1. 主页 > 知识大全 >

数学教案-三角形边的关系【优秀5篇】

作为一名教学工作者,就不得不需要编写教案,借助教案可以让教学工作更科学化。那么应当如何写教案呢?为了加深您对于等边三角形的写作认知,下面快回答给大家整理了5篇数学教案-三角形边的关系,欢迎您的阅读与参考。

初中数学三角形教案 篇一

学习目标:

1.经历探索直角三角形中边角关系的过程。理解正切的意义和与现实生活的联系。

2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算。

学习重点:

1.从现实情境中探索直角三角形的边角关系。

2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系。

学习难点:

理解正切的意义,并用它来表示两边的比。

学习方法:

引导—探索法。 更多免费教案下载绿色圃中

学习过程:

一、生活中的数学问题:

1、你能比较两个梯子哪个更陡吗?你有哪些办法?

2、生活问题数学化:

⑴如图:梯子AB和EF哪个更陡?你是怎样判断的?

⑵以下三组中,梯子AB和EF哪个更陡?你是怎样判断的?

二、直角三角形的边与角的关系(如图,回答下列问题)

⑴Rt△AB1C1和Rt△AB2C2有什么关系?

⑵ 有什么关系?

⑶如果改变B2在梯子上的位置(如B3C3)呢?

⑷由此你得出什么结论?

三、例题:

例1、如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?

例2、在△ABC中,∠C=90°,BC=12cm,AB=20cm,求tanA和tanB的值。

四、随堂练习:

1、如图,△ABC是等腰直角三角形,你能根据图中所给数据求出tanC吗?

2、如图,某人从山脚下的点A走了200m后到达山顶的点B,已知点B到山脚的垂直距离为55m,求山的坡度。(结果精确到0.001)

3、若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高________米。

4、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tanθ=______.

5、如图,Rt△ABC是一防洪堤背水坡的横截面图,斜坡AB的长为12 m,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD,求DB的长。(结果保留根号)

五、课后练习:

1、在Rt△ABC中,∠C=90°,AB=3,BC=1,则tanA= _______.

2、在△ABC中,AB=10,AC=8,BC=6,则tanA=_______.

3、在△ABC中,AB=AC=3,BC=4,则tanC=______.

4、在Rt△ABC中,∠C是直角,∠A、∠B、∠C的对边分别是a、b、c,且a=24,c= 25,求tanA、tanB的值。

5、若三角形三边的比是25:24:7,求最小角的正切值。

6、如图,在菱形ABCD中,AE⊥BC于E,EC=1,tanB= , 求菱形的边长和四边形AECD的周长。

7、已知:如图,斜坡AB的倾斜角a,且tanα= ,现有一小球从坡底A处以20cm/s 的速度向坡顶B处移动,则小球以多大的速度向上升高?

8、探究:

⑴、a克糖水中有b克糖(a>b>0),则糖的质量与糖水质量的比为_______; 若再添加c克糖(c>0),则糖的质量与糖水的质量的比为________.生活常识告诉我们: 添加的糖完全溶解后,糖水会更甜,请根据所列式子及这个生活常识提炼出一个不等式: ____________.

⑵、我们知道山坡的坡角越大,则坡越陡,联想到课本中的结论:tanA的值越大, 则坡越陡,我们会得到一个锐角逐渐变大时,它的正切值随着这个角的变化而变化的规律,请你写出这个规律:_____________.

⑶、如图,在Rt△ABC中,∠B=90°,AB=a,BC=b(a>b),延长BA、BC,使AE=CD=c, 直线CA、DE交于点F,请运用(2) 中得到的规律并根据以上提供的几何模型证明你提炼出的不等式。

§1.1从梯子的倾斜程度谈起(第二课时)

学习目标:

1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义。

2.能够运用sinA、cosA表示直角三角形两边的比。

3.能根据直角三角形中的边角关系,进行简单的计算。

4.理解锐角三角函数的意义。

学习重点:

1.理解锐角三角函数正弦、余弦的意义,并能举例说明。

2.能用sinA、cosA表示直角三角形两边的比。

3.能根据直角三角形的边角关系,进行简单的计算。

学习难点:

用函数的观点理解正弦、余弦和正切。

学习方法:

探索——交流法。

学习过程:

一、正弦、余弦及三角函数的定义

想一想:如图

(1)直角三角形AB1C1和直角三角形AB2C2有什么关系?

