1. 主页 > 知识大全 >

数学教案梯形面积计算(优秀7篇)

作为一名优秀的教育工作者,可能需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。那么问题来了,教案应该怎么写?以下是快回答给大家分享的7篇数学教案梯形面积计算,希望能够让您对于梯形面积的写作有一定的思路。

梯形面积的计算练习课 篇一

教学目标:

1、在理解的基础上掌握梯形面积计算公式的推导,并能运用公式正确计算梯形的面积。

2、通过动手操作、观察、比较,发展学生空间观念。培养学生分析、综合、抽象、概括和解决实际问题的能力。

3、掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。

教学重点:

梯形面积计算公式的推导和运用。

教学难点:

理解梯形面积公式的推导过程。

教学过程:

一、导入新课

1、平行四边形、三角形的面积公式是什么?它们的面积公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。

2、出示梯形,让学生说出它的上底、下底各是多少厘米,并画出它的高。

3、教师导语:我们已经学会了计算长方形、正方形、平行四边形、三角形的面积计算方法,生活中还有很多物体面的形状是梯形,(出示一辆汽车侧面图)如汽车玻璃就是梯形的,那梯形的面积又该如何计算呢?我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)

二、新课展开

第一层次,推导公式

(1)猜想:

让学生先猜测一下梯形的面积可能和哪些量相关。

(2)操作学具

①启发学生思考:你能仿照求三角形面积计算公式的推导办法,把梯形也转化成已学过的图形计算出它的面积吗?

②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。

③指名学生操作演示。

学生预设:

方法一:把两个完全一样的梯形拼成一个平行四边形;

方法二:把一个梯形分成两个三角形;

方法三:把一个梯形分成一个平行四边形和一个三角形。

……

师:刚才同学们用自己的方法将梯形转化成我们学过的图形,利用这些方法都可以推导出梯形的面积计算公式。下面我们先选择其中的一种方法来共同推导梯形的面积。

④教师带领学生共同操作:拿两个完全一样的梯形,先重合,再按住梯形右下角的顶点,使一个梯形逆时针旋转180度,使梯形上、下底成一条走线,然后把第一个梯形的左边沿着第二个梯形的右边平行移动,直到成为一个平行四边形为止。

(2)观察思考

①教师提出问题引导学生观察。

a.用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?

b.每个梯形的面积与拼成的平形四边形的面积有什么关系?

(3)反馈交流,推导公式。

①学生回答上述问题。

②师生共同总结梯形面积的计算公式。

板书:梯形的面积=(上底+下底)×高÷2

问:梯形的面积公式中“(上底+下底)×高”求的是什么?

为什么要除以2?

③在小组内尝试上面另外几种不同的转化方法,如何推导出梯形的面积公式。

方法一:梯形的面积=上底×高÷2+下底×高÷2

=(上底+下底)×高÷2

方法二:梯形的面积=平行四边形面积+三角形面积

=上底×高+三角形的底×高÷2

=(2个梯形上底+三角形底)×高÷2

=(梯形上底+梯形下底)×高÷2

④字母表示公式。教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?

学生回答后,教师板书:“S=(a+b)h÷2”。

第二层次,公式应用。

(1)出示课本第89页的例题。同学们知道我国最大的水电站是哪个吗?下面是水电站大坝的横截面图,教师指导学生理解“横截面”。

(2)学生尝试解答。

(3)展示台出示例题的解答,反馈矫正。

(4)完成例题下面的“做一做”。强调计算时不要忘记除以2。

三、巩固练习

(1)完成练习十七第1、2和3题。

(2)讨论完成练习十七第4和6题。

四、全课小结。(略)

板书设计:

梯形的面积计算

平行四边形的面积=底×高例3S=(a+b)h÷2

梯形的面积=(上底+下底)×高÷2=(36+120)×135÷2

S=(a+b)h÷2=156×135÷2

=10530(平方米)

梯形的面积计算教案 篇二

教学内容:教科书第80~81页的内容,完成第81页上”做一做“和练习十九的第1~4题。

教学目的:

1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确地计算梯形的面积。

2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教具准备:

1、小黑板上画下面复习题中的两个三角形图和教科书第80页上面的插图。

2、用厚纸做两个完全一样的梯形,其中一个梯形涂成红色。

3、学生将教科书第147页上面的两个梯形剪下来。

教学过程:

一、复习。

出示三角形图。

问:三角形的面积怎样求?

这个三角形的面积是多少?

三角形的面积计算公式我们是怎样推导出来的?

