作为一名优秀的教师,我们要在课堂教学中快速成长,通过教学反思可以有效提升自己的课堂经验,如何把教学反思做到重点突出呢?这里的13篇人教版初中数学一元一次不等式教案范文是快回答小编为您分享的一元一次不等式的相关范文,欢迎查看参考。
一元一次不等式教案 篇一
一、教学目标:
(一)知识与能力目标:(课件第2张)
1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法。
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:
1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)
1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:
1.掌握一元一次不等式的`解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:
教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教 具:计算机辅助教学。
五、教学流程:
(一)、复习:
教学环节
教 师 活 动
学 生 活 动
设 计 意 图
元一次不等式教学反思 篇二
这节课我的设想是:在学习不等式的基本性质的基础上,类比一元一次方程的解法,学习如何解一元一次不等式,学会用数轴直观的表示不等式的解集(数形结合思想),注意其中的区别与联系(即类比思想),下面我对本节课的讲课作如下分析。
一、由于录课在外校,自己对学生不了解,课上的不是很好,匆忙的复习不等式的性质后就让学生进入下一个环节,以至于先学环节不连贯,大约有2分钟后还是能充分调动学生的积极性,并注重了学生回答:在两边同时乘以或者除以负数时,不等号改变方向,这个环节能想方设法鼓励孩子,这时课堂气氛也开始活跃起来。
二、在学习新知的教学中,我采用了先学后教,当堂训练的教学模式。我先引导学生通过看教材思考,运用举例子等学习活动,将主动权交给学生,这样不仅培养了学生小组合作学习的能力,同时也提高了其参与尝试的兴趣。其次,我在后教环节,除让三个孩子上黑板练习外,其余学生分组练习,同时,我在课堂巡堂时,检查每个学生的练习,发挥学生的力量,开展“生帮生”的活动,放手给孩子改正的权利,发现问题及时纠正。
三、我采用引导发现法培养学生类比推理能力,通过类比一元一次方程的解法归纳一元一次不等式的解法,并在小结环节充分发挥学生的主体作用,让学生自己发表见解,使学生在轻松愉快的气氛中掌握知识。
总之,这节课有收获也有遗憾,学生的积极性和主动性有了提高,不足的是先学环节耽搁了时间,因此在今后的教学中,一方面加强训练,锻炼学生的解题能力,同时通过“纠错”的练习和学生的相互学习逐步提高解题的正确性。
元一次不等式教学反思 篇三
教后记今天讲列不等式组解应用题,学生的问题出在阅读上。有的学生懒得读题,一看那么长的题就烦了。其实,你带着他们分析,他们也能列出来。而猴子分花生的问题引起了学生的兴趣:把若干颗花生分给若干只猴子。如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。问猴子有多少只,花生有多少颗?
有的学生用的是穷举法,换句话说,就是一个一个试。1只、2只、3只。试到5只时,满足条件了,学生说了:“老师,我算出来了,是5只!”有的还接着试,能试出6只也可以,而试到7只时就不满足条件了。所以,答案应该是两个:5只猴子,23颗花生;6只猴子,26颗花生。对于这种方法,我给予了充分的肯定,这是一种很好的方法,而且是学生容易理解、最易接受的一种方法,也说明了学生开动脑筋、认真思考了!当然,也说明学生对方程思想应用还是比较熟练的,但对于不等式思想解题还不习惯,所以我们有必要花大力气在学生已经理解的基础上进一步加大不等式解题的渗透,帮助学生从不等量关系入手,用不等式知识解题。
数量关系中的不等和相等是事物运动和平衡的反映,虽然量的不等是普遍的,绝对的,而量的相等是局部的、相对的。但初中教材对方程安排多些,在一定程度上误导学生应用方程思想解题,而不习惯从不等关系方面考虑问题,所以在学习这一章时,有必要加深学生对知识的理解以及对不等式解题的应用。
《一元一次不等式》说课稿 篇四
一元一次不等式的应用教案
