n倍,使它成为整数,按照整数乘法的法则算出积,再把积缩小n倍,点上小数点。小数末尾有“0”可以去掉。

三、学生分层练习

四、小结:

小数乘整数的竖式计算。先把小数扩大到它的n倍,使它成为整数,按照整数乘法的法则算出积,再把积缩小到它的1/n,点上小数点。积的末尾有“0”可以去掉。

小数乘以整数 篇二

[ 作者:佚名转贴自:910中国教育交流网点击数:12更新时间:2005-4-4文章录入:云中漫步 ]

[教学目标]

1.理解小数乘以整数的意义,掌握它的计算方法。

2.通过运用迁移的方法学会新知识,培养类推的能力。

3.培养学生认真观察、善于思考的学习习惯。

[教学过程]

本节课分四个环节进行。

课前谈话:同学们已学习了小数加法和减法的意义及计算方法,这学期要在这个基础上,继续学习小数乘法和除法的意义及计算方法等知识。今天,我们先学习。出示课题:小数乘以整数

(一)复习旧知,引入新知

1.指名板演。(用竖式计算)

65×5=976×14=

订正时,可让学生说说整数乘法的意义及计算方法。

2.口答。(出示投影片)

(1)填空。

5.6扩大()倍是56。

9.76扩大()倍是976。

(2)去掉下面各数的小数点后,分别扩大多少倍?

3.24.780.0370.06

(3)下面各数分别缩小10倍、100倍、1000倍后各是多少?

485853450

3.填表,并说一说你发现了什么规律。(出示投影片)

订正时要注意引导学生先从左向右观察:一个因数不变,另一个因数扩大10倍、100倍、1000倍,积也随着扩大10倍、100倍、1000倍。

再引导学生从右向左观察发现:一个因数不变,另一个因数缩小10倍、100倍、1000倍,积也随着缩小10倍、100倍、1000倍。

最后归纳出:一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍……,积也随着扩大(或缩小)10倍、100倍、1000倍……。

教师谈话:刚才我们复习了整数乘法的意义和计算方法,小数点位置的移动引起小数大小的变化规律,及因数的变化引起积的变化规律,这些知识都是为今天学习新知识做准备。下面我们运用这些知识一起研究。

教学意图:让学生充分回忆旧知识,为学习新知识进行迁移做好准备。教师要注意让全体学生参与,动口、动手、动脑。

(二)运用迁移,学习新知

1.理解小数乘以整数的意义。

出示例1:花布每米6.5元,买5米要用多少元?

读题后,请学生列出加法算式并板书:

6.5+6.5+6.5+6.5+6.5

提问:这个加法算式中的加数有什么特点?这样的加法算式怎样计算比较简便?

(几个加数相同,都是小数。求n个相同加数的和可以用乘法计算比较简便。)

提问:你能列出乘法算式吗?想一想它的意义是什么呢?

(6.5×5,表示5个6.5相加是多少,或6.5的5倍是多少)

板书:6.5×5

教师:6.5×5是小数乘以整数,小数乘以整数的意义是什么呢?

出示思考题,并组织学生讨论。

(1)小数乘以整数的意义与整数乘法的意义相同吗?(相同)

(2)它们有什么不同?(小数乘以整数中的几个相同加数是小数,而整数乘法中的几个相同加数仅限于整数)

(3)小数乘以整数的意义是什么呢?

讨论后概括出:小数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

练一练,说出下列各题的意义。

0.9×463×68.4×15

(4个0.9相加的和是多少?6个63相加的和是多少?15个8.4相加的和是多少?)

2.理解法则。

教师:我们学习了小数乘以整数的意义,下面继续研究它的计算方法。同学们可联系前面复习的知识,认真思考,积极发言。

出示思考题,组织学生讨论,并试做。

(1)怎样把6.5×5转化为整数乘法进行计算?

(2)把6.5×5转化为整数乘法后,积发生了什么变化?

(3)要想使积不变,应该怎么办?

讨论后,教师指名回答,并板书学生的思考过程。

答:买5米要用32.5元。

教学意图:让学生初步理解。采用的方法是让学生在旧有知识的基础上运用迁移的方法,通过讨论、尝试,自己探索新知。

(三)反馈调节,归纳方法

1.反馈调节。

(1)完成“做一做”。(指名板演,其他同学在练习本上完成)

14个9.76是多少?

练习时,要注意行间巡视;订正时,根据学生的问题及时调节。

(2)计算。

0.86×70.375×124(指名板演,其他同学在练习本上完成)

订正时,要让学生说一说计算时是怎样想的。

2.归纳方法。

观察并讨论:例题和练习题每题的积的小数位数与被乘数小数位数有什么关系?小数乘以整数的计算方法是什么?

(积的小数位数和被乘数小数位数相同)

总结计算方法:小数乘以整数,先按整数乘法法则算出积,再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。

总结后,组织看课本,让学生提问题。

教学意图:在练习的基础上,进一步理解算理,并通过学生观察、讨论,自己发现规律,总结计算方法。

(四)巩固练习,孕伏发展

1.说出下面各式的意义。

0.8×43.5×719.6×12

2.下面各题的积有几位小数?看谁说得又对又快。

4.3×80.72×63.726×80.54×7

3.根据282×12=3384,不用计算直接说出各式的积。

28.2×12=2.82×12=0.282×12=

4.列出乘法算式,并计算。(全班动笔)

(1)5个2.05是多少?(2)4.95的7倍是多少?

