因数与倍数教案 篇一
第一单元 倍数与因数
3的倍数的特征
第6课时
[教学内容] 数的奇偶性
[教学目标]
1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。
[教学重、难点]
1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。
[教学过程]
活动1:利用数的奇偶性解决一些简单的实际问题。
让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。
试一试:
本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。
活动2:探索奇数、偶数相加的规律
先研究“偶数+偶数”的规律,在经历“列式计算―初步得出结论―举例验证―得出结论”的过程后,再引导学生用这样的研究方式探索“奇数+奇数”“奇数+偶数”的奇偶性变化规律,最后让学生应用结论判断计算结果是奇数还是偶数。还可以引导学生研究减法中奇偶性的变化规律
偶数+偶数=偶数
奇数+奇数=偶数
偶数+奇数=奇数
[板书设计]
数的奇偶性
例子: 结论:
12 + 34 = 48 偶数+偶数=偶数
11 + 37 =48 奇数+奇数=偶数
12 + 11 =23 奇数+偶数=奇数
因数和倍数教案 篇二
教学资料:人教版12—16页的相关资料。
教学目标。
1、让学生理解倍数和因数的好处,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。能在1—100的自然数中找出10以内某个数的所有倍数,能找出100以内某个数的所有因数。
2、让学生初步意识到能够从一个新的'角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括潜力,学会有序地思考问题,体会数学资料的奇妙、搞笑,产生对数学的好奇心。
教学重点:让学生理解倍数和因数的好处。
教学难点:探索并掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
教学过程:
一、操作空间,初步感知
1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。
2.学生动手操作,并与同桌交流摆法。
3.请用算式表达你的摆法。汇报:1×12=12,2×6=12,3×4=12。
【评析】透过让学生动手操作、想象、表达等环节,既为新知探索带给材料,又孕育求一个数的因数的思考方法。
二、探索空间,理解新知。
1.理解因数和倍数
(1)我们就以3×4=12这道乘法算式为例,数学上我们说12是3的倍数,12也是4的倍数,3和4时12的因数。这就是我们这天所要研究的因数和倍数。
师板书:因数和倍数
师:根据黑板上的另两道算式,自己试着说说谁是谁的倍数,谁是谁的因数?指名口答。
(2)追问:如果说12是倍数,2是因数,能够吗?为什么?
教师:看来,倍数和因数的关系是相互的,我们只能说某个数是某个数的倍数,某个数是某个数的因数,不能够直接说某数是倍数,某数是因数。而且为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。
(3)拓展:出示72页想想做做第一题。同桌互练,指名口答。
(4)师:老师还写了一个算式,从这个算式里你能找到因数和倍数吗?24÷8=3看来,我们不仅仅能够根据乘法算式找因数和倍数,也能够根据除法算式找因数和倍数。
(5)试一试:从中选取两个数,用这天学的知识随便说两句话。
4682415
2、探索求一个数的倍数的方法
(1)师:刚才我们已经明白12是3的倍数,那还有哪些数也是3的倍数呢?请同学们自己找一找?同桌交流交流。
屏幕显示:3的倍数有哪些?指名学生回答。
(2)师:什么样的数是3的倍数?
明确:3的倍数是3与一个数相乘的积。如,3×1=(),3×2=(),3×3=(),括号里的数都是3的倍数。
教师:谁能按从小到大的顺序有条理地说出3的倍数?能把3的倍数全部说完吗?就应怎样表示?根据学生的口答,屏幕显示:3的倍数有3、6、9、12、15……。
(3)请你用同样的方法,找找2的倍数和5的倍数?
(4)提问:请同学们观察,刚才所找的2、3、5的倍数,你有什么发现?能够小组内讨论交流。
(5)、根据学生的交流归纳:一个数的倍数中,最小的是它本身,没有最大的倍数;一个数倍数的个数是无限的。
【评析】由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。
3、探索求一个数的因数的方法
(1)师:透过刚才的动脑思考,你们已经能够有序地找出一个数的倍数了,你能找出36的所有因数吗?
出示要求:①可独立完成,也可同桌合作。②可借助刚才找出12的所有因数的方法。③写出36的所有因数。4想一想,怎样找才能保证既不重复,又不遗漏。
(2)学生尝试。搜集学生作业,交流各自找一个数因数的方法。方法1:想乘法算式36×1=36;方法2:想除法算式36÷1=36;方法3:想乘法口诀;
(在交流中学生很有可能不能说完整,而是透过互相补充得到36所有的因数)板书:36的因数有:1,2,3,4,6,9,12,18,36。
(3)怎样找才能不重复不遗漏?在小组里说一说。
学生想到的方法可能是:从小到大找;一对一对找。
(4)试一试:你能找出15和16所有的因数吗?