一元一次不等式的应用教案 孙云云 一、前置作业 请自学课本12、13页,相信你会有很大的收获!带着的你的例子借助一元一次不等式来解决实际问题。 二、教学过程 一)导入 在现实中的许多问题,可以借助于一元一次不等式来解决。本节课我们来研究用元一次不等式解决实际 问题。 二、检查前置作业,交流组内存在问题 怎样借助一元一次不等式解决实际问题 三、班级汇报展示 带着你的`例子借助一元一次不等式来解决实际问题。 四、总结提升 你学会了什么? 五、布置作业 教学反思:开始课堂沉闷,学生有些紧张,后来在教师的调解下,气氛活跃了。樊广文出的题中缺少一个条件,马悦出的三道题所提出的问题都有不正确,尽管学生在编的实际问题中出现了失误,但学生真的动起来了,在思想的相互碰撞中,每个问题都得到了解决。但也有不足,如小组的时效性较小,虽然经历了小组交流,但问题并未深入的解决,马悦的三道题是代表小组的,但小组只停留在马悦出题了,也没有交流她出题的正确性。导致三道题都出现同一个问题。在今后的教学中教师更应该关注小组的时效性。元一次不等式教学反思 篇五
本章的重点是一元一次不等式的解法,难点是:不等式的解集、不等式的性质及应用不等式解决实际问题的能力,特别是实际问题中的列不等式求解。
1、教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分解出解集,这是最容易理解的方法,也是最适用的方法。至于有些课外书用“同大取大、同小取小、大小小大取中间、大大小小解不了”求解不等式,我认为增加学生的学习负担,不易于培养学生的数形结合能力。在教学中我要求学生在解不等式(组)的时,一定要通过画数轴,求出不等式的解集,建立数形结合的数学思想。
2、加强对实际问题中抽象出数量关系的。数学建模思想教学,体现课程标准中:对重要的概念和数学思想呈螺旋上升的原则。要注意对一元一次方程相关知识的复习,让学生进行比较、归纳,理解它与一元一次不等式的的联系与区别(特别强调“不等式两边同时乘以或除以一个负数时,不等号方向改变”),教学中,一方面加强训练,锻炼学生的自我解题能力。另一方面,通过“纠错”题型的练习和学生的相互学习、剖析逐步提高解题的正确性。
3、把握教学目标,防止在利用一元一次不等式(组)解决实际问题时提出过高的要求,陷入旧教材“繁、难、偏、旧”的模式,重点加强文字与符号的联系,利用题目中含有不等语言的语句找出不等关系,列出一元一次不等式(组)解答问题,注意与利用方程解实际问题的方法的区别(不等语言),防止学生应用方程解答不等关系的实际问题。
4、各种书籍出现的应用题里面文字有的自相矛盾,教学时教师要合理利用和指导学生选取辅导书,如课本“以外”与“至少”等。
元一次不等式教学反思 篇六
一元一次方程、一元一次不等式和二元一次方程组在初一的时候就已经学过了,而《用函数观点看方程(组)与不等式》这节就要求学生利于函数的观点重新认识、分析。
在复习导入过程中,我给出一个一元一次不等式的的题目:3x—2>x+2。同学们都笑开了花,有同学说:“这么容易,老师,我们已经不是初一的小孩子了。”也有同学直接说出这个不等式的解。这时,我提出了问题:“谁能把刚刚学习的一次函数和这个不等式联系到一起?同学们可以大胆想象。”由于学过利用函数观点看方程,有很多同学反映比较快,说:“画两个一次函数y=3x—2和y=x+2的图像,然后再观察”。我按照他的思路讲解了这种方法,同时提出还有没有更简单的方法,引导同学通过一个函数图像来解决问题。
这节课要结束了,突然有个同学问:“老师,本来我们能用初一的知识解题的,为什么要弄的这么麻烦啊?”“问的好,这节课的目的就是培养同学们数形结合思想,为今后的学习打好基础”。
一元一次不等式教案 篇七
教学目标:
认知目标:1.了解一次函数与一元一次不等式的关系,会根据一次函数的图象解决一元一次不等式的求解问题。
2.学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题的。
能力情感目标:经历不等式与函数关系问题的探究过程,学习用联系的观点看待数学问题的辨证。
教学重点:一次函数与一元一次不等式的关系的理解。
教学难点:利用一次函数的图象确定一元一次不等式的解集。
教学过程:
一、探究新知:
通过上节课的学习,我们已经知道“解一元一次方程ax+b=0”与“求自变量为何值时,一次函数y=ax+b的值为0”是同一个问题。现在我们来看看:
(1)以下两个问题是否为同一个问题?
①解不等式:2x-4>0
②当x为何值时,函数y=2x-4的值大于0?
(2)你如何利用函数的图象来说明②?
(3)“解不等式2x-4<0”可以与怎样的一次函数问题是同一的?怎样在图象上加以说明?
归纳:解一元一次不等式ax+b>0(或ax+b<0)可以看作:当一次函数y=ax+b的值大(小)于0时,求自变量响应的取值范围。
二、应用新知:
1.练习:P42练习1(3)(4)
2.例2 用画函数图象的方法解不等式5x+4>2x+10.