5.计算。

0.45×1081.056×25(可分组进行)

订正:0.45×108=48.6,1.056×25=26.4,这两题的积的末尾是0,应先数好积的小数位数,点上小数点,再消去“0”。

6.小明看到远处打闪以后,经过4秒钟听到雷声,已知雷声在空气中每秒传播0.33千米,打闪的地方离小明多远?(从打闪起到看到闪电的时间略去不算)

解题前,要向学生说明看见的闪电是光,光在空气中的速度是每秒传播30万千米,远远大于声音在空气中的速度。因此从打闪起到看到闪电的时间可略去不记。

订正:0.33×4=1.32(千米)

7.课堂小结。

小结前,可先让学生提出问题,解疑后,再总结。

8.孕伏发展。

计算6.5×0.56.5×0.82

教师:你们知道这两个算式的意义吗?应该怎样计算呢?这是下节课要研究的内容。同学们如有兴趣,课后可以想一想。

小学五年级数学《小数乘整数》教案 篇三

教学目标:

1、依托现实情境,引导学生运用转化思想,沟通小数乘整数与整数乘法之间的联系和区别,从而理解小数乘正数的算理和计算方法。

2.自主探索小数乘整数的计算方法,在观察比较,合作交流中经历知识发生发展的全过程,让学生能正确地计算小数乘整数,提高计算能力。同时培养学生的估算意识和观察、比较、分析概括的能力及知识迁移能力。

3.培养学生的估算意识,渗透转化思想,感受小数乘法在生活中的应用。

教学重点:

理解小数乘整数的算理及计算方法。

教学难点:

理解算理。因数扩大一定倍数,积也会扩大相同倍数,为了使积不变2,就要将积缩小相同倍数。

教学关键:

正确应用因数与积的变化规律进行知识转化。

教学流程设计:

一、复习铺垫

1、0.09米=()厘米3.5元=()角

150千克=()吨 42米 =()千米

2、0.45扩大10倍是( )75缩小它的1/10是 ( )

扩大100倍是( ) 缩小到它的1/100倍是()

扩大1000倍是() 缩小它的1/1000倍是( )

3、0.725去掉小数点,比原来()倍

4、13×12=156

13×120= ( )

13×1200=( )你是怎么想的?

(设计意图:小数与整数的互相转化是学习本课的主要思维方法,而因数与积的变化规律则是转化的主要依据。通过口答练习,为学生探究新知作好知识和思维上的准备)

二、自主探索

一、依托现实情境,初步感悟

1、出示例1情景图,根据信息提出数学问题

选择买3个3.5元的风筝要多少钱进行讨论

(估算大约要多少钱)

2、独立思考,汇报交流

可能会有下列方法:

方法1:连加 。

方法2:化成元角分计算,先算整元,再算整角,最后相加。

方法3:竖式笔算35角×3=105角。

方法4:竖式笔算3.5元×3=10.5元 。

着重请方法4的同学说说是怎么想的。

3、用自己喜欢的方法解决学生提出的其他问题之一

4、小结并揭题:刚才我们在解决买风筝一共用多少钱时,想到了不同的方法。我们发现以元作单位的小数乘整数,可以化成以角或分做单位的整数乘法来进行计算。

(设计意图:依托现实情境,让学生根据生活经验,用不同方法解决现实问题。然后通过对方法4的着重讨论,在培养学生估算、计算能力的同时,感悟小数成整数还可以先转化成整数进行计算,初步感悟算理和计算方法)

二、自主探究,进一步理解算理,掌握计算方法

1、出示0.72×5

现在0.72不再表示钱数,没有了具体的单位,你还能计算出它的得数吗?

2、学生先独立计算然后小组交流

3、汇报演示。

板演计算过程,呈现思考过程

交流时:

(1)估算,得数是否可能正确

(2)重点引导学生说清是怎样把乘数转化成整数的,乘积又是如何处理的,为什么可以这样转化?将思考过 程板演化。(通过交流和板演,在引导学生描述转化过程的同时进一步理解算理,掌握算法。)

(3)指出积末尾的0一般的处理方法。

4、反馈练习。

竖式计算14.5×8 3.06×5(注意末尾0的处理)

5、小结

(设计意图:通过独立思考与合作交流,让学生自主探索, 获取小数乘整数的计算方法,进一步理解算理,掌握算法,提高计算能力。)

三、巩固联系

1、对比练习:做一做1(比较小数乘整数与整数乘法的联系和区别,进一步沟通两者联系,理解算理,提高计算能力)

2、明辩是非:(培养学生认真仔细的良好计算习惯,正确处理积的小数点)

2. 41.3 50.2 5

×6× 3× 8

-------- -----------------

1 2 .4 4 0 .52 0 0

3、笔算。7.08×69.35×8

4、实际问题解决。奉化到宁波40.6千米,来回一趟多少千米?

