作为一位优秀的人民教师,常常要根据教学需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。怎样写教案才更能起到其作用呢?下面是快回答给大家整理的15篇五年级数学下册教案,希望可以启发您对于北师大版五年级下册数学教案的写作思路。
五年级数学下册教案 篇一
教学内容:
相遇问题(教材第71、72页)
教学目标:
1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。
2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。
教学重点:
理解相遇问题的结构特点,能根据速度、时间、路程的数量关系解决求相遇时间的问题。
教学难点:
掌握列方程解具有两积之和(或差)的数量关系的应用题的解法。
教学过程:
一、复习旧知
1、说一说速度、时间和路程三者之间的关系。
2、应用。(1)一辆汽车每小时行驶40千米,5小时行驶多少千米?
(2)一辆汽车每小时行驶40千米,200千米要行几小时?
3、列方程解应用题,关键是要找出题中的什么?,再根据找出的什么列出方程。
二、探索新知
1、揭示课题。
师:数学与交通密切相联。今天,我们一起来探索相遇问题。
板书课题:相遇问题。
2、创设结伴出游的情境。课件出示教材第71页的情境图。
从图中找出相关的数学信息。
生1:淘气的步行速度为70米/分,笑笑的步行速度为50米/分。
生2:淘气家到笑笑家的路程是840米。
生3:两人同时从家里出发,相向而行。
第一个问题:让学生根据信息进行估计,两人在何处相遇?
因为淘气的速度快,笑笑的速度慢,所以估计相遇地点在邮局附近。
第二个问题:画线段图帮助学生理解第二、第三个问题。
通过画线段图帮助学生找出等量关系。
淘气走的路程+笑笑走的路程=840米
第三个问题:根据等量关系列出方程。
解:设出发后x分相遇,那么淘气走的路程表示为:70x米,笑笑走的路程表示50x米。则方程为
70x+50x=840
学生独立解答。
3、在这个相遇问题中,除了用方程来解答外,还可以用什么方法来解决问题?试一试。
根据路程速度和=相遇时间列出算式
840(70+50)
三、应用新知,拓展练习
1、如果淘气的步行速度为80米/分,笑笑的步行速度为60米/分,他们出发后多长时间相遇?请写出等量关系并列方程解答。
五年级数学下册教案 篇二
设计说明
苏霍姆林斯基曾说过:“引导学生借助已有的经验去获取知识,这是最高的教学技巧之所在。”本节课的教学通过让学生动手操作、自主探究、合作交流等方式,使学生经历“探究——发现——验证——修改”的过程。通过一系列的活动,使学生完成了知识的自我构建,同时也加深了对分数除以整数的意义的理解,符合学生的发展需要。
另外,本节课的教学设计还遵循学生的认知规律和年龄特点,对计算进行探究式教学。让学生以自主探究和合作交流的方式,在分析问题和解决问题的过程中体验成功的喜悦,不仅使学生获得了知识,发展了智力,还激发了学生学习数学的兴趣
课前准备
教师准备PPT课件、长方形包装纸
学生准备长方形纸
教学过程
创设情境,提出问题
1.问题导入。
师:同学们,我们学过整数除以整数(0除外),也知道了整数除法的意义。今天我们将学习分数除法。那么分数除法的意义是什么呢?它和整数除法的意义是否相同呢?下面就让我们带着疑问一起来探究一下几个小朋友分饼的问题。
请你们列出算式并计算。
(1)每人吃张饼,4个人共吃多少张饼?
(2)把2张饼平均分给4个人,每人分得多少张饼?
(3)有2张饼,每人分得张饼,可以分给几个人?
(引导学生观察上面的三道题,并说一说它们都是已知什么,求什么)
2.揭示分数除法的意义。
讨论:(3)题中涉及了分数除法,想一想,分数除法的意义和整数除法的意义相同吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
设计意图:通过对一组题的探究和对比,使学生发现分数除法的意义与整数除法的意义相同,这样新旧知识的迁移过渡,可以使学生对分数除法的意义理解起来更加容易。
合作交流,探究新知
1.引导参与,探究新知。
(1)出示教材55页例题。
师:(出示一张长方形的包装纸)老师想用这张漂亮的包装纸把送给妈妈的礼物包装起来,可是这张纸太大了,把它的平均分成2份就够了,每份是这张纸的几分之几呢?
(2)动手操作,分一分,涂一涂。
师:请大家拿出一张长方形纸,涂色表示出这张纸的。
(学生动手操作,教师巡视指导)
师:把一张长方形纸的平均分成2份,想一想,是把哪一部分平均分成了2份?其中的一份是多少呢?请大家用自己喜欢的颜色表示出来。
(学生活动,教师指导)
(3)观察发现。
师:通过画图,你发现了什么?能用一个算式表示出涂色的过程吗?
预设
(教师利用课件配合学生汇报)
生1:把平均分成2份,每份是2个小格,占这张纸的。
生2:里面有4个,平均分成2份,每份就是2个,是,即÷2=。
设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生进一步理解、感受分数除法的意义。
2.初探算法。
师:如果不看图,你会计算÷2吗?你能提出大胆的猜想吗?
预设
生:分母不变,被除数的分子除以整数得到的商作商的分子。
提出质疑,验证猜想,理解新知。
(1)尝试验证,发现问题。
师:科学的验证不是仅通过计算一两道题就能得出结论的,你们能不能自己设计一道分数除以整数(0除外)的计算题来验证刚才的猜想是否正确呢?
(学生汇报验证的结果)
师:为什么有些题目能很顺利地算出来,而有些题目却不能很快地算出准确的答案呢?(分数的分子不能被除数整除)
北师大版五年级下册数学优秀教案 篇三
一、教学目标
通过这个综合应用,让学生进一步体会数学与生活的密 切联系以及优化思想在生活中的应用,培养学生应用数学知识解决实际问题的能力,同时通过画图的方式发现事物隐含的规律,培养学生归纳推理的思维能力。
二、编排思想
1.探索最优方案(每个人都不空闲)。
2.发现规律(第n分钟接到电话的人数是前n-1分钟接到电话的学生总数加1(老师),前n分钟接到电话的学生总数是2的n次方减1)。
3.应用规律。
三、教学建议
1.小组合作学习,教师指导,全班汇报交流。
2.提示学生利用画图表的直观形式解决问题。
3.数学模型是一种理想化的理论,要事先设计好具体通知方案(包括每人的通知对象)和流程图。
综合应用 粉刷墙壁
一、教学目标
巩固有关表面积等方面的知识,加强数学知识在实际生活中的应用,而且还可以培养学生收集 、整理 、分析信息的意识和能力。
二、活动步骤
1.明确设计方案需要做的工作。
2.收集数据。
3.整理数据、分析与比较信息。
4.书面呈现粉刷围墙方案。
三、教学建议
1.因本实践活动会涉及实地的测量与调查,教学活动可以采取室内教学和室外教学相结合的形式。
2.室内教学时,教师可引导学生讨论并思考,应该如何整理分析收集到的相关数学信息。
3.展示方案的过程中,教师可以引导学生比一比,看看哪组的方案更合理、更有实际效益,激发学生之间的互评,使学生在交流中理解并接纳别人较好的方法。
4.活动结束之后,也可鼓励学生将自已设计的方案投给学校相关部门,为学校的建设提出一定的建议,使学生体会到数学的价值,体会到自己劳动的价值。
五年级数学下册教案 篇四
教学目标
1、使学生了解镜子的反射的图案有什么特点。
2、能够根据镜子的反射画出对称图形。
3、使学生经历探索镜面对称现象的一些特征的过程,培养并发展学生的空间知觉和空间观念,提高学生的能力。
4、充分挖掘课程资源,进而培养学生钻研数学的能力以及良好的学习习惯。
教具准备
一面小镜子、美术字“王”、收集一些照片。
教学过程
一、观察导入
事先准备一个小镜子夹在一本书里,然后说:“老师的书里夹了几张伟人的照片,谁想来看一看?但是看完的同学不能够说出来。”
问:你看到了什么?在镜子中看到的是谁?你想到什么?