怎样用两个完全一样的三角形拼出一个平行四边形?(让一个学生到黑板前拼一拼。教师再边说边演示用两个完全一样的三角形拼成一个平行四边形的过程)

师:前面我们学习了平行四边形面积和三角形面积的计算,下面我们继续学习梯形面积的计算。(板书:梯形面积的计算)

二、新课。

1.教学梯形面积的计算公式。

出示教科书第80页上面的梯形图。

问:这个图形是什么形?(梯形)

师:今天我们要学习梯形面积的计算。刚才我们回忆了三角形面积计算公式的推导过程。

问:谁能依照三角形面积公式的推导过程,把梯形也转化成已学过的图形?(让学生拿出准备好的两个完全一样的梯形,每人都拼一拼,摆一摆。然后让一个学生到黑板前摆一摆。)

教师拿出两个完全一样的梯形(一个涂成红色),边说边演示:先把两个梯形重叠,把红色的梯形放在上面,以梯形右下角的顶点为中心,把红色的梯形旋转180度,再把红色的梯形的左边沿着白色的梯形的右边向上移动,使红色梯形的上底和白色梯形的下底同在三条直线上。然后,再带学生一起拼摆。

问:两个完全一样的梯形,经过旋转、平移,两个梯形组成了一个新的图形,是什么形?(平行四边形)

两个完全一样的梯形拼成了一个平行四边形,这个平行四边形的面积和其中一个梯形的面积有什么关系?(梯形的面积是平行四边形面积的一半)

平行四边形的底等于什么?(等于梯形的上底、下底之和)

平行四边形的高和梯形的高有什么关系?(相等)

平行四边形的面积怎样算?(它的底等于3+5=8,高是4,所以平行四边形的面积是32平方厘米)

一个梯形的面积怎样算?(提示学生回答,

教师板书:(3+5)×4÷2

=8×4÷2

=32÷2

=16(平方厘米)

师:下面我们一起来梯形的面积计算公式。刚才我们已经看到梯形的面积是平行四边形面积的一半,平行四边形的面积是怎样算的?(底×高)

问:在这里平行四边形的底是什么?(是梯形的上底和下底之和)

平行四边形的高是什么?(就是梯形的高)

板书:

平行四边形的面积=(上底+下底)×高

梯形的面积=(上底+下底)×高÷2

如果用S表示梯形的面积,用a、b、h分别表示梯形的上底、下底和高,那么梯形的面积计算公式就是:

S=(a+b)×h÷2

问:为什么梯形面积的计算公式中要除以2?(提问学生重申说明:我们学习梯形面积的计算方法,是把梯形转化成了一个平行四边形。而由两个梯形组成的平行四边形的底正是梯形的上底加下底之和,平行四边形的高和梯形的高相等,所以平行四边形的面积就等于上底加下底再乘以高,梯形的面积就等于上底加下底的和乘以高再除以2。)

2.应用出的梯形面积公式计算梯形面积。

(1)出示第81页例题。

指名读题,教师出示水渠的教具,再指出它的横截面,让学生看清它的横截面是一个梯形。再让学生看书。

问:这个梯形的上底是多少?下底呢?

这个梯形的高是多少?

梯形的面积计算公式是什么?怎样列式计算?(学生口述,教师板书)

(2)完成教科书第81页”做一做“中的题目。学生独立计算(说明:四边形中互相平行的一组对边,就分别是梯形的上底和下底。

三、巩固练习。

练习十九第1、2题。

四、作业。

练习十九第3、4题。

课后:

《梯形的面积》教学设计 篇三

【教学内容】北师大版小学数学五年级第二单元图形的面积(一),探索活动(三)梯形的面积。

【教学目的】

1、通过观察、操作等实践活动,探索并掌握梯形的面积计算公式。

2、利用数方格或割补等方法,灵活运用旋转和平移的知识,探索梯形面积的推导过程,渗透迁移和转化的数学思想,发展学生的空间观念。

3、能有条理的思考,并对结论的合理性作出说明,感受数学思考过程的条理性和数学结论的确定性。

【教学重点】梯形的面积计算公式的推导过程

【教具准备】多媒体课件一套

【学具准备】两套完全一样的平面图形卡片、小剪刀、每个小组准备一份表格。

【教学过程】

一、创设情境,提出问题

投影:五种平面图形(正方形、长方形、平行四边形、三角形、梯形)的卡通形象。

(1)开心辞典:

每个学生可任意选择一种平面图形,说说对这种图形的认识。

(学生可能会围绕着图形的特征、周长和面积,以及面积公式的推导过程展开介绍)

师给予肯定和评价。

(2)激发内需,提出问题:

对于这5种平面图形,你还想了解哪个图形的数学知识?

板书课题:梯形的面积

二、合作探究,逐层递进

活动(一):猜一猜

1)根据以往的学习经验,你打算运用什么方法,找到梯形面积的计算方法呢?(数方格或割补等)

2)让学生尝试用数方格的方法进行学习,制造认知冲突。

质疑:那该怎么办?(割补方法,转化成已学过的平面图形)

板书:转化

投影如图:

(二)剪一剪,拼一拼

1)画一画:学生以小组为单位,拿出准备好的5种平面图形。

师:你能把正方形、长方形、平行四边形、三角形剪成两个完一样的梯形吗?请大家先试着在图形卡片上找一找、画一画。

2)剪一剪:跟小组同学商量后,再剪。

比一比,哪个小组的动作更快?(提醒学生:使用剪刀要注意安全)

3)学生分组活动,教师巡视指导。

4)学生汇报交流:

a.正方形可以剪成两个完全一样的直角梯形;

b.长方形可以剪成两个完全一样的梯形;

c.平行四形可以剪成两个完全一样的梯形;

……

多媒体课件剪的演示过程。

5)学生互评:表扬小组中勤于思考、勇于探索的同学。

(三)议一议,填一填:

1)小组议一议:剪出来的梯形与原来的图形有什么联系呢?