四、课堂总结

五、趣味练习

根据45×19=855,直接说出下列算式得

45×190 =45×1.9=

4.5 ×19 =4.5×1.9=

0.45×19 = ( )×( )=0.855

(根据因数与积的变化规律填空,前2-4题是对本课的巩固,后两题是拓展提升,运用知识迁移,让学生感受整数乘法与小数乘整数和小数乘小数是一脉相承的。有利于培养学生的众向思维培养。)

板书设计小数乘整数

3.5×3=10.5 0.72×5

3.5 -- -3 50.72 扩大到它的100倍 7 2

× 3×3 × 5 × 5

10.5元 ----105角 3.60缩小到它的1/100360

课后反思 :

这节课是小数乗整数的第一课时,主要是让学生理解小数乗整数的意义,掌握小数乗整数的计算法则,培养学生主动获取新知的能力。为了能让学生轻松的掌握新知,我努力的做到了以下几点:

一、复习了整数乘法的意义及整数乘法中由因数变化引起积的变化规律,为学生学习“小数乘整数”做好了铺垫,尤其是掌握了积的变化规律,为学习小数乗整数的算理有很大的帮助。

二、创设了一个“购买风筝”的情境,从而激发了学生的学习兴趣。在解决实际问题中自然的引出了小数乗整数的学习内容,使学生感到亲切自然,学生在浓厚的兴趣中探索新知。

三、在学习过程中,我注重学生的独立思考,如解决实际问题时,我让学生小组合作思考交流解决的方法,在师生的交流学习中,让学生充分的表达自己的观点与计算方法,从而得到许多有创造性的解决办法。然后在老师的启发引导下帮助学生较好地理解小数乘整数的算理及方法。

总之,这节课更关注学生的学习过程,在思考交流的学习中,给不同的学生思维发展的空间,促进了学生的发展。

小数乘以整数 篇四

教学目标

(一)理解小数乘以整数的意义,掌握小数乘以整数的计算方法。

(二)理解“被乘数有几位小数,就从积的右边起数出几位,点上小数点”的计算方法的道理。

(三)培养抽象、概括的能力。

教学重点和难点

掌握小数乘以整数的计算方法,并理解“被乘数有几位小数,就从积的右边起数出几位,点上小数点”计算方法的道理。

教学过程设计

(一)复习准备

1.先说出下列算式的意义,再口算:

17×2 5×16 4×30 126×1

56×10 28×100 15×4 65×0

小结:

(1)整数乘法的意义是什么?

(2)整数乘法的计算方法是什么?

2.口算下列各题,并观察积的变化有什么规律?

观察思考:

(1)从左往右看,积有什么变化?为什么会发生这样的变化?积的变化有什么规律?

(2)从右往左看,积有什么变化?积的变化有什么规律?

小结:积的变化规律是怎样的?(在乘法里,一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍、……积也扩大(或缩小)10倍、100倍、1000倍、……)3.填空:

(1)1.5扩大10倍是( );

(2)2.25扩大( )倍是225;

(3)1.2扩大( )倍是12;

(4)38缩小10倍是( );

(5)85缩小( )倍是0.85;

(6)270缩小( )倍是27。

(二)学习新课

1.创设情境

同学们,你们经常为家里买东西吗?你会算帐吗?请举例。

一天,妈妈要小芳去买5米花布,小芳来到商店,选中了一种带有弯弯的月亮和星空的图案的花布。每米6.5元,买5米要用多少元?谁来帮小芳算算?(教师口述,同时板书例1。)

2.引导发现

(1)通过列式,理解小数乘以整数的意义。

学生根据题意列式:6.5+6.5+6.5+6.5+6.5。

这个加法算式有什么特点?(加数相同。)

根据这一特点,你还能用别的方法表示吗?

6.5×5。

6.5×5表示什么?(6.5×5表示5个6.5的和或6.5的5倍。)

你能说出下列算式表示什么?

2.7×5 5.8×4 3.54×2 1.63×11

小结:

小数乘以整数的意义是什么?(求几个相同加数的和的简便运算。)

小数乘以整数的意义与什么算式的意义相同?(小数乘以整数的意义与整数乘法的意义相同。)

说明整数乘法的意义也适用于小数乘以整数。

(2)计算:

思考、讨论:6.5×5应如何计算呢?

提示:能不能把6.5转化成整数呢?转化后积会发生什么变化?

学生试做。

用投影打出学生做的过程,并由学生讲解:

①6.5×5=6.5+6.5+6.5+6.5+6.5=32.5(元);

讨论以上几种算法,哪种对,哪种不对,为什么?(①结果正确,方法不简便;②不对,因为325是65×5的积,不是6.5×5的积;③对,把6.5扩大10倍是65,用65×5=325,积325也扩大了10倍;要使积不变,325必须要缩小10倍,才是6.5×5的积。)

学生重点讲解法③的道理,教师板书:

(先把6.5扩大10倍成65,再按照整数乘法的计算方法计算65×5=325,再把乘出来的积325缩小10倍是32.5。)

答:5米要用32.5元。

小结:

计算小数乘以整数的思路是什么?(把小数乘法转化成整数乘法计算。)

转化的方法是怎样的?(先把小数扩大成整数,按照整数乘法去计算,因数扩大了多少倍,积就要缩小多少倍。)

(3)填空,并讲出道理。

(4)小结,引导学生得出计算方法。

①观察以上各题,你发现积的小数位数与什么有关?有什么关系?为什么?(积的小数位数与被乘数的小数位数有关,被乘数有几位小数,积就有几位小数。因为要把小数乘法转化成整数乘法,被乘数扩大了多少倍,乘数不变,积也随着扩大了多少倍。因此必须再把积缩小多少倍。)

②小数乘以整数的计算方法是什么?