揭示课题:镜子中的数学。
二、学习新课
1、引导谈话:
镜子能做什么?镜子里的图象和实际中的图象有什么关系?镜子中也有很多的数学知识等着我们去探索呢
老师演示:把镜子放在“王”字的上面,你观察到了什么?
放在一半的蝴蝶图形上面,你又看到了什么?
问:和原来的图有什么不同?这是什么道理?鼓励学生大胆发言。
2、从镜子中看到的图象是一个什么图形?哪一条线是它的对称轴呢?
3、是不是所有在镜子中形成的图象都是一个对称图形?观察图3,你发现了什么?
在镜子中看到的数字和实际中的数字是相反的,但是形成的图形也是对称图形。
4、运用这个原理,你能想到什么?用镜子观察物体时需要注意什么?
引导学生讨论:镜子有什么作用?它能帮我们做什么?你能用镜子做哪些事情?
在学生的讨论的基础上引导学生归纳小结。
三、巩固练习
(一)反馈练习:
1、完成18页第1题:
从镜子中看到的是哪一个图形?
指导学生通过观察、想象、操作,正确地进行判断:镜子中的图象和实际的图象是相反的,并是对称的。
1、第2题:
把镜子放在一个对称图形的适当的位置,使你仍然能看到图的全部。
小组讨论,把镜子放在哪里合适?为什么?
实际上镜子放在对称图形的对称轴上就可以了,想一想这是什么道理?
(二)拓展练习:
从镜子里反射的时间有什么特点?
实践操作:从镜子中观察一个钟表的时刻:5时整。镜子中的时刻是7时整。
再让学生观察一些这样的时刻,引导学生注意发现其中的奥秘。
四、全课总结
本课你学到了什么?小小的一面镜子中蕴藏了哪些知识?
五、布置作业
收集一些对称的图形、图案和照片,班里展览。
五年级数学下册教案 篇五
设计说明
复习课既不像新授课那样有“新鲜感”,又不像练习课那样有“成就感”,还担负着查缺补漏、系统整理和巩固发展的任务。为了让每个学生都积极参与复习,在组织教学时,应该营造一个轻松、平等、和谐的学习氛围。让学生在独立思考、合作交流的过程中“温故而知新”。
1、创造性地使用教材。
在教学设计中,灵活地运用教材,既不要夸大它的作用,又不要削弱它的功能,要创造性地发挥它应有的功能。作为复习课,设计要有新意,要创造性地使用教材,因此本节课的教学设计进行了适当的处理,这样更符合本地区学生的实际需求。
2、重视对学生解决问题能力的培养。
教学中,把所学的知识进行回顾,然后利用这些知识来解决问题,结合教材习题逐一练习。通过练习,将学生所学的知识整理成知识网络,提高学生解决问题的能力。
课前准备
教师准备PPT课件
教学过程
⊙导入新课
1、同学们,这节课我们结合教材习题,复习分数加减法这一单元的内容。想一想,这一单元我们都学习了哪些内容?
2、学生独立思考后,在小组内交流。
(异分母分数加减法的计算方法、分数加减混合运算的运算顺序及简算、分数与小数的互化三部分内容)
3、小组汇报,全班交流,互相评价,呈现知识结构图。
分数加减法
设计意图:引导学生回顾分数加减法的相关知识,复习本节课中的知识点,在教师的引导下画出知识结构图,帮助学生建立这部分知识内容的知识网络,便于学生整理和记忆相关知识。
⊙整理复习
1、复习异分母分数加减法的计算方法。
(1)复习异分母分数加减法应注意什么?结合具体实例说一说。
(2)先想一想异分母分数加减法应该怎样计算,再计算下面各题。
+ -
结合上面的算式复习异分母分数加减法的计算方法:①异分母分数相加减:先通分,然后按同分母分数加减法的计算方法进行计算;②分数加减法对计算结果的要求:能约分的要约成最简分数。
(3)完成教材94页1题前两个小题的计算。
+ -
解答: + -
=+=-
==
=
2、复习分数加减混合运算的运算顺序。
(1)先想一想分数加减混合运算应该怎样计算,再计算下面各题。
+- -+
1-- 1-
①复习分数加减混合运算的计算方法。
在计算分数加减混合算式时,主要有以下两种方法:一是先将所有的分数全部通分,再进行计算;二是先通分需要进行通分的部分,再进行计算。
②复习分数加减混合运算的运算顺序。
分数加减混合运算的运算顺序和整数加减混合运算的运算顺序相同。没有括号的,要按照从左到右的顺序依次进行计算;有括号的,要先算括号里面的,再算括号外面的。
③学生在小组内讨论、计算后交流结果。
(2)完成教材94页3题最后一竖排两个小题。
+- -
=+-=-
=- =-
== =
①引导学生观察第2个小题,课件出示学生的不同解法。
--
=-- =--
=- =-
= =-
=-
=
②从上面的解法中,你发现了什么?