(5)观察36、15和16的所有因数,你有什么发现吗?(小结出一个数最小的因数是1,最大的是本身)
【评析】学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。透过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。
全课总结
1、这天我们一齐认识了倍数和因数,阅读课本70页,你还能发现什么?
2、游戏:对号入座规则:老师出一个数,看你卡片上的数是否贴合下面的条件,贴合的请站起来并且举起你的卡片。
师:我是45,我要找我的因数。我是6,我要找我的倍数。我是8,我要找我的因数,同时我也要找我的倍数。坐着的同学,下面老师要出个什么数字,不管是倍数还是因数,你们都能全部站起来吗?我是1,我找我的倍数。学生站起后宣布下课。
教学反思:
本课教学设计重在让学生透过自主探索,掌握求一个数的因数和倍数的方法,体验有序思考的重要性。体现了以下两个特点:
一、留足空间,让探索有质量。
留足思维空间,才能充分调动多种感官参与学习,充分发挥知识经验和生活经验,使探索成为知识不断提升、思维不断发展、情感不断丰富的过程。第一、把让同桌同学借助12块完全一样的正方形拼成一个长方形。由于方法的多样性,为不同思维的展现带给了空间。第二:放手让每个同学找出36的所有因数,由于个人经验和思维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。第三:透过观察36,15,16的因数和3,6的倍数,你发现了什么?由于带给了丰富的观察对象,保证了观察的目的性。第三:让学生“选用4,6,8,24,1,5中的一些数字,用这天学习的知识说一句话”。不拘形式的说话空间,不仅仅体现了差异性教学,更是体现了不同的人在数学上的不同发展。
二、适度引导,让探索有方向。
引导与探索并不矛盾,探索前的适度引导正是让探索走得更远。探索12块完全一样的正方形拼成一个长方形,有几种拼法?教师提示能想象的就想象,不能想象的可借助小正方形摆一摆。这样的引导,是尊重学生不同思维的有效引导。在找36的所有因数时,教师出示4条要求,既是引导学生思考的方向,又是提醒学生探索的任务。在让学生观察几个数的因数和倍数时,引导学生观察最大数和最小数,有什么发现?这样的引导,避免了学生的盲目观察。可见,适度的引导,保证了自主探索思维的方向性和顺畅性。整堂课,学生想象丰富、思维活跃、思考有序。整个认知过程是体验不断丰富、概念不断构成、知识不断建构的过程。
《因数和倍数》公开课教案 篇三
关于《因数和倍数》公开课教案
教学目标:
1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。2、培养同学自主探索、独立考虑、合作交流的能力。
3、培养同学敢于探索科学之谜的精神,充沛展示数学自身的魅力。
教学重点:
1、理解掌握质数、合数的概念。
2、初步学会准确判断一个数是质数还是合数。
教学难点:区分奇数、质数、偶数、合数。
教学过程:
一、探究发现,总结概念:
1、师:(出示三个同样的小正方形)每个正方形的边长为1,用这样的。三个正方形拼成一个长方形,你能拼出几个不同的长方形?
同学独立考虑,然后全班交流。
2、师:这样的四个小正方形能拼出几个不同的长方形?
同学各自独立考虑,想像后举手回答。
3、师:同学们再想一下,假如有12个这样的小正方形,你能拼出几个不同的长方形?
师:我看到许多同学不用画就已经知道了。(指名说一说)
4、师:同学们,假如给出的正方形的个数越多,那拼出的不同的长方形的个数——,你觉得会怎么样?
同学几乎是异口同声地说:会越多。
师:确定吗?(引导同学展开讨论。)
5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种。你觉得当小正方形的个数是什么数的时候,只能拼一种? 什么情况下拼得的长方形不止一种?并举例说明。
先让同学小组讨论,然后全班交流,师根据同学的回答板书。
师:同学们,像上面这些数(板书的3、13、7、5、11等数),在数学上我们把它们叫做质数,下面的这些数(4、6、8、9、10、12、14、15等数)我们把它们叫做合数。那究竟什么样的数叫质数,什么样的数叫合数呢?