思考:我们应该画出什么函数的图象来解?
思路1:将不等式化为3x-6>0,然后画出函数y=3x-6的图象。
思路2:将不等式5x+4>2x+10的两边分别看作两个一次函数,画出直线y=5x+4和直线y=2x+10,对于同一个x,直线y=5x+4上的点在直线y=2x+10上相应点的下方,这时
5x+4>2x+10.
三、巩固练习
1.P42练习2(2)
2.P45习题11.3第3、4题
四、
五、布置作业
一元一次不等式教案 篇八
下面我来调查一下,你遇到这样的活动会去哪家超市?
(找同学回答,他们会选择哪家超市)
到底是哪位同学说的对呢,学习了今天的实际问题与一元一次不等式,答案就会揭晓。
请同学们打开课本的131页,今天我们就来学习一下实际问题与一元一次不等式。(板书课题)
(从生活中的问题入手,激发学生探索问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。本题通过猜想,激发学生兴趣,让学生能分析题中相关条件,找到不等关系。充分进行讨论交流,在活动中体会不等式的应用。)
我们这节课的学习目标是:
一元一次不等式教案 篇九
一元一次不等式教案
教学目标
1、能够根据实际问题中的数量关系,列一元一次不等式(组)解决实际问题.
2、通过例题教学,学生能够学会从数学的角度认识问题,理解问题,提出问题,?? 学会从实际问题中抽象出数学模型.
3、能够认识数学与人类生活的密切联系,培养学生应用所学数学知识解决实际问题的意识.
教学重点? 能够根据实际问题中的数量关系,列出一元一次不等式(组)解决 实际问题
教学难点? 审题,根据实际问题列出不等式.
例题? 甲、乙两商场以同样的。价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费。顾客到哪家商场购物花费少??
解:设累计购物x元,根据题意得
(1)当0 < x≤50时,到甲、乙两商场购物花费一样;
(2)当50< x≤100时,到乙商场购物花费少;
(3)当x > 100时,到甲商场的花费为100+0.9(x-100) , 到乙商场的花费为50+0.95(x-50)则
50+0.95(x-50) > 100+0.9(x-100),解之得x >150
50+0.95(x-50) < 100+0.9(x-100),解之得x < 150
50+0.95(x-50) = 100+0.9(x-100),?? 解之得x = 150
答:当0 < x≤50时,到甲、乙两商场购物花费一样;
当50< x≤100时,到乙商场购物花费少;当x>150时,到甲商场购物花费少;当100 < x <150时,到乙商场购物花费少;当x=150时,到甲、乙两商场购物花费一样。
变式练习? 学校为解决部分学生的午餐问题,联系了两家快餐公司,两家公司的报价、质量和服务承诺都相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费。问:选择哪家公司较好?
解:设购买午餐x份,每份报价为“1”,根据题意得
0.9x > 100+0.8(x-100),解之得x >200
0.9x < 100+0.8(x-100),解之得x < 200
0.9x = 100+0.8(x-100),解之得x = 200
答:当x>200时,选乙公司较好;当0 < x <200时,选甲公司较好;当x=200时,两公司实际收费相同。
作业
1、某商店5月1号举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠。已知小敏5月1日前不是该商店的会员。请帮小敏算一算,采用哪种方案更合算?
2、某单位计划10月份组织员工到杭州旅游,人数估计在10~25之间。甲乙两旅行社的服务质量相同,且组织到杭州旅游的价格都是每人200元。该单位联系时,甲旅行社表示可以给予每位旅客七五折优惠;乙旅行社表示可先免去一带队领导的旅游费用,其余游客八折优惠。问该单位怎样选择,可使其支付的旅游总费用较少?
一元一次不等式教案 篇十
(一)复习提问:
三角形的三边关系?
(二)列一元一次不等式组
问题:现有两根木条a和b,a长10cm,b长3cm.如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?
注:这个问题是本节的引入问题,三角形木框的形状不唯一确定,只要能成为三角形即可。
探究:用三根长度分别为14cm,9cm,6cm的木条c1,c2,c3分别试试,其中哪根木条能与木条a和b一起钉成三角形木框?
可以发现,当木条a和b的长度确定后,木条c太长或太短,都不能与a和b一起钉成三角形。
由于“三角形中两边之和大于第三边,两边之差小于第三边”,设木条c长xcm,则x必须同时满足不等式x10+3①和x10-3②
注:木条c必须同时满足两个条件,即ca+b,ca-b.