学生讨论、交流后小结:整数加减法的运算定律对分数加减法同样适用。
3、复习分数与小数的互化。
先想一想分数、小数是怎样互化的,再计算下面各题。
0、75=( ) =( )
2、12=( ) 4=( )
五年级数学下册教案 篇六
教学目标
1、掌握整除、约数、倍数的概念。
2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系。
教学重点
1、建立整除、约数、倍数的概念。
2、理解约数、倍数相互依存的关系。
3、应用概念正确作出判断。
教学难点
理解约数、倍数相互依存的关系。
教学步骤
一、铺垫孕伏(课件演示:数的整除下载)
1、口算
6÷515÷323÷7
1.2÷0.324÷231÷3
2、观察算式和结果并将算式分类。
除尽
除不尽
6÷5=1.215÷3=15
1.2÷0.3=424÷2=12
23÷7=3......2
31÷3=10......1
3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除。
4、寻找具有整除关系的算式。
板书:15÷3=515能被3整除
5、分类除尽
除不尽
不能整除
整除
6÷5=1.2
1.2÷0.3=4
15÷3=15
24÷2=12
23÷7=3......2
31÷3=10......1
二、探究新知
(一)进一步理解”整除“的意义。
1、整除所需的条件。
(1)分析:24能被2整除,15能被3整除;
23不能被7整除,31不能被3整除;(商有余数)
6不能被5整除;(商是小数)
1.2不能被0.3整除;(被除数和除数都是小数)
(2)引导学生明确:第一个数能被第二个数整除必须满足三个条件:
a、被除数和除数(0除外)都是整数;
b、商是整数;
c、商后没有余数。
板书:整数整数整数(没有余数)
15÷3=5
2、用字母表示相除的两个数,理解整除的意义。
(1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a能被b整除?
(板书:a÷b)
学生明确:a和b都是整数,除得的商正好是整数而没有余数,我们就说a能被b整除。
(板书:a能被b整除)
(2)继续讨论:在什么情况下才能说a能被b整除?(板书:b≠0)
学生明确:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除(也可以说b能整除a).
3、反馈练习。
(1)下面的数,哪一组的第一个数能被第二个数整除?
29和336和121.2和0.4
(2)判断下面的说法是否正确,并说明理由。
a.36能被12整除。()
b.19能被3整除。()
c.3.2能被0.4整除。()
d.0能被5整除。()
e.29能整除29.()
4、”整除“与”除尽“的联系和区别。
讨论:综合以上所学知识讨论,”整除“和”除尽“有什么联系?又有什么区别?
(举例说明)
(二)约数、倍数的意义
1、类推约数、倍数的意义。
(1)教师讲解:15能被3整除,我们就说15是3的倍数,3是15的约数。
(2)学生口述:
24能被2整除,我们就说,24是2的倍数,2是24的约数。
10能被5整除,我们就说,10是5的倍数,5是10的约数。
a能被b整除,我们就说a是b的倍数,b是a的约数。
(3)讨论:如果用字母a和b表示两个整数,在什么情况下才可以说a是b的倍数,b是a的约数?(在数a能被数b整除的条件下)
(4)小结:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).
2、进一步理解约数、倍数的意义。
(1)整除是约数、倍数的前提。学生明确:约数和倍数必须以整除为前提,不能整除的两个数就没有的数和倍数的关系。
(2)约数和倍数相互依存的关系。
学生明确:约数和倍数是一对相互依存的概念,不能单独存在。
(3)反馈练习:
A、下面各组数中,有约数和倍数关系的有哪些?
16和2140和2045和15
33和64和2472和8
B、判断下面说法是否正确。
a、8是2的倍数,2是8的约数。()
b、6是倍数,3是约数。()
c、30是5的倍数。()
d、4是历的约数。()
e、5是约数。()
3、教师说明:以后在研究约数和倍数时,我们所说的数一般不包括零。
4、教学例2:12的约数有哪几个?
(1)引导学生合作学习,讨论分析。
(2)汇报、板书:
12的约数有:1、2、3、4、6、12
(3)练习:15的约数有哪几个?
(4)学生明确:
一个数的约数是有限的其中最小的约数是1,的约数是它本身。
5、教学例3:2的倍数有哪些?
(1)引导学生合作学习,讨论、分析。
(2)汇报、板书:
2的倍数有:2、4、6、8、10......
(3)练习:2的倍数有哪些?
(4)学生明确:
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
三、全课小结
这节课,我们在进一步研究整除的基础上又学到了什么?通过学习你知道了什么?
(板书课题:约数和倍数的意义)
四、随堂练习
1、下面的说法对吗?说出理由。
(1)因为36÷9=4,所以36是倍数,9是约数。
(2)57是3的倍数。
(3)1是1、2、3、4、5,...的约数。
2、下面的数,哪些是60的约数,哪些是6的倍数?
3412162460
教师说明:一个数可以是另一个数的约数,也可以是某个数的倍数。
3、下面的说法对吗?为什么?
(1)1.8能被0.2除尽。()1.8能被0.2整除。()
1.8是0.2的倍数。()1.8是0.2的9倍。()
(2)若a÷b=10,那么:
a一定是b的倍数。()a能被b整除。()
b可能是a的约数。()a能被b除尽。()
五、布置作业
1、先写出下面每个数的约数,再写出下面每个数的倍数(按照从小到大的顺序各写5个)
101336
2、在下面的圈里填上适当的数。
六、板书设计
约数和倍数的意义
探究活动
五年级数学下册教案 篇七
第一课时
教学目标:
知识目标:
巩固和加深对所学知识的理解。沟通个部分知识的内在联系。
能力目标:能用自己喜欢的方式对所学知识进行整理。
3、提高学生应用知识解决实际问题的能力。
教学重点、难点:弄清各知识间的联系。
教学策略:
小组整理学习内容,交流所学习的知识及学习方法。
教学过程:
一、整理学习内容
1、小组合作,整理“数与运算”。回顾所学的内容,对所学的知识用自己喜欢的方式整理,对有特色的整理方式可以在全班交流。
2、对整理的内容在班内交流。
二、练习
1、第1题。先让学生独立完成后,再在小组里交流计算的方法。
2、第2题。先让学生自己独统计图表,理解八五折和八折的意思,然后题出问题并加以解决。
答案:1500×85%=1275元,
1600×80%=1280元
南极牌冰箱比较便宜。
3、第3题,先帮助学生理解提议,由学生独立解决,然后全班交流。
三、总结。
学生说说自己的收获,包括所学知识和新的学习方法。
板书设计:
分数乘法:意义计算方法
分数除法:意义计算方法
五年级数学下册教案 篇八
教学目标:
1、通过动手操作,知道长方体、正方体的展开图,加深对长方体、正方体的认识。
2、在想象、操作等活动中,发展空间观念,激发学习数学的兴趣。
3、在想象、操作等活动中,发展空间观念,激发学习数学的兴趣。
教学重点:
通过动手操作,知道长方体、正方体的展开图,加深对长方体、正方体的认识。
教学难点:
通过动手操作,知道长方体、正方体的展开图,加深对长方体、正方体的认识。
教学准备:
1、准备长方体和正方体的纸盒各一个。
2、把附页1中的图形剪下来。
前置作业:
1、把一个正方体盒子沿着棱剪开,得到一个展开图是(可以画一画也可以贴一贴)
2、把一个正方体盒子沿着棱剪开,得到一个展开图是(可以画一画也可以贴一贴)
3、做一做
(1)下面哪些图形沿虚线折叠后刚好能围成正方体?
(2)下面哪些图形沿虚线折叠后刚好能围成长方体?