计算小数乘以整数,先按照整数乘法的计算方法算出积,再看被乘数中有几位小数,就从积的右边起数出几位,点上小数点。

(三)巩固反馈

1.说出下面各算式中积应有几位小数:

25.4×36 2.37×125 0.15×3

1.032×24 3.506×1 0.017×21

2.在积的适当位置上添上小数点:

观察:积的小数位数是否与被乘数的小数位数相同?为什么?(积中小数部分末尾的零省略不写,被划去了,积的小数位数与被乘数的小数位数不同。)

3.看谁算得又对又快。

25×4= 18×5= 2.5×4= 1.8×5=

0.25×4= 0.18×5= 0.025×4= 0.018×5=

注意:计算的结果,小数部分末尾的零要去掉,把小数化简;小数部分位数不够时,要用“0”占位。

4.列出乘法算式,再算出来。

(1)14个9.76是多少?

(2)6个3.25是多少?

(3)5.24的5倍是多少?

(4)1.6的8倍是多少?

5.课后作业:P4:1,2,3,4。

课堂教学设计说明

小数乘以整数是在整数乘法的意义和法则的基础上进行教学的。为了使学生能够顺利地利用知识的迁移规律,掌握小数乘以整数的意义和计算方法,我们在复习中设计了整数乘法的意义和计算方法,小数点位置的移动引起小数大小的变化规律以及积与因数的变化规律。

在新课的引入上,注意联系学生的生活,使学生很自然地参与到新知识的探索之中。通过带有思考性的问题,引导学生思考,并大胆让学生尝试,讲解、讨论,把学生引导到算理的探究过程之中。在学生理解算理的基础上,通过观察比较总结出计算方法,提高学生的抽象、概括能力。

练习的设计由易到难,思维过程既有展开,又有压缩,突出重点和难点,有助于学生形成技能技巧,提高学生的计算能力。

板书设计

小数乘以整数

例1 花布每米6.5元,买5米要用多少元?

(1)6.5+6.5+6.5+6.5+6.5

=32.5(元)

(2)6.5×5=32.5(元)

答:买5米要用32.5元。

意义:求几个相同加数的和的简便运算。

计算方法:先按照整数乘法的法则算出积,再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。

小数乘以整数 篇五

教学目标

(一)理解的意义,掌握的计算方法。

(二)理解“被乘数有几位小数,就从积的右边起数出几位,点上小数点”的计算方法的道理。

(三)培养抽象、概括的能力。

教学重点和难点

掌握的计算方法,并理解“被乘数有几位小数,就从积的右边起数出几位,点上小数点”计算方法的道理。

教学过程设计

(一)复习准备

1.先说出下列算式的意义,再口算:

17×2 5×16 4×30 126×1

56×10 28×100 15×4 65×0

小结:

(1)整数乘法的意义是什么?

(2)整数乘法的计算方法是什么?

2.口算下列各题,并观察积的变化有什么规律?

观察思考:

(1)从左往右看,积有什么变化?为什么会发生这样的变化?积的变化有什么规律?

(2)从右往左看,积有什么变化?积的变化有什么规律?

小结:积的变化规律是怎样的?(在乘法里,一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍、……积也扩大(或缩小)10倍、100倍、1000倍、……)3.填空:

(1)1.5扩大10倍是( );

(2)2.25扩大( )倍是225;

(3)1.2扩大( )倍是12;

(4)38缩小10倍是( );

(5)85缩小( )倍是0.85;

(6)270缩小( )倍是27。

(二)学习新课

1.创设情境

同学们,你们经常为家里买东西吗?你会算帐吗?请举例。

一天,妈妈要小芳去买5米花布,小芳来到商店,选中了一种带有弯弯的月亮和星空的图案的花布。每米6.5元,买5米要用多少元?谁来帮小芳算算?(教师口述,同时板书例1。)

2.引导发现

(1)通过列式,理解的意义。

学生根据题意列式:6.5+6.5+6.5+6.5+6.5。

这个加法算式有什么特点?(加数相同。)

根据这一特点,你还能用别的方法表示吗?

6.5×5。

6.5×5表示什么?(6.5×5表示5个6.5的和或6.5的5倍。)

你能说出下列算式表示什么?

2.7×5 5.8×4 3.54×2 1.63×11

小结:

的意义是什么?(求几个相同加数的和的简便运算。)

的意义与什么算式的意义相同?(的意义与整数乘法的意义相同。)

说明整数乘法的意义也适用于。

(2)计算:

思考、讨论:6.5×5应如何计算呢?