(2)有什么关系?呢?

(3)如果改变A2在梯子A1B上的位置呢?你由此可得出什么结论?

(4)如果改变梯子A1B的倾斜角的大小呢?你由此又可得出什么结论?

请讨论后回答。

二、由图讨论梯子的倾斜程度与sinA和cosA的关系:

三、例题:

例1、如图,在Rt△ABC中,∠B=90°,AC=200.sinA=0.6,求BC的长。

例2、做一做:

如图,在Rt△ABC中,∠C=90°,cosA= ,AC=10,AB等于多少?sinB呢?cosB、sinA呢?你还能得出类似例1的结论吗?请用一般式表达。

四、随堂练习:

1、在等腰三角形ABC中,AB=AC=5,BC=6,求sinB,cosB,tanB.

2、在△ABC中,∠C=90°,sinA= ,BC=20,求△ABC的周长和面积。

3、在△ABC中。∠C=90°,若tanA=

初中数学三角形教案 篇二

教材与学情:

解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。

信息论原理:

将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。

教学目标:

⒈认知目标:

⑴懂得常见名词(如仰角、俯角)的意义

⑵能正确理解题意,将实际问题转化为数学

⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。

⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。

⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。

教学重点、难点:

重点:利用解直角三角形来解决一些实际问题

难点:正确理解题意,将实际问题转化为数学问题。

信息优化策略:

⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态

⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。

⑶重视学法指导,以加速教学效绩信息的顺利体现。

教学媒体:

投影仪、教具(一个锐角三角形,可变换图2-图7)

高潮设计:

1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性

2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识

教学过程:

一、复习引入,输入并贮存信息:

1.提问:如图,在Rt△ABC中,∠C=90°。

⑴三边a、b、c有什么关系?

⑵两锐角∠A、∠B有怎样的关系?

⑶边与角之间有怎样的关系?

2.提问:解直角三角形应具备怎样的条件:

注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息

二、实例讲解,处理信息:

例1.(投影)在水平线上一点C,测得同顶的仰角为30°,向山沿直线 前进20为到D处,再测山顶A的仰角为60°,求山高AB。

⑴引导学生将实际问题转化为数学问题。

⑵分析:求AB可以解Rt△ABD和

Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。

⑶解题过程,学生练习。

⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。

例2.(投影)在水平线上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测山顶A的仰角为45°,求山高AB。

分析:

⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。

⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过 列方程来解,然后板书解题过程。

解:设山高AB=x米

在Rt△ADB中,∠B=90°∠ADB=45°

∵BD=AB=x(米)

在Rt△ABC中,tgC=AB/BC

∴BC=AB/tgC=√3(米)

∵CD=BC-BD

∴√3x-x=20 解得 x=(10√3+10)米

答:山高AB是(10√3+10)米

三、归纳总结,优化信息

例2的图开完全一样,如图,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。

四、变式训练,强化信息

(投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的仰角为β,求山高BD。

练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。

练习3:在塔PQ的正西方向A点测得顶端P的

仰角为30°,在塔的正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。

教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:

⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。

⑵引导学生归纳三个练习题的等量关系:

练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2

五、作业布置,反馈信息

《几何》第三册P57第10题,P58第4题。

板书设计:

解直角三角形的应用

例1已知:………例2已知:………小结:………

求:………求:………

解:………解:………

练习1已知:………练习2已知:………练习3已知:………

求:………求:………求:………

解:………解:………解:………

初中数学三角形教案 篇三

一、学生知识状况分析

学生的知识技能基础:

在七年级的学习中,学生通过观察、测量、画图 、拼摆 等数学活动, 体会了全等三角形中“对应关系”的重要作用。上一节课“相似多边形”的学习,使学生在探索相似形本质特征的过程中,发展了有条理地思考与表达,归纳,反思,交流等能力。

学生活动经验基础:

上述学习经历为学生继续探究“相似三角形”积累了丰富的活动经验和知识基础。

二、教学任务分析

(一)教材的地位和作用分析:

《相似三角形》在本章中承上启下,

体现了从一般到特殊的数学思想;

是学生今后学习的基础;