教学过程:
课前3分钟内容
一、动手操作,知道长方体、正方体的展开图。
1、通过剪盒子,认识长方体、正方体的展开图。
师:请同学们拿出你们带来的正方体纸盒,沿着棱剪开,看看你能得到什么样的展开图。
学生在剪、拆盒子的过程中,教师要对剪的方法进行适当的指导。
由于剪法不同,展开图的形状也是不同的。学生剪好后,教师展示不同形状的展开图。
师:请同学们再将一个长方体盒子沿棱剪开,看看又能得到怎样的展开图。
2、体会展开图与长方体、正方体的联系。
教科书第16页做一做第1、2题
引导学生理解题目要求,利用附页1中的图形进行操作,独立地想一想哪些图形符合题目的要求,再组织学生交流。
二、练一练
1、教科书第17页练一练第1题。
先让学生看展开图进行思考,并把结果写下来,然后再利用附页中的图试一试。
2、教科书第17页练一练第2题。
先让学生按展开图说说哪两个面是相对的面,再联系长方体说说展开图中的各个长方形对应的是长方体中的哪个面。
板书设计:
展开与折叠
北师大版五年级数学下册教案 篇九
设计说明
平均数是统计中的一个重要概念。在统计中,平均数常用于表示统计对象的一般水平,它是描述数据集中程度的一个统计量。用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常用到。本节课是在学生已有知识经验的基础上,让学生进一步体会平均数的意义,掌握求平均数的方法。
1.创设问题情境,引发认知冲突。
“问题是数学的心脏”,有了问题才会思索,有了问题才会引发学生认识上的冲突。这节课通过具体问题情境,激发学生的。学习兴趣。由“为什么两个阿姨都领着孩子,第一位阿姨只买一张票,而第二位阿姨却要买两张票呢?”引发学生的认知冲突,从而产生进一步探究平均数的意义的欲望。
2.在分析讨论中促进学生对平均数意义和计算方法的再认识。
在以往的学习中,平均数的意义和计算方法学生已经接触过,但对于具体生活情境中问题的解答,学生比较陌生,所以在教学中通过学生的小组讨论、交流、分析,使学生了解到在不同的情境中,求平均数的方法也不同,培养学生灵活运用所学知识解决生活中的实际问题的能力。
课前准备
教师准备 PPT课件
学生准备 作业纸
教学过程
⊙谈话导入
1.课件出示两位阿姨排队买票的情境图(一位阿姨抱着一个大约四五岁的孩子,另一位阿姨领着一个大约七八岁的孩子)。
师:从画面上你获取了哪些信息?你认为买票时应该怎样做?(适时对学生进行思想品德教育)
课件依次演示第一位阿姨只买了一张票,而第二位阿姨却买了两张票。
师:从画面上你知道了什么?有哪些疑问呢?为什么两个阿姨都带着孩子,第一位阿姨只买了一张票,而第二位阿姨却要买两张票呢?
(学生在小组内讨论、交流,初步感知学龄前儿童免票的规定)
2.引出新知。
师:这节课我们一起来学习平均数的再认识。(板书:平均数的再认识)
设计意图:数学来源于生活,从学生熟知的乘车买票情境入手,使学生初步感知平均数在实际生活中的应用,为后面学习用平均数知识解决生活中的实际问题奠定基础。
⊙探究新知
(一)进一步探究平均数的意义。
课件出示:根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足1.2m的儿童免费乘车。
1.组织学生讨论:1.2m这个数据可能是如何得到的?
(学生在小组内交流、讨论,然后全班汇报)
(1)调查了一些6岁儿童的身高。
(2)1.2m可能是这些身高的平均数。
2.据统计,目前北京市6岁男童身高的平均值为119.3cm,女童身高的平均值为118.7cm。引导学生根据上面信息解释免票线确定的合理性。
(学生在小组里讨论、交流各自的想法)
(二)引导学生从生活情境中理解平均数。
课件出示:下表是“新苗杯”少儿歌手大奖赛的成绩统计表。
1.指导学生把统计表填写完整,并排出名次。
学生进行计算,独立填表,排出名次。
2.根据你的生活经验,说一说在实际比赛中计算平均分的规则。
(在小组内讨论、交流,初步感知实际比赛中的评分规则和平常的求平均数方法的不同)
3.引导学生讨论:在实际比赛中,通常都采取去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你能说出其中的道理吗?
(交流并汇报:平均数容易受偏大或偏小数据的影响)
4.小结:在很多比赛中,为了体现公平、公正的原则,往往采取去掉一个最高分和一个最低分,然后求平均分的记分方法。
5.引导学生按照上面的方法重新计算3位选手的最终成绩,然后排出名次。
(学生独立计算,然后全班汇报)
引导学生理解:其中一个数有变化,所求的平均数也会发生变化。
五年级数学下册教案 篇十
课程目标
(1)结合具体情境,理解分数加减法的算理,掌握它们的计算法则,并能正确熟练地计算。
(2)掌握长方体的特征,认识它们展开图的形状,理解掌握长方体的表面积含义并能正确计算。
(3)结合具体情境,掌握分数乘法的计算法则,并能正确熟练地计算。
(4)理解倒数的意义,掌握分数除法的计算法则,并能熟练地计算。
(5)掌握分数乘法、除法的数量关系,并能运用这些知识和技能解决简单的数学问题。
(6)使学生在具体的情境中认识列、行的含义,知道确定列、行的规则。能初步理解数对的含义,会用数对表示具体情境中物体的位置。结合具体情境,使学生经历由具体的座位图抽象成用列、行表示的平面图的过程,提高思维能力,发展空间观念。
(7)找题中的等量关系,并根据等量关系列出方程。能比较熟练地解方程,进一步提高学生分析数量关系的能力。
(8)使学生会看起始格与其他格代表的单位量不一致的条形统计图,并能根据统计图回答简单的问题。
教学重、难点
教学重点:
1.理解整数与分数乘法的意义,理解分数乘分数的意义及其计算方法。
2.理解除数是分数的除法的意义,分数除法的计算方法。
3.重点培养分析问题、解决问题的能力。
4. 找题中的等量关系,并根据等量关系列出方程。
5.了解长方体的几何结构。掌握长方体表面积的计算方法。
教学难点:
1.整数与分数的乘法的两种意义之间的联系。
2.把被除数的分数平均分成几份,其中的每一份都是这个被除数的几分之一,也是所求的商。要结合具体情境与操作来理解分数除以整数的意义。
3.除数是分数的除法的意义,是从被除数中能够分出多少个除数的角度来理解的感受1立方米、1立方厘米以及1升、1毫升的实际意义,能形象地描述这些体积单位实际有多大。
课程内容与安排
本册教材共分八个单元、四个领域:
本册教材的教学内容有(按单元):分数加减法、长方体(一)分数乘法、长方体(二)、分数除法、确定位置、用方程解决问题、数据的表示和分析、总复习。