提示:能不能把6.5转化成整数呢?转化后积会发生什么变化?

学生试做。

用投影打出学生做的过程,并由学生讲解:

①6.5×5=6.5+6.5+6.5+6.5+6.5=32.5(元);

讨论以上几种算法,哪种对,哪种不对,为什么?(①结果正确,方法不简便;②不对,因为325是65×5的积,不是6.5×5的积;③对,把6.5扩大10倍是65,用65×5=325,积325也扩大了10倍;要使积不变,325必须要缩小10倍,才是6.5×5的积。)

学生重点讲解法③的道理,教师板书:

(先把6.5扩大10倍成65,再按照整数乘法的计算方法计算65×5=325,再把乘出来的积325缩小10倍是32.5。)

答:5米要用32.5元。

小结:

计算的思路是什么?(把小数乘法转化成整数乘法计算。)

转化的方法是怎样的?(先把小数扩大成整数,按照整数乘法去计算,因数扩大了多少倍,积就要缩小多少倍。)

(3)填空,并讲出道理。

(4)小结,引导学生得出计算方法。

①观察以上各题,你发现积的小数位数与什么有关?有什么关系?为什么?(积的小数位数与被乘数的小数位数有关,被乘数有几位小数,积就有几位小数。因为要把小数乘法转化成整数乘法,被乘数扩大了多少倍,乘数不变,积也随着扩大了多少倍。因此必须再把积缩小多少倍。)

②的计算方法是什么?

计算,先按照整数乘法的计算方法算出积,再看被乘数中有几位小数,就从积的右边起数出几位,点上小数点。

(三)巩固反馈

1.说出下面各算式中积应有几位小数:

25.4×36 2.37×125 0.15×3

1.032×24 3.506×1 0.017×21

2.在积的适当位置上添上小数点:

观察:积的小数位数是否与被乘数的小数位数相同?为什么?(积中小数部分末尾的零省略不写,被划去了,积的小数位数与被乘数的小数位数不同。)

3.看谁算得又对又快。

25×4= 18×5= 2.5×4= 1.8×5=

0.25×4= 0.18×5= 0.025×4= 0.018×5=

注意:计算的结果,小数部分末尾的零要去掉,把小数化简;小数部分位数不够时,要用“0”占位。

4.列出乘法算式,再算出来。

(1)14个9.76是多少?

(2)6个3.25是多少?

(3)5.24的5倍是多少?

(4)1.6的8倍是多少?

5.课后作业:P4:1,2,3,4。

课堂教学设计说明

是在整数乘法的意义和法则的基础上进行教学的。为了使学生能够顺利地利用知识的迁移规律,掌握的意义和计算方法,我们在复习中设计了整数乘法的意义和计算方法,小数点位置的移动引起小数大小的变化规律以及积与因数的变化规律。

在新课的引入上,注意联系学生的生活,使学生很自然地参与到新知识的探索之中。通过带有思考性的问题,引导学生思考,并大胆让学生尝试,讲解、讨论,把学生引导到算理的探究过程之中。在学生理解算理的基础上,通过观察比较总结出计算方法,提高学生的抽象、概括能力。

练习的设计由易到难,思维过程既有展开,又有压缩,突出重点和难点,有助于学生形成技能技巧,提高学生的计算能力。

板书设计

例1 花布每米6.5元,买5米要用多少元?

(1)6.5+6.5+6.5+6.5+6.5

=32.5(元)

(2)6.5×5=32.5(元)

答:买5米要用32.5元。

意义:求几个相同加数的和的简便运算。

计算方法:先按照整数乘法的法则算出积,再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。

小数乘以整数 篇六

教学内容:p2例1、做一做,p3例2、做一做,p7练习—第1~4题。

教学目的:

1、使学生理解小数乘以整数的计算方法及算理。

2、培养学生的迁移类推能力。

3、引导学生探索知识间的联系,渗透转化思想。

教学重点:小数乘以整数的算理及计算方法。

教学难点:确定小数乘以整数的积的小数点位置的方法。

教学过程:

一、复习

①下面各数去掉小数点有什么变化?

0.34 3.5 0.201 5.02

②把353缩小到时它的1/10是多少?缩小到它的1/100呢?1/1000呢?

二、引入尝试:

大家喜欢放风筝吗?今天我就带领大家一块去买风筝。

1、小数乘以整数的意义及算理。

出示例1的图片,引导学生理解题意,从图中你了解到了哪些数学信息?

⑴例1:燕子风筝每个3.5元,买3个风筝多少元?(让学生独立试着算一算)

(2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)

用加法计算:3.5+3.5+3.5=10.5元

3.5元=3元5角

3元×3=9元

5角×3=15角

9元+15角=10.5元

用乘法计算:3.5×3=10.5元

3.5元=35角 35*3=105 105角=10元5角=10.5元

理解3种方法,重点研究第三种算法及算理。

⑶理解意义。为什么用3.5×3计算? 3.5×3表示什么?(3个3.5或3.5的3倍。)

(4)初步理解算理。怎样算的?