类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组记作注:这里并未正式给一元一次不等式组下定义,只是说这两个不等式合起来,组成一个一元一次不等式组。实际上,两个或更多的一元一次不等式组合起来,都组成一个一元一次不等式组。
(三)一元一次不等式组的解集
类比方程组的解,怎样确定不等式组中x的可取值的范围呢?
不等式组中的各不等式解集的公共部分,就是不等式组中x可以取值的范围。
注:这里还未正式出现不等式组的解集的概念,但已点出各不等式的解集的公共部分即不等式组中未知数的可取值范围。
由不等式①解得x13.
由不等式②解得x7.
从图9.3―2容易看出,x可以取值的范围为713.
注:利用数轴可以直观形象地认识公共部分。这个公共部分是两端有界的开区间。
这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框。
一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解不等式组就是求它的解集。
注:这里正式给出不等式组的解集以及解不等式组的定义13.注:利用数轴可以直观形象地认识公共部分。这个公共部分是两端有界的开区间。这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框。一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解不等式组就是求它的解集。注:这里正式给出不等式组的解集以及解不等式组的定义。
元一次不等式教学反思 第十一篇
1、内容的完成情况
本节课内容基本完成,但内容于学生来说有些简单,个别学生可能会出现“吃不饱”的现象。主要原因是对学生的了解不够到位。
2、教学环节处理
首先,对于例1后的练习题处理时间较长,基本是每个人都能顾及到,所以在讲课时,忽略了这一点。其次,例2的处理不好。对于例2我认为学生接触起来肯定有一定的难度,在设计课时,我特别设计了很多问题,引导学生进行分类。但是,当我问到“什么是更实惠?”时,学生立刻回答“要分情况。”这样就很自然的出现了分类讨论,可见学生对这种类型的题,已经是了解了,我想主要就是解题了,所以把更多的时间放在了分组解题上,并没有进行太多的分析,只是让学生自己完成,但是我在巡视的时候发现学生不知道如何写,所以我又重新分析带领学生完成三种情况的列式,然后再由学生完成,这样后面总结有些着急,练习题也就没能完成。
3、课件的辅助作用
有人曾说过:“不要为了课件而课件”,我的这节课,有些地方处理的就不好,特别是例2的背景,总想给学生创设一个环境,使他们愿意学习,但忽略了PPT使用的真正价值,并没有起到突出教学重点的作用。特别是课件的背景没有突出数学的教学背景。作用反而适得其反,分散了学生的注意力,所以在后面的课件制作中要为突出内容和重点,不能流于形式。
一元一次不等式教案 第十二篇
学习目标:
1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义。
2、会解由两个一元一次不等式组成的一元一次不等式组,能借助数轴正确的表示一元一次不等式组的解集。
3、通过探讨一元一次不等式组的解法以及解集的确定,渗透转化思想,进一步感受数形结合在解决问题中的作用。
4、体验不等式在实际问题中的作用,感受数学的应用价值。
学习重点:
一元一次不等式组的解法
学习难点:
一元一次不等式组解集的确定。
一、学前准备
【回顾】
1.解不等式 ,并把解集在数轴上表示出来。
【预习】
1、 认真阅读教材34-35页内容
2、____________ _ 叫做一元一次不等式组。
______ _______叫做一元一次不等式组的解集。
叫做解不等式组。
4、求下列两个不等式的解集,并在同一条数轴上表示出来
①
二、探究活动
【例题分析】
例1. (问题1)题中的买5筒钱不够,买4筒钱又多的含义是什么?
例2. (问题2)题中的相等关系是什么?不等关系又是什么?
例3. 解不等式组
【小结】
不等式组解集口诀
同大取大,同小取小,大小小大中间找,大大小小解不了
一元一次不等式组解集四种类型如下表:
不等式组(a
(1)xb
xb 同大取大
(2)x
x
(3)xax
a
(4)xb
无解 大大小小解不了
【课堂检测】
1、不等式组 的解集是( )
A. B. C. D.无解
2、不等式组 的解集为( )
A.-1
3、不等式组 的解集在数轴上表示正确的是( )
A B C D
4、写出下列不等式组的解集:(教材P35练习1)
三、自我测试
1.填空
(1)不等式组x-1 的解集是_ __;
(2)不等式组x-2 的解集 ;
(3)不等式组x1 的解集是__ __;
(4)不等式组x-4 解集是___ ___。
2、解下列不等式组,并在数轴上表示出来
(1)
四、应用与拓展
若不等式组 无解,则m的取值范围是 ____ _____.