(一)数与代数(按领域划分)
1.第一单元“分数加减法”。 结合具体情境,理解分数加减法的算理,掌握它们的计算法则,并能正确熟练地计算。
2.第三单元“分数乘法”学生将在这个单元的学习中,结合具体情境,在操作活动中,探索并理解分数乘法的意义;探索并掌握分数乘法的计算方法,并能正确计算;能解决简单的分数乘法的实际问题,体会数学与生活的密切联系。
3.第五单元“分数除法”。学生将在这个单元的学习中,结合具体情境,借助操作活动,探索并理解分数除法的意义;借助图形语言,探索分数除法的计算方法,并能正确计算;了解倒数的含义,能求一个数的倒数;能应用方程解决有关的分数除法的实际问题,体会数学与生活的密切联系。
(二)空间与图形
1.第二单元“长方体(一)”。学生将在这个单元的学习中,通过观察、操作等,认识长方体、正方体及其基本特征,知道长方体、正方体的展开图;结合具体情境,探索并掌握长方体、正方体表面积的计算方法,并能解决生活中一些简单的问题;经历展开与折叠、寻找规律等活动,发展空间观念和探索规律的能力。
2.第四单元“长方体(二)”。学生将在这个单元→www.kuaihuida.com←的学习中,通过操作活动,了解体积(包括容积)的含义;认识体积(包括容积)单位(米、分米、厘米、升、毫升),会进行单位之间的换算,感受1米、1分米、1厘米以及1升、1毫升的实际意义;探索并掌握长方体、正方体体积的计算方法,并能解决简单的实际问题;探索某些不规则物体体积的测量方法;在观察、操作等活动中,发展动手操作能力和空间观念。
3.第六单元“确定位置”。使学生在具体的情境中认识列、行的含义,知道确定列、行的规则。能初步理解数对的含义,会用数对表示具体情境中物体的位置。结合具体情境,使学生经历由具体的座位图抽象成用列、行表示的平面图的过程,提高思维能力,发展空间观念。
4.第八单元“数据的分析和分析”。使学生会看起始格与其他格代表的单位量不一致的条形统计图,并能根据统计图回答简单的问题。
(三)统计
第八单元“数据的表示和分析”。学生将在这个单元的学习中,经历收集数据、整理数据、分析数据的过程,体会统计的作用,发展统计观念;通过实例,认识扇形统计图,了解扇形统计图的特点与作用;能根据需要,选择条形统计图、折线统计图、扇形统计图直观、有效地表示数据;通过实例,理解中位数、众数的意义,会求一组数据的中位数、众数,并解释结果的实际意义;根据具体问题,能选择适当的统计量表示一组数据的不同特征;能从报刊杂志等媒体中,有意识地获得一些数据信息,并能读懂简单的统计图表。
(四)综合应用
本册教材安排了两个大的专题性的综合应用,即“数学与生活”、“数学与购物”,旨在综合运用所学的知识解决某一生活领域的实际问题。同时,还在其他具体内容的学习中,安排了某些综合运用知识解决简单的实际问题的活动。学生在从事这些活动中,将综合运用所学的知识和方法解决实际问题,感受数学在日常生活中的作用;获得一些初步的数学活动经验和方法,发展解决问题和运用数学进行思考的能力;感受数学知识间的相互联系,体会数学的作用;在与同伴合作和交流的过程中,发展数学学习的兴趣和自信心。
(五)整理与复习
教材安排了两个整理与复习。整理与复习改变单纯做题的模式,注重发展学生自我反思的意识。每个整理与复习都分成三部分:对所学内容的整理,提出数学问题并尝试解答和一些练习题目。
“你学到了什么”这个栏目,目的是鼓励学生对学过的知识进行回顾与反思,能运用列表或采用其他的形式对所学的主要内容进行简单的梳理。“运用所学的知识提出相关的数学问题,并尝试解决问题”,目的是培养学生提出问题、解决问题的能力;在解决问题过程中加深对所学知识的理解;回顾在学习过程中自己的体会与进步。
全册教学内容及教时安排(以单元为单位)
(1)分数加减法8课时
(2)长方体(一)8课时
(3)分数乘法9课时
(4)长方体(二)10课时
(5)分数除法8课时
(6)确定位置 2课时
(7)用方程解决问题4课时
(8)数学好玩3课时
(9)数据的表示和分析6课时
(10)总复习6课时
最新五年级下册数学教案 第十一篇
教学目标:
1、使学生理解、掌握分数与除法的关系,并能用分数表示两个整数相除的商。
2、运用分数与除法的关系,探索假分数与带分数的互化方法。
3、培养学生动手操作、观察、比较和归纳的能力。
4、培养学生团结合作、关心他人、先人后己等优良品质。
教学重点:理解、掌握分数与除法的关系。
教学难点:理解分数商a/b(b≠0)的意义。
教学具准备:教学课件及3张完全相同的圆和剪刀。
教学过程:
一、设置疑问,揭示课题
1、请同学们计算下面各题,你能把商分为哪几类?
36÷6 = 6 4÷5=0.8 80÷5=16
3÷7= 5÷10=0.5 4÷9=
然后引导学生归纳分类:
36÷6 = 6和80÷5=16的商为整数;
4÷5=0.8和5÷10=0.5的商为有限小数;
3÷7=和4÷9=的商为循环小数。
2、师指出:两个自然数相除,不能整除的时候,它们的商可以用分数来表示。今天我们就来学习这部分内容:分数与除法(板书:分数与除法)
二、创设情境,引导探索
1、创设情境,引入关系
师:“六一”儿童节就要到了,今年的儿童节,学校要组织全校师生开展野游活动,到了野外,还要以班级为单位开展联欢活动,前几天我同班主任刘老师对想要买的食品做了一些粗略的计划,知道买哪些东西了,具体怎么分还没有计算,大家愿意和老师一起做一下详细的计划吗?
生:愿意!
师:好!那我们大家就一起来吧!
师:请看我们班级为这次活动准备的食品:
食品名称食品数量班级人数平均每人分的数量
苹果40个47 40÷47
饮料39瓶47 39÷47
花生8千克47 8÷47
上面表格里的商都不能用整数的商来表示,除了可以用小数来表示,能否用其它的形式,比如分数来表示呢?等我们学完了这节课,同学们自然会找到答案的。
2.层层深入,感知关系
师:我想调查一下,最近谁要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?
师:同学们愿意帮xxx同学分一分蛋糕吗?
生:愿意!
师:出示例题:把一个蛋糕平均分给3个人,平均每人能分得多少?师:这时,应该把什么看作单位“1”?
要把蛋糕平均分成几份?
怎样列式?(指名口述算式)
1÷3=
师:大家拿出练习本来计算这个商是多少?(用小数表示)
生:0.333…或
课件显示:1÷3=0.333…或
师:这个商用小数表示太麻烦了,能不能用分数来表示呢?
请大家看大屏幕大家看,每人得到这个蛋糕的几分之几?