把3.5元看作35角

3.5元 扩大10倍 3 5

×3 × 3

1 0. 5 元 缩小到它的1/10 1 0 5

105角就等于10.5元

(6)买5个4.8元的风筝要多少元呢?会用这种方法算吗?p2做一做

2、小数乘以整数的计算方法。

象这样的3.5元的几倍同学们会算了,那不代表钱数的 0.72×5你们会算吗?能不能将它转化为已学过的知识来解答呢?(生试算,指名板演。)

⑴生算完后,小组讨论计算过程。

板书:

0.72

× 5

指名说是如何算的。

(2)强调依照整数乘法用竖式计算。

(3) 示范: 0. 7 2 扩大100倍 7 2

× 5 × 5

3.6 0 缩小到它的1/100 3 6 0

引导性提问:

0.72变成72发生了怎样的变化?

72*5算完了,再该怎么办?

为什么要缩小到它的1/100?

(4) 回顾对于0.72×5,刚才是怎样进行计算的?

使学生得出:先把被乘数0.72扩大100倍变成72,被乘数0.72扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小到它的1/100。(提示:根据小数的基本性质, 将小数末尾的0可以去掉)

●注意:如果积的末尾有0,要先点上积的小数点,再把小数末尾的“0”去掉。

(5)小结小数乘整数计算方法

l计算

7 ×4 25×7

0.7×4 2.5×7

观察这2组题,想想与整数乘整数有什么不同?

怎样计算小数乘以整数?

① 先把小数扩大成整数;

② 按整数乘法的法则算出积;

③ 再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。

三、运用

1、填空。

4.5 ( ) 0 .7 4 ( )

× 3 × 3 × 2× 2

( ) 1 3 5 ( ) 1 4 8

2、判断

13.5

× 2

2. 7 0

3、p2做一做

三、体验:(1)今天我们学习了什么?(板书课题)

(2)小数乘以整数的计算方法是什么?

四、作业:p7练习一第1、2、3题。

小学五年级数学《小数乘整数》教案 篇七

教学内容:

教科书第68~69页,例1、试一试、练一练,练习十二第1~3题。

教学目标:

1、使学生在具体情境中探索并初步掌握小数乘整数的计算方法,会用竖式进行计算。

2、使学生在探索计算方法的过程中,进一步体会数学知识之间的内在联系,培养初步的抽象、概括及合情推理能力,感受数学探索活动的乐趣。

3、在解决实际问题中体会数学计算在生活中的广泛应用。

教学重点:

小数乘整数的计算方法。

教学难点:

确定积的小数点位置。

教具:

课件。学具:计算器。

教学过程:

一、明确目标,提出课题。

师:同学们,有关小数的计算,我们已经学过了哪些?(指名提问)那么猜猜看,有关小数的计算还得有哪些?

师:是的,这节课我们就一起来研究有关“小数的乘法和除法”的第一课时“小数乘整数”。(板书课题。)

二、自主探究,习得方法。

(一)依据信息,提出问题。

1、出示例题场景图,提问:请看屏幕,从图中你能知道什么?

生1:夏天每千克西瓜0.8元,冬天每千克西瓜2.35元。(好的,你说。)

生2:冬天的西瓜比夏天贵。

说明:是的,反季节的水果价格比较贵。

2、提出问题。

师:根据这些信息,要求“夏天买3千克西瓜要多少元?”,你会列式吗?学生列式。同意吗?

(二)解决问题1。

1、尝试。

激发:0.8×3就是小数乘整数,能不能自己想办法算出得数?先想一想,再在练习本上算一算。算好了,请举手。

学生思考、计算,教师巡视了解学生用的方法。

2、交流。

师:算好了,谁先来说说?

生1:用加法:0.8+0.8+0.8=2.4。

引导:板书0.8+0.8+0.8,问:怎么算?想三八二十四,写4进2。

3个0.8相加算出结果,也就是0.8×3表示什么?

说明:是的,小数乘法的意义和整数乘法的意义相同。

生2:0.8元=8角8×3=24角24角=2.4元

引导:你有想到这种方法吗?有想到的请举手。问:为什么要把0.8元换算成8角?也就是把小数0.8换算成了整数8。(板书:小数―整数)

评价:很好,能用元角分的单位换算,计算出结果。

生3:因为8×3=24,所以0.8×3=2.4。

引导:有这样想过的请举手。你是怎么想的?这样想有没有什么道理呢?我们一起来看,这里的8根据小数的意义,可以看做…(8个0.1),8个0.1乘3就是…24个0.1,24个0.1就是2.4。是这样吗?

评价:能把新知识转化成了旧知识。(引导语:0.8乘3是求几个0.8相加的和?0.8元也可以看成是几角?)

3、比较。

师:比较一下这两种方法,在算0.8×3时,有什么相同的地方?都想到了什么?〖8×3〗也就是都把小数乘整数变成了…整数乘整数。

4、列竖式。

师:还有不同的算法吗?你说我来写,先写…0.8,再乘3,3写在哪儿?(板书好再问)有没有不同的意见?现在有两种写法,你认为那一种更好一些呢?(如果只有一种,问:都认为写在这儿,为什么?)