是解决生活中许多实际问题的常用数学模型。

即相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习探索三角形相似的条件、三角函数及与此有关的比例线段等知识打下良好的基础。

(二)教学重点:

相似三角形定义的理解和认识。

(三)教学难点:

1..相似三角形的定义所揭示的本质属性的理解和应用;

2..例2后想一想中“渗透三角形相似与平行的内在联系”是本节课的第二个难点。

(四)教法与学法分析:

本节课将借助生活实际和图形变换创设宽松的学习环境; 并利用多媒体手段辅助教学,直观、形象,体现数学的趣味性。

学生则通过观察类比、动手实践、自主探索、合作交流的学习方式完成本节课的学习。

(五)教法建议

1.从知识的逻辑体系出发,在知识的引入时可考虑先复习相似形的概念,在探索归纳给出相似三角形的概念

2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念

3.在知识的引入上,还可以从知 识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识

4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解

5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解

6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握

(六)教学目标分析:

通过一些具体问题的情境设置、观察类比、动手操作;让学生积极思考、充分参与、合作探究;深化对相似三角形定义的理解和认识。发展学生的想象能力,应用能力,建模意识,空间观念等,培养学生积极的情感和态度。

教学目标:

1.知识与 技能

(1). 掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似。

(2). 能根据相似比进行计算,训练学生判断能力及对数学定义的运用能力。

2 过程与方法

(1)领会教学活动中的类比思想,提高学生学习数学的积极性。

(2)经过本节的学习,培养学生通过类比得到新知识的能力,掌握相似三角形的定义及表示法,会运用相似比解决相似三角形的边长问题。

3 情感态度与价值观

(1). 经历相似多边形有关概念的类比,渗透类比的数学思想,并领会特殊与

一般的关系。

(2). 深化对相似三角形定义的理解和认识。发展学生的想象能力,应用能力,建模意识,空间观念等,培养学生积极的情感和态度。

三、教学过程分析

本节课共设计了五个环节:

1情景引入 归纳定义

2 运用定义 解决问题

3 加深理解 探索规律

4 回顾反思 课堂小结

5.布置作业

初中数学三角形教案 篇四

一、教学目标

1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.

2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.

3.进一步培养学生类比的教学思想.

4.通过相似性质的学习,感受图形和语言的和谐美

二、教法引导

先学后教,达标导学

三、重点及难点

1.教学重点:是性质定理1的应用.

2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

[复习提问]

1.三角形中三种主要线段是什么?

2.到目前为止,我们学习了相似三角形的哪些性质?

3.什么叫相似比?

[讲解新课]

根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.

下面我们研究相似三角形的其他性质(见图).

建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.

性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比

初中数学三角形教案 篇五

一、教学目标

知识目标:

1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.

能力目标:

2.进一步培养学生类比的数学思想.

情感目标:

3.通过学习,养成严谨科学的学习品质

二、教学重点、难点、疑点及解析

1.重点是性质定理的应用.

2.难点是相似三角形的判定与性质等有关知识的综合运用.

3.疑点是要向学生讲清什么是对应高、对应中线、对应角平分线,它不是一个三角形中两条高、中线、角平分线的比等于相似比.另外,在定理的证明过程中,要向学生讲清由已知两三角形相似(性质)去证另外两个三角形相似(判定)的思维过程,即相似三角形性质与判定的综合运用.

三、教学方法

新授课.

四、教学过程

(一)复习提问

1.三角形中三种主要线段是什么?

2.到目前为止,我们学习了相似三角形的哪些性质?

3.什么叫相似比?

(二)讲解新课

根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.下面我们研究相似三角形的'其他性质(见图5-45,图5-46,图5-47).建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.

性质定理1:相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.

∵△ABC∽△ABC,

ADBC,ADBC,

教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.

分析示意图:结论∽(欠缺条件)∽(已知)

∵ △ABC∽△ABC,

BM=MC,BM=MC,

∵ △ABC∽△ABC,

2,4,

以上两种情况的证明可由学生完成.

小结:

本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.

(三)练习

课后练习节选

(四)作业

同步练习

博观而约取,厚积而薄发。上面就是快回答给大家整理的5篇数学教案-三角形边的关系,希望可以加深您对于写作等边三角形的相关认知。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。