生:
师:对了!那么上面的算式1÷3的商可以用分数表示了,即:1÷3=(个)
(2)现在小组讨论:1÷3=中,你发现整数除法中被除数和除数与得数中的分子、分母存在着什么样的关系?
(3)讨论完毕后,指几名同学代表自己的小组总结:学生口述的'过程中,教师出示课件:被除数÷除数=
(4)师:现在大家会用分数表示整数除法的商了,那么,大家能把前面表格中的得数用分数表示吗?
生:会!
师出示:40÷47=?39÷47=?8÷47=?
3.,巩固关系
师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?
生:想!
师:大家看问题:我想把这3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?
①议一议:讨论如何分,有哪些分法?(让同学们充分考虑好后,说说自己的想法)
②剪一剪:想好后各小组可以行动了,请同学们以小组为单位拿出我们事先准备的三个完全一样的圆形和剪刀剪一剪,并把分好的四份摆在桌子上。
③拼一拼:分好后,请同学们每人取一份拼在一起,看看是一个“饼”的几分之几?
④列一列:怎样用算式表示自己分饼的数量关系?谁会列式?
⑤算一算:师指一名同学板演算式:3÷4=(张)
答:每人分得张。
请板演的同学说一说自己是根据什么这样写的?
⑥如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?
学生回答,师板书:a÷b= (b≠0)
师:大家考虑:这里的a和b是否可以是任何自然数?为什么?
生:不可以,因为这里的b≠0
师:左侧b≠0,那么右侧的b是否可以是0?为什么?
师:讨论完后,教师用红色粉笔标上:b≠0
(引导学生懂得:在除法中,除数不能为零,所以在分数中,分母不能为零)
三、总结提升,归纳关系(师生共同完成)
1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号。
2、判断:“分数就是除法,除法就是分数”这句话对不对?
(最后教师总结:分数与除法既有联系,又有区别,除法是一种运算,而分数是一个数)
四、拓展延伸,发展能力
1、填空:7÷13= =()÷()
()÷9= ()÷26=
2、用分数表示下面各式的商。
3÷4= 7÷12= 16÷49= 25÷24= 12÷25= 36÷57= 30÷37= 33÷78=
7÷13= 74÷14= 77÷13= 78÷97
3、一个4平方米的圆形花坛分成大小相同的5块,每块是多少平方米?(用分数表示)
4、“六一”联欢的时候,大家都会带好多自己爱吃的食品,你们愿意与同学们共同品尝吗?如果愿意的话,请说说你的打算,并编一道符合这节课学习内容的题目说给大家听听好吗?
五、情感教育,教书育人
同学们,我刚才听了大家的各种打算,感到很欣慰,同学们都打算把自己的好吃的分给大家一起享用,我都盼望着过“六一”儿童节了,到那时,我也会准备一些好吃的礼物与大家一起分享好吗?但愿我们同学在共同的学习和生活中,能互相关心,团结友爱,亲如兄妹,让我们的班级成为一个温暖的班级体!
板书设计:
分数与除法
a÷b= (b≠0)
3÷4=(张)
答:每人分得张饼。
北师大版五年级下册数学优秀教案 第十二篇
学习内容:
长方体的认识(教材第18~19页的内容及第21~22页练习五的1、2、3、6、7题)。
学习目标:
1.初步认识立体图形、认识长方体的特征。
2.通过观察、想象、动手操作等活动进一步发展空间观念。
3.继续培养学生学习数学的兴趣,进一步形成勇于探索、善于合作交流的学习品质。
教学重点:
掌握长方体的特征。
教学难点:
通过观察、想象、动手操作等活动进一步发展空间观念
教具运用:
一些长方体物品,课件。
教学过程:
一、复习导入
1.谈话引入,回忆以前学过哪些几何图形?它们都是什么图形?(由线段围成的平面图形)
2.投影出示教材第18页的主题图。提问:这些还是平面图形吗?(不是)教师:这些物体都占有一定的空间,它们都是立体图形。提问:在这些立体图形中有一种物体是长方体,谁能指出哪些是长方体?
3.举例:在日常生活中你还见到过哪些长方体的物体?长方体又具有什么特征呢?引出新课并板书课题。
二、新课讲授
1.认识长方体的面、棱、顶点。
(1)请学生拿出自己准备的长方体学具,摸一摸,说一说。你有什么发现?(长方体有平平的面)
板书:面
(2)再请学生摸一摸长方体相邻两个面相交的地方有什么?讲述:把两个面相交的边叫做棱。
板书:棱
(3)再请同学摸一摸三条棱相交的地方有什么?(一个点)讲述:把三条棱相交的点叫做顶点。
板书:顶点
(4)师生在长方体教具上指出面、棱、顶点。学生依次说出名称。
2.研究长方体的特征。
(1)面的认识。
①请学生拿出长方体学具,按照一定的顺序数一数,长方体一共有几个面?(6个面)有几组相对的面?(3组)前?后,上?下,左?右。
②引导学生观察长方体的6个面各是什么形状的?
板书:6个面都是长方形,特殊情况下有两个相对的面是正方形。教师分别出示这两种情况的教具。
③引导学生进一步验证长方体相对的面的特征。
板书:相对的面完全相同。
④请学生完整叙述长方体面的特征。
(2)棱的认识。教师出示长方体框架教具,引导学生注意观察
①长方体有几条棱?②这些棱可分为几组?③哪些棱的长度相等?通过以上三个问题,分组讨论,实际测量。根据学生汇报后并板书:相对的棱长度相等。
教师:请大家把长方体棱的特征完整地总结一下。
(3)顶点的认识。课件演示:先闪动三条棱再分别闪动三条棱相交的点。
师:请你们按照一定的顺序数一数,长方体有几个顶点?
板书:8个顶点。
指名让学生把长方体的特征完整地总结一下。
3.认识长方体的直观图。
(1)请学生拿出长方体学具,放在桌面上观察,最多能看到它的几个面?(三个面)
(2)怎样把长方体画在纸上或黑板上。
4.认识长方体的长、宽、高。
(1)讨论:要知道长方体12条棱的长度,只要量哪几条棱就可以了?
(2)归纳:我们把相交于同一个顶点的三条棱的长度分别叫做长方体的长、宽、高。习惯上,长方体的位置固定以后,我们把底面中较长的棱叫做长,较短的棱叫做宽,和底面垂直的棱叫做高。
(3)拓展:老师将长方体横放、竖放,让学生分别说出长方体的长、宽、高。
三、课堂作业
1.完成教材第19页“做一做”。
2.完成教材第21页练习五的第1、2、3、6、7题。
(1)第1题:此题是让学生观察长方体纸巾盒,说出各个面的形状,哪些面形状是相同的?各个面的长和宽各是多少?同桌合作。
(2)第2题:求长方体的棱长和。
(3)第4题:让学生通过观察,发现长方体棱之间的关系,如:各组棱互相平行;与其中一条棱垂直的几条棱相互平行等。
(4)第6题、第7题学生独立完成。
四、课堂小结
今天我们认识了长方体,知道了长方体的相关知识,谁愿意来说一说,这节课你有什么收获?