元一次不等式教学反思 第十三篇
对于教师来说,“反思教学”就是教师自觉地把自己的课堂教学实践,作为认识对象而进行全面而深入的冷静思考和总结,它是一种用来提高自身的业务,改进教学实践的学习方式,不断对自己的教育实践深入反思,积极探索与解决教育实践中的一系列问题。简单地说,教学反思就是研究自己如何教,自己如何学。教中学,学中教。
在讲完不等式的性质后,我根据学生情况安排三个课时学习解一元一次不等式,我们的设想是:第一课时:在简单理解不等式的基本性质的基础上,类比一元一次方程的解法,学习如何解一元一次不等式,注意其中的区别与联系(即类比思想),学会用数轴直观的表示不等式的解集(数形结合思想);第二课时:熟练解一元一次不等式;第三课时:一元一次不等式的应用。
1、在学习本节时,要与一元一次方程结合起来,用比较、类比的方法去学习,弄清其区别与联系。
2、为加深对不等式解集的理解,应将不等式的解集在数轴上直观地表示出来,它可以形象认识不等式解集的几何意义和它的无限性。在数轴上表示不等式的解集是数形结合的具体体现。
3、熟练掌握不等式的基本性质,特别是性质3.不等式的性质是正确解不等式的基础
这节课学生的探究活动比较多,教师既要全局把握,又要顺其自然,经历探索求一元一次不等式组解集的过程,并培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力,从而使他们能准确的解一元一次不等式。
本节课我觉得自己成功的地方有以下几点:
1、出新:“兴趣是最好的老师”一节课如果能够从开始就可以吸引学生的注意,那么这节课就是一节好课。开篇用人机大战中的阿尔法狗来引起学生的注意。同时以挑战的语气激励起学生的好胜心和自豪感,为课堂注入了活力。保证了整节课学生的主动性。在练习阶段,以小组为单位,模仿河南电视台的汉字英雄栏目。让学生自己挑选题目,小组为单位进行挑战,其他小组进行挑毛病。既锻炼了学生的知识掌握能力,也锻炼了学生的集体主义精神和合作意识。同时也锻炼了学生的观察敏锐和专注程度。
2、整体的思路比较清晰:阿尔法狗的提问复习了不等式的相关内容,接下来让学生通过自学、小组讨论掌握一元一次不等式的定义和结构特征。然后通过练习进行辨析,并让学生自己归纳注意点(巩固概念),再接下去是应用新知、巩固新知、再探新知、巩固新知、探究活动、知识梳理、布置作业。整个流程比较流畅、自然;
3、精心处理教材:我选的例题和练习刚好囊括了解一元一次不等式不同情况,以便为后面的归纳小结做好准备;
4、教态自然、大方、亲切。能给学生以鼓励,能较好地激发学生的学习兴趣;比如在知识梳理环节李知希同学说的解一元一次不等式的步骤和课本上的不一样,杨振坤同学不同的解法,我觉得他们非常善于总结、类比和思考,所以我及时予以肯定;
5、实效。本节课重点是学会解一元一次不等式。在课堂教学过程中,让学生通过自我思考、小组讨论、师生共议、例题展示等环节让学生掌握住一元一次不等式的解法步骤。同时通过快速的训练让学生把握住一元一次不等式的解法。把学生容易出错的地方让学生反复的训练。攻克难点,总体的收效比较好。
本节课较好的方面:
1、本节课能结合学生的实际情况明确学习目标,注意分层教学的开展。
2、课程内容前后呼应,前面练习能够为后面的例题作准备。
3、能安排有小测等对学生学习的知识进行检查。
不足方面:
1、引入部分练习所用时间太长,讲评一元一次不等式的概念太细致,导致了后段时间紧,部分内容不能完成
2、课容量少,害怕学生听不懂、学不会,所以上课时喜欢给学生反复讲,结果课堂上大部分时间由我占据,而留给学生自己独立思考,讨论的时间较少。
我深感,只有当学生真正获得了课堂上属于自己学习的主权时,他们个性的形成与个体的发展才有了可能。本课在现场操作与反馈中,与教学设想仍有一定的差距,许多地方还停留在表面形态,师生都还未能很习惯地进入角色。这说明,一种新的教学理念要真正成为师生的教育行为,还有很长的路要走。我将和我的学生在这一探索过程中不断努力前行,总之,我们在课堂上还是要尝试着少说,给学生留些自由发展的空间。但在课前,教师必须多做一些事,例如精心设计适合学生的教学环节,多思考一些学生所想的,真正做好学生前进道路上的领路人。
三人行,必有我师焉。上面这13篇人教版初中数学一元一次不等式教案范文就是快回答为您整理的一元一次不等式范文模板,希望可以给予您一定的参考价值。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。