同学独立考虑后,在小组内进行交流,然后再全班交流。
引导同学总结质数和合数的概念,结合同学回答,教师板书:(略)
6、让同学举例说说哪些数是质数,哪些数是合数,并说出理由。
7、师:那你们认为“1”是什么数?
让同学独立考虑,后展开讨论。
二、动手操作,制质数表。
1、师出示:73。让同学考虑着它是不是质数。
师:要想马上知道73是什么数还真不容易。假如有质数表可查就方便了。(同学们都说“是呀”。)
师:这表从哪来呢?
(教师出示百以内数表)这上面是1到100这100个*快回答 www.kuaihuida.com*数,它不是质数表,你们能不能想方法找出100以内的质数,制成质数表?谁来说说自身的想法?(让同学充沛发表自身的想法。)
2、让同学动手制作质数表。
3、集体交流方法。
三、练习巩固:
完成练习四第1、2题。
四、课题小结:
这节课你在激烈的讨论中有什么收获?
因数和倍数教案 篇四
因数和倍数
教学目标:
知识与技能、过程与方法:
1、从操作活动中理解因数和倍数的好处,会决定一个数是不是另一个数的因数或倍数。
情感态度与价值观:
2、培养学生抽象、概括的潜力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。
教学重、难点:
1、理解因数和倍数的含义。
2、学会求一个数的因数或倍数的方法。
教学准备:课件
教学过程设计:
一、创设情境,引入新课
师:人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是……?
生:父子(父母、母子、母女)关系。
师:我和你们的关系是……?
生:师生关系。
师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一齐探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)
二、探究新知
(一)学习因数和倍数的概念
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2×6=12
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)
4、师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
(二)、学习求一个的因数或倍数的方法。
A、找因数:
1、出示例1:18的因数有哪几个?
从12的因数能够看得出,一个数的因数还不止一个,那我们一齐找找看18的因数有哪些?
学生尝试完成:汇报
(18的因数有:1,2,3,6,9,18)
师:说说看你是怎样找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有:1,2,3,4,6,9,12,18,36
师:你是怎样找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写能够吗?为什么?(不能够,因为重复的因数只要写一个就能够了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几?
看来,任何一个数的因数,最小的必须是,而最大的必须是()。
3、你还想找哪个数的因数?(18、5、42……)请你选取其中的一个在自练本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还能够用集合表示。
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一向找到它的本身,找的过程中一对一对找,写的时候从小到大写。
B、找倍数:
1、我们一齐找到了18的因数,那2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……
师:为什么找不完
你是怎样找到这些倍数的(生:只要用2去乘1、乘2、乘3、乘4、…)那么2的倍数最小是几最大的你能找到吗
2、让学生完成做一做1、2小题:找3和5的倍数。
汇报3的倍数有:3,6,9,12
改写成:3的倍数有:3,6,9,12,……
你是怎样找的?(用3分别乘以1,2,3,……倍)
5的倍数有:5,10,15,20,……
师:表示一个数的倍数状况,除了用这种文字叙述的方法外,还能够用集合来表示
2的倍数3的倍数5的倍数
师:我们明白一个数的因数的个数是有限的,那么一个数的倍数个数是怎样样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)
三、课堂小结
我们一齐来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
板书设计:
因数与倍数
因数与倍数指的是数与数之间的关系。
一个数因数的个数是有限的,最小的因数是1最大的因数是它本身。
一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
教学反思:
教材上,探究因数这部分的例题比较少,只有一个:找18的因数。根据学生的实际状况,我进行了重组教材,先让学生根据乘法算式“一对对”地找出15的因数,在此基础上再让学生探究18的因数。透过“质疑”:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照必须的顺序一对对的找因数,能既找全又不遗漏。进而又借助体态语言——打手势,让学生说出30和36的因数,到达了巩固练习的目的。又明确了像36当两个因数相等时,只写其中的一个6。这样设计由易到难,由浅入深,贴合了学生的认知规律。
因数与倍数教案 篇五
刘浩中心小学许夏敏
教学目标:1进一步加深学生对方程意义的理解,巩固用等式的性质解简易方程的方法,理解简单实际问题中数量关系,并能根据等量关系解决实际问题。
2进一步理解公倍数和公因数,最小公倍数和最大公因数的意义,掌握求最大公因数和最小公倍数的方法。
3通过小组合作交流,培养学生的数学交流能力和合作能力。
教学重点:理解方程的意义,巩固解方程的方法,进一步掌握求最小公倍数和最大公因数的方法。
教学难点:理解实际问题中的数量关系,根据数量关系列方程解答。
教学实施:一、疏通概念
1、同学们,本学期的内容已经全部学完了。从今天开始,我们要对所有的知识进行与复习。首先让我们一起走进“数的世界”,在十个单元中哪些是与数打交道呢?根据学生回答板书方程
公倍数与公因数
认识分数
分数的基本性质
分数的加减法
2、揭题
今天这节课我们先来复习方程,公倍数与公因数(出示课题)
3、讨论与思考:本学期学习了方程的哪些知识?