五、课后作业
完成练习册中本课时练习。
板书设计:
第1课时长方体
相交于一个顶点的三条棱的长度叫做长方体的长、宽、高。
长方体的六个面都是长方形,特殊情况下两个相对的面是正方形。相对的面完全相同。相对的棱长度相等。
五年级数学下册教案 第十三篇
教学内容:
二期教材四年级第一学期课本P22—23
教材分析:
本节内容主要是对常用的面积单位进行一个梳理,一方面进一步借助学生的低阶面积单位的表象累积形成平方千米的表象,另一方面,使学生熟悉平方厘米、平方分米、平方米、平方千米之间的进率关系,能够进行简单的换算。
教学目标:
(一)知识与技能
1、初步学会根据实际需要,选用适当的面积单位,丰富面积单位的量感。
2、借助问题情景,合作探究平方米与平方千米之间的进率,进一步丰富1平方千米的量感。
(二)过程与方法
经历常用的面积单位的梳理过程,自主建构面积单位的换算方法,初步提高整理归纳能力。
(三)情感与态度
逐步体会数学与日常生活的密切联系,感知数学的价值。
重点难点:
1、丰富1平方千米的量感,掌握常用面积单位间的换算方法。
2、理解常用面积单位间进率的推算方法。
教学过程:
一、引入阶段
1、感受平方千米
同学们,你们觉得我们学校大吗?我们泗泾镇大吗?那么松江区呢?这些区域用我们新学的面积单位k㎡来表示,是多少呢?请看大屏幕:(出示)
我们美丽的校园占地面积约0.03平方千米。
我们家园——泗泾镇占地面积约24.2平方千米。
我们的松江区总面积约604平方千米。
你得到了什么信息?有什么感受?你觉得平方千米常用在什么样的区域?(对比,交流)
小结:平方千米常用来表示面积大的区域。
(从学生所处的生活环境展开,通过“区域大”但表示的“数字小”这一强烈对比,丰富平方千米的量感)
2、感知常用的小面积单位
我们还学过哪些常用的面积单位?谁能从大到小说出来呢?它们之间的进率是多少呢?让我们用手势来比划一下它们的大小吧!1k㎡能用手势来表示吗?(不能)为什么?(1k㎡太大)
3、感知练习
同学们对面积单位的。量感不错,就让我们打开课本P23页,完成第三题,比比看,谁填的有快又准
在下面()中填入适当的面积单位(课本23页)。
一张邮票的面积约9()
一张乒乓球台面约410()㎡
一间教室的面积约63()
一张软盘的面积约1()
一个排球场占地约162()
上海野生动物园占地约2()
(在前面面积单位的充分感知铺垫下,通过填写适当的单位,促使学生将熟悉实物的某个面或某块区域与面积单位建立起联系,既诊断学生已学知识的掌握情况,又激活他们已有单位面积的量感。)
二、探究阶段
1、情景设疑:通过刚才的单位填写,同学们对面积单位的都很熟悉了,接着让我们来解决前面学习中留下的问题:(出示)如果1㎡可以挤下17人,那么1k㎡能不能挤得下整个上海的人?(上海总人口为16737700人)
要想解决这个问题,我们需要知道什么?同桌交流:需要知道1k㎡等于多少㎡,即k㎡与㎡之间的进率,就可以求出1k㎡可以挤多少人,最终把问题解决。
2、合作探究:我们知道1k㎡就是边长为1km的正方形的面积,(出示边长为1km的正方形图形)。
那么k㎡与㎡之间的进率是多少呢?你们能从1k㎡的定义来找出它们之间的进率吗?请小组合作完成。
(1)组内尝试解决,师巡视指导。
(2)全班交流解法:(板书)
1km×1km=1k㎡
1000m×1000m=1000000㎡
1k㎡=1000000㎡
(3)再次交流:通过在1k㎡定义的关系式中把km转换成m,我们很容易就找到了它们之间的关系。现在让我们同桌之间再把这个过程互相交流一下。
3、问题解决:知道了1k㎡=1000000㎡,那么1k㎡能不能挤得下整个上海的人呢?谁来说说看?指名交流。这个结果让你有什么想说的吗?
4、完善面积单位进率:现在我们已经把所学的面积单位之间的进率都找到了,请同学们把P22的面积单位的关系填写完整。(媒体演示课本23页单位面积的累积过程)
1k㎡=()㎡1㎡=()d㎡1d㎡=()c㎡
(通过问题设疑,激发学生的求知欲,让学生主动去探究k㎡和㎡的进率。为了使学生形成清晰的量感,启发学生从定义去推理,把学生的思维引入深处,从而让学生在合作的尝试计算中直观获得1k㎡=1000000㎡。其实学生以前在平方米,平方分米,平方厘米间的进率时已经经历了这样一个推理过程,在这里学生运用以往的经验解决今天所学的新问题,体现了知识的迁移。通过平方米和平方千米间关系的探究,对学生进一步理解单位面积的含义和进率的由来,促进学生表象记忆的形成都有好处,也激发了学生的求知_和解决问题的兴趣,为以下单位换算提供了一个良好的情知背景。)
三、运用阶段
1、分层练习:(说出思考过程)
(1)25㎡=()dm23k㎡=()㎡
(2)3400d㎡=()㎡9000000㎡=()k㎡580c㎡=()d㎡
(3)70000000㎡—7k㎡=()k㎡
(学生在三年级时已经积累了一些重量、长度、面积单位换算的经验,并且会用小数表示单位之间的转换。这里先安排两组“从高到低”与“从低到高”的单位转换练习,就想让学生通过尝试找到换算的一般方法:高级单位化成低级单位时乘进率,低级单位聚成高级单位时除以进率。从而在思考方法上予以归纳提升,建构单位换算的基本策略。接着出示带有不同单位的计算题,提高学生的综合运用能力。同时借助学生思考过程的表达,便于检测学生对方法的理解,发展他们的演绎思维。)
2、拓展练习(同桌讨论)
判断下列各题是否正确,错的请改正。
(1)一个铅笔盒表面的宽度约5c㎡
(2)教室的面积约30d㎡
(3)一个粉笔盒的表面约0.75c㎡
(4)上海市的总面积约6341000000k㎡
(在实际应用中,学生往往对长度单位和面积单位容易混淆,并且在选用面积单位时不善于实际问题的需要。通过判断纠错练习,一方面强化长度单位和面积单位的区别,另一方面想从“数”与“量”两个维度探索修改的方法(修正数据或计量单位),既巩固了单位面积的大小观念,又渗透小数点位置移动引起数的大小变化的思想,拓展了学生的思维。)
3、生活应用:(小组合作)
出示:为了扩大我国的绿化面积,人们要在长3km,宽2km的一块长方形的高原上植树,如果每平方米栽1棵树,运来60万棵树苗够吗?