在学生充分说的基础上,说明:把小数0.8先看成整数8计算,也就是把0.8的什么先不看?(根据回答遮住小数点)8就跟…3对齐了。接着计算,三八二十四。根据我们前面的探索,这里乘得的积应该是几位小数?因数中的小数是几位小数。

那么0.8×3=2.4,我们一起口答。

(三)解决问题2。

1、列式。

师:如果,冬天也买3千克西瓜要多少元?谁来列式?2.35×3也是小数乘整数,它表示什么?

2、尝试列竖式计算。

师:这道题比刚才这道题要难了,敢不敢尝试?好,在练习本上算一算。

学生计算,老师巡视。

3、展示。

师:算好了,谁先来说说你是怎么算的?

问:3写在哪儿?为什么?小数点写在哪儿?是不是等于7.05,我还可以用什么方法计算?(板书加法)得数是一样的。

我们来看这里因数中的小数是几位小数,积有几位小数?

好的,2.35×3=7.05,一起口答。

4、对比。

师:同学们,通过这两道题的计算,你发现了什么?(末位对齐或小数的位数问题)观察这两题的因数与积你发现了什么?能不能接着往下猜?也就是说因数里有…,积就有…。(板书:因数里有几位小数,积就有几位小数?)

(四)探索小数点的位置。

1、猜想。

师:两道题就能确定这是一条规律了?我们再来做几道题验证一下,好不好?出示4.76×12,你猜积有几位小数?你能不能也举一些像这样的乘法式子让其他同学猜猜积有几位小数?最后一次机会,谁来说个小数位数多些的?

2、验证。

师:下面拿出计算器,准备好,请听题。第一题…

算好的请举手。你说?57.12是几位小数,证明我们的判断是…正确的。第二题…。

师:请把计算器收起来。同学们经过刚才的计算和验证,证明了什么?(指板书)我们就能确定这是一条规律。

3、判断。

师:根据这条规律,请你来当小法官。

(1)下面的计算,积的小数点位置正确吗?0.12×4=4.8

师:为什么?怎么改?

(2)在爱心捐款活动中,五年级同学决定把收废品的钱捐给希望小学,共收集了废品32千克,每千克0.84元。

0.84×32=2688元

师:同学们,本来只有二十几元的钱,生活委员却算成了2688元,听到这你有什么感受?

(五)总结小数乘整数的计算方法。

师:同学们,学到现在小数乘整数你会算了吗?回顾一下我们刚才的计算过程,你认为小数乘整数应该怎样算?自己先想一想,再与同桌同学说说。

小结:计算小数乘整数时,一般先把小数看成整数,然后按照整数乘法的计算方法进行计算,最后看因数有几位,就从积的右边起数出几位点上小数点。

过渡:同学们,会算了,我们来练练身手好吗?

三、巩固延伸。

1、练一练的第1题。

请翻开书,第69页做练一练第一题。

最后两题如果感觉不够算,可以写在练习本上。

拿上一位同学的作业,讲评:

(1)第一小题,对吗?你是怎么算的?

(2)第二小题,对吗?(你有什么建议?或这个零为什么要画去?)小数乘法也一样要化简。

(3)第三小题,有意见吗?你有什么建议?

哦,把小数先看成整数,那么这个地方,还应不应该有小数点,而应该在…结果点上小数点。要不要改一改?

(4)(找对的同学)第四小题,现在我们来看这位同学做的对吗?对的请举手。

师:通过这几道题的计算,你觉得小数乘整数计算时有什么地方要提醒大家的?(数位末位对齐、小数点、末尾有零要化简、竖式的中间不用点小数点)

2、练一练的第2题。

师:提醒得很到位。出示14.8×23,现在不用计算,只要知道哪个算式的得数,你就能知道14.8×23的得数?

告诉你148×23=3404,能告诉我14.8×23的结果吗?你是怎么想的?

再来148×2.3,得数多少?0.148×23呢?

出示□×□=34.04,方框里能填哪些数?

师:你很聪明,同学们请看是一位小数,也是一位小数,一位小数乘一位小数积是不是两位小数呢?以后我们还会再研究小数乘小数的计算方法。

3、解决实际问题。

过渡:利用今天学的知识我们来解决一些实际问题。

(1)出示:2008年,就是北京奥运会了。为庆祝奥运会上海有位大学生很有创意,独自一人骑自行车从上海出发去北京,每天约行92.4千米,经过15天到达北京。而且还带着一份长102米,宽0.98米的“万人签名支持奥运”条幅,送给北京的奥组委。

(2)根据这些信息你能解决哪些数学问题?好,自己给自己提出一个问题,算一算。

(3)通过计算,你体会到了什么?

四、反思回顾。

师:同学们,今天我们学习小数乘整数,你有什么收获?

小数乘以整数 篇八

教学重点和难点

掌握的计算方法,并理解“被乘数有几位小数,就从积的右边起数出几位,点上小数点”计算方法的道理。

教学过程设计

(一)复习准备

1.先说出下列算式的意义,再口算:

17×2 5×16 4×30 126×1

56×10 28×100 15×4 65×0

小结:

(1)整数乘法的意义是什么?