什么是公倍数与公因数?
怎样求两个数的最小公倍数和最大公因数?
二、专项练习
1、方程的复习
⑴与练习第1题,在方程下面打√,集体汇报时说出为什么不是方程?
等式
方程
X+2.5<828-12=165a分别叫什么?你觉得方程与等式有什么关系?你能用一副图来表示吗?
⑵与复习第2题
提问:根据什么来解方程?指名4人板演,校对时说说是怎么想的?
出示练一练,找出括号中方程的解
①3x=1.5(x=0.5x=2)
②x-210=30(x=240x=180)
③x÷5=120(x=24x=600)
⑶列方程解决实际问题
?米11.7平方米?米
2.7米
6.9米3.9米
学生独立完成,集体订正时说说根据什么数量关系式列方程的?
教师,用方程计算可以使很多问题变的简单,容易解决。
⑷与复习第4题学生读题后独立用方程解决。
2、公倍数和公因数的复习
对公倍数和公因数你有那些了解?怎样求两个数的最小公倍数和最大公因数呢?
出示练习①写出每组数的最小公倍数
6和94和82和3
②写出每组数的最大公因数
18和2415和602和3
请做得快的同学介绍经验
三、全课
今天我们复习了什么,你有哪些收获?
四、课堂作业
与复习第3题、第5题、第6题。
教学反思
这是一堂复习课,主要复习方程、公倍数和公因数两个单元的内容。由于课堂时间有限,因此对知识的回顾与还不是很系统。特别是对潜能生而言,教师的提问不能及时沟起他们对知识概念的回忆,因此跟基础较好的同学相比就形成了鲜明的落差。
在列方程解决实际问题时,正确掌握题中的数量关系是关键,也是学生理解中的难点。大部分学生在列方程时,因为没能找出题中的数量关系而把方程列错,或者方程列到了,却不能把方程抽象成数量关系式。诸如这些现象,主要是学生的抽象能力还不够完善,分析问题的能力还不够仔细,深入,有待进一步的发展。
在公倍数和公因数一单元中,问题不大,主要是求两个数的最小公倍数和最大公因数。对较大的两个数,如求100以内两个数的最小公倍数和最大公因数,出错率较大。因此课后还应多补充一些相应的练习。
因数和倍数教案 篇六
一、谈话导入,激发兴趣
1、回顾学过的数
2、明确学习主题
二、自主学习,探究新知
1、自主学习
自学指导:阅读课本P12和P13例1
(1)2x6=12,表示的意义是什么?在这个乘法算式中,谁是谁的因数,谁是谁的倍数?
(2)想一想:什么情况下,两个不是零的自然数之间是因数(倍数)的关系?
(3)怎样找出18的全部因数?你是怎样想的?
怎样表示出18的因数?
要求:
1、独立学习
2、时间6分钟
3、全班交流
问题一:初建模型
在图式结合中构建因数、倍数的概念,并从中感受因数和倍数是相互依存的,有着互逆关系的一组概念。
问题二:深化模型
明确因数与倍数的外延,进一步认识、内化因数、倍数的内涵,从中提炼出因数、倍数模型的本质意义。
ab=c(a、b、c为非零自然数)
问题三:应用模型
①交流找一个数的因数的方法及表示方法。
②找30、36的因数。
3、议一议
(1)今天学习的因数与乘法算式中的因数一样吗?倍数与倍一样吗?
(2)通过找一个数的因数,你有什么发现?
三、检测反馈,拓展运用
四、板书设计
因数和倍数
2x6=12
2和6是12的因数。
12是2和6的倍数。
3x4=12
ab=c(a、b、c为非零自然数)
a和b是c的因数,c是a和b的倍数。
三人行,必有我师焉。上面这6篇因数和倍数教案就是快回答为您整理的因数和倍数范文模板,希望可以给予您一定的参考价值。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。