解决这个问题我们要先算出什么?需要注意什么?写出你们的解题过程。交流探讨并板书解题过程。
(通过问题解决,再现本节课的重点新知“平方千米与平方米的转化”,同时让学生通过层层问题的分析,理清问题解决的思路,拓展思维,感受数学在生活问题解决中的应用价值。)
四、总结
这节课我们一起整理了“从平方厘米到平方千米”(板书)的面积单位,谁来谈谈这节课中你的收获?
最新五年级下册数学教案 第十四篇
活动目标
通过发豆芽活动,了解生活中的相关知识,运用多种途径查询和收集相关资料,并能运用数学的方法记录和描述豆芽的生长情况,培养同学们动手实践、分析问题以及解决问题的能力。
活动准备
教师收集相关资料,并先做一次实验。学生分组准备黄豆、绿豆各50g,以及发豆芽的器皿。
活动过程
一、提出问题,揭示课题?
1.师:同学们,你们知道豆芽的生长过程吗?你自己发过豆芽吗?
2.学生根据查询的资料和咨询科学教师得到的知识进行交流。
3.根据学生的交流,提出:我们也来试一试发豆芽。
揭示课题:发豆芽。
二、讨论交流,得出活动步骤
1.提问:发豆芽要做哪些准备?怎样记录发豆芽的过程呢?对最后的记录如何分析呢?
结合学生的`交流,得出本次活动的主要步骤:调查与收集;发制与记录;整理与分析;推测与应用。
2.学生结合教材了解4个环节应该做什么,并在全班交流。
教师重点提问:发豆芽的统计图画什么好?为什么?如何计算发豆芽的盈利情况?
三、学生分组活动
1.教师演示发豆芽的过程。
2.教师提出要求:
(1)发豆芽活动要做的事情比较多,我们要分组进行,每组5个人。
(2)为了方便观察与记录,我们都将豆芽统一放在教室里进行观察,每天每个组在固定时间进行浇水。
3.各组学生进行发豆芽实验。
时间大约是6天。教师对各组实验的情况进行适时的指导,对各组的记录进行及时督促与检查。各组在发豆芽完成后,及时进行数据分析,制作好相应的统计图表,写好分析总结。
四、小组交流,感受价值
交流发豆芽的具体做法和注意事项。
五、观察、记录、分析
1.观察豆芽的生长情况。(大约6天时间)
2.记录豆芽的生长情况。(每天进行记录)
3.把豆芽的生长情况制成统计图表。
4.分析统计图表,写好总结。
六、总结反思
小组结合统计图汇报豆芽生长情况,说说在发豆芽活动中的收获。
注:五、六两个教学过程在课外进行。
北师大版五年级下册数学优秀教案 第十五篇
教学目标:
1、通过动手操作,理解长方体的表面积的意义,由此建立表面积的概念。
2、能根据现实情景和信息,通过动手操作、小组合作、观察思考等方法,去探求长方体的计算方法,初步培养学生的探求意识和探求能力。
3、使学生感受数学与生活的密切联系,培养初步的数学应用意识,并在探究过程中获得积极的数学情感体验。
教学重点:
理解长方体的表面积的意义,建立表面积的概念。
教学难点:
掌握长方体的表面积的计算方法。
教学流程:
一、复习旧知,引入新课
1、复习长方体的特征。
师:同学们,我们上节课已经认识了长方体,知道它们是由6个长方形围成的立体图形。那么它们都有哪些特征?
生:长方体有6个面,12条棱,8个顶点,相对的面完全相同(特殊情况有两个相对的面是正方形),相对的棱长度相等。
2、师:同学们说得真好,都已经掌握了长方体的特征。那么今天我们继续来研究长方体,一起来探究一下长方体的面。
二、实践操作、探究新知
1、教学长方体表面积的概念。
师:现在老师手中有一个长方体纸盒,昨天同学们回家也都做了一个,刚才我们说长方体有6个面,他们分别是,(边说边指),那么如果我们沿着长方体的某些棱剪开,再展开,会是什么形状呢?
接下来学生动手剪(强调要求)
师:请同学们仔细观察,展开后,你发现了什么?
生:我发现原来的立体图形变成了平面图形。
生:我发现长方体展开后还是由6个长方形组成的。
师:同学们观察得真仔细!课件演示(实物展开后贴在黑板上)
师:同学们,你们现在还能像课件中一样找到刚才指出的前面吗?后面又在哪里呢?你还能找出上、下、左、右分别在什么地方吗?
生:能。
师:那么请你们在自己的长方体展开图中标出上、下、左、右、前、后。
师:观察长方体展开图,回答下面的问题
(1)我们知道长方体有6个面,哪些面的面积是相等的?
师:为什么?
生:长方体相对的面完全相同。
(2)每个面的长和宽与长方体的长、宽、高有什么关系?(同桌合作)
生:上、下每个面的长和宽是长方体的长和宽,每个面的面积是长x宽;前、后每个面的长和宽是长方体的长和高,每个面的面积是长x高;左、右每个面的长和宽是长方体的高和宽,每个面的面积是宽x高。
师:同学们,像这样我们把长方体6个面的总面积,叫做长方体的表面积。
(板书:表面积)
(2)计算长方体的表面积。
师:那么怎样求长方体的表面积呢?
小组合作:1,先独立思考,记录下自己的方法。
2,小组内交流,探讨哪种方法更简便。
学生作业展示:长x宽x2+长x高x2+宽x高x2
或者(长x宽+长x高+宽x高)x2 分别解释
教学例1。
出示例1:做一个微波炉的包装箱,至少要用多少平方米的硬纸板?(课件出示)
问题:要求至少要用多少平方米的硬纸板,实际上就是求这个长方体包装箱的什么?
生:实际上就是求这个长方体包装箱的表面积。
根据上面咱们总结出的公式来求一下表面积
方法一:0.7×0.5×2+0.7×0.4×2+0.5×0.4×2=1.66(平方米)
方法二:(0.7×0.5+0.7×0.4+0.5×0.4)×2=1.66(平方米)
(3)通过刚才的操作与例题,你觉得计算长方体的表面积需要哪些条件,又该如何计算呢?归纳总结
三、深化提高,综合应用
1、完成教材第25页练习六的习题。
先让学生独立完成,再组织交流。
2、完成教材第24页做一做。
(1)指导学生读题,理解题意,让学生发现本题中“没有底面”这条信息很重要。
(2)先让学生独立完成,再组织交流。
四、归纳知识,总结学法
师:同学们,时间过得真快,在这节课学习过程中,你有什么收获或深刻感受和老师、同学说说。
夫参署者,集众思,广忠益也。上面就是快回答给大家整理的15篇五年级数学下册教案,希望可以加深您对于写作北师大版五年级下册数学教案的相关认知。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。