(2)整数乘法的计算方法是什么?

2.口算下列各题,并观察积的变化有什么规律?

观察思考:

(1)从左往右看,积有什么变化?为什么会发生这样的变化?积的变化有什么规律?

(2)从右往左看,积有什么变化?积的变化有什么规律?

小结:积的变化规律是怎样的?(在乘法里,一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍、……积也扩大(或缩小)10倍、100倍、1000倍、……)

3.填空:

(1)1.5扩大10倍是;(2)2.25扩大( )倍是225;

(3)1.2扩大倍是12;(4)38缩小10倍是;

(5)85缩小倍是0.85;(6)270缩小倍是27。

(二)学习新课

1.创设情境

同学们,你们经常为家里买东西吗?你会算帐吗?请举例。

一天,妈妈要小芳去买5米花布,小芳来到商店,选中了一种带有弯弯的月亮和星空的图案的花布。每米6.5元,买5米要用多少元?谁来帮小芳算算?(教师口述,同时板书例1。)

2.引导发现

(1)通过列式,理解的意义。

学生根据题意列式:6.5+6.5+6.5+6.5+6.5。

这个加法算式有什么特点?(加数相同。)

根据这一特点,你还能用别的方法表示吗?

6.5×5。

6.5×5表示什么?(6.5×5表示5个6.5的和或6.5的5倍。)

你能说出下列算式表示什么?

2.7×5 5.8×4 3.54×2 1.63×11

小结:

的意义是什么?(求几个相同加数的和的简便运算。)

的意义与什么算式的意义相同?(的意义与整数乘法的意义相同。)

说明整数乘法的意义也适用于。

(2)计算:

思考、讨论:6.5×5应如何计算呢?

提示:能不能把6.5转比成整数呢?转化后积会发生什么变化?

学生试做。

用投影打出学生做的过程,并由学生讲解:

①6.5×5=6.5+6.5+6.5+6.5+6.5=32.5(元);

讨论以上几种算法,哪种对,哪种不对,为什么?(①结果正确,方法不简便;②不对,因为325是65×5的积,不是6.5×5的积;③对,把6.5扩大10倍是65,用135×5=325,积325也扩大了10倍;要使积不变,325必须要缩小10倍,才是6.5×5的积。)

学生重点讲解法③的道理,教师板书:

(先把6.5扩大10倍成65,再按照整数乘法的计算方法计算65×5=325,再把乘出来的积325缩小10倍是32.5。)

答:5米要用32.5元。

小结:

计算的思路是什么?(把小数乘法转化成整数乘法计算。)

转化的方法是怎样的?(先把小数扩大成整数,按照整数乘法去计算,因数扩大了多少倍,积就要缩小多少倍。)

(3)填空,并讲出道理。

(4)小结,引导学生得出计算方法。

①观察以上各题,你发现积的小数位数与什么有关?有什么关系?为什么?(积的小数位数与被乘数的小数位数有关,被乘数有几位小数,积就有几位小数。因为要把小数乘法转化成整数乘法,被乘数扩大了多少倍,乘数不变,积也随着扩大了多少倍。因此必须再把积缩小多少倍。)

②的计算方法是什么?

计算,先按照整数乘法的计算方法算出积,再看被乘数中有几位小数,就从积的右边起数出几位,点上小数点。

(三)巩固反馈

1.说出下面各算式中积应有几位小数:

25.4×36 2.37×125 0.15×3

1.032×24 3.506×1 0.017×21

2.在积的适当位置上添上小数点:

观察:积的小数位数是否与被乘数的小数位数相同?为什么?(积中小数部分末尾的零省略不写,被划去了,积的小数位数与被乘数的小数位数不同。)

3.看谁算得又对又快。

25×4=18×5=2.5×4=1.8×5=

0.25×4=0.18×5=0.025×4=0.018×5=

注意:计算的结果,小数部分末尾的零要去掉,把小数化简;小数部分位数不够时,要用“0”占位。

4.列出乘法算式,再算出来。

(1)14个9.76是多少?(2)6个3.25是多少?

(3)5.24的5倍是多少?(4)1.6的8倍是多少?

5.课后作业:P4:l,2,3,4。

课堂教学设计说明

是在整数乘法的意义和法则的基础上进行教学的。为了使学生能够顺利地利用知识的迁移规律,掌握的意义和计算方法,我们在复习中设计了整数乘法的意义和计算方法,小数点位置的移动引起小数大小的变化规律以及积与因数的变化规律。

在新课的引入上,注意联系学生的生活,使学生很自然地参与到新知识的探索之中。通过带有思考性的问题,引导学生思考,并大胆让学生尝试,讲解、讨论,把学生引导到算理的探究过程之中。在学生理解算理的基础上,通过观察比较总结出计算方法,提高学生的抽象、概括能力。

练习的设计由易到难,思维过程既有展开,又有压缩,突出重点和难点,有助于学生形成技能技巧,提高学生的计算能力。

夫参署者,集众思,广忠益也。快回答为大家分享的8篇小数乘整数教学设计就到这里了,希望在小数乘整数的写作方面给予您相应的帮助。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。