2)填写表格。

投影如下:

底(a b)

高(h)

面积(s)

长方形

平行四边形

三角形

正方形

梯形

我发现了__________________________________

3)汇报交流:

a.梯形面积原来图形面积的一半;

b.梯形的(上底+下底)的和,是正方形的边长;

c.梯形的(上底+下底)的和,是长方形的长;

d.梯形的(上底+下底)的和,是平行四边形的底;

e. 梯形的高是正方形的宽;

f. 梯形的高是平行四边形的高;

……

学生边回答,课件边填写展示。

4)怎样计算梯形的面积呢?

板书:

因为正方形的面积= 边长 × 边长,所以:

梯形的面积=(上底+下底)×高÷2

因为长方形的面积= 长 × 宽,所以:

梯形的面积=(上底+下底)×高÷2

因为平行四边形的面积= 底 × 高,所以:

梯形的面积=(上底+下底)×高÷2

……

5)小结:

谁能再说一说梯形面积的计算公式?

板书:

梯形的面积=(上底+下底)×高÷2

s = ( a + b ) h÷2

三、回归生活,深化认识

1、出示情境图:一个堤坝的横截面,它的面积是多少?

2、顽皮的梯形:

投影:梯形的卡通人物形象,(配音1:同学们,休息一会儿,伸伸腰,我们一起来做操。)如图:

6

3

3

3

7

(单位:cm)

配音2:同学们,现在你还以求出我的面积吗?

学生练习后汇报交流,

提问:你发现了什么规律?(形状改变了,面积不变;梯形的面积大小是由底和高的大小决定的。)

我该怎么办?

3、大象的困惑:

如图:

师:大象每天都得运一堆33根的木材。今天它却碰到了难题,不知道该运哪一堆才好。你能帮助它吗?

学生练习,并汇报小结:(上层的根数+下层的根数)×层数=梯形木材的总根数

四、反思总结,拓展延伸

1、学生谈收获,谈学习方法;

2、组内互评:这节课你最想表扬谁,为什么?

五、作业:

1、练一练第1、3题和“试一试”;

2、怎样把梯形转化成其他平面图形,回家试试看。并把推导过程记录下来。

板书设计:

梯 形 的 面 积

(转 化)

平行四边形的面积= 底 × 高,

梯形的面积 = (上底+下底) × 高 ÷2

s =( a + b ) h÷2

第九册梯形面积计算 篇四

《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。 这节课的教学,紧紧抓住“梯形面积公式的推导”这一教学重点,放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把梯形面积转化成了其他的平面图形,进而归纳、概括出梯形的计算方法。这种多角度的思考,既沟通了新旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。

这节课我运用了多媒体课件的演示,充分调动了学生的学习兴趣,提高了课堂教学效率,是其他教学手段无法比拟的。

本节课要教会学生一种学习方法,即在求梯形的面积计算公式时,学生在原有知识经验的基础上通过学生自主动手剪拼,运用转化的思考方法,把梯形转化成已学过的图形,然后研究两者之间的联系,从而推导出梯形的面积计算公式。 在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。这节课中我努力激发学生的学习积极性,向学生提供充分从事数学活动的机会,通过“猜想-验证”来展开知识的发生发展过程,促使学生主动探索,学生以小组合作的形式自主探索,通过观察、操作、猜测、验证、推理和交流等活动,全面参与新知的发生、发展和形成过程。

梯形的面积计算教案 篇五

教学目标:

1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。

2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。

3.掌握“转化”的和方法,进一步明白事物之间是相互联系,可以转化的。

教学重点:理解、掌握梯形面积的计算公式。

教学难点:理解梯形面积公式的推导过程。

教学过程:

1.导入新课

(1)投影出示一个三角形,提问:

这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。

(2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。

(3)教师:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)

2.新课展开

第一层次,推导公式

(1)操作学具

①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的面积吗?

②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。

③指名学生操作演示。

④教师带领学生共同操作:梯形(重叠)旋转平移平形四边形。

(2)观察思考

①教师提出问题引导学生观察。

a.用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?

b.每个梯形的面积与拼成的平形四边形的面积有什么关系?

(3)反馈交流,推导公式。

①学生回答上述问题。

②师生共同梯形面积的计算公式。

板书:梯形的面积=(上底+下底)×高÷2

③字母表示公式。教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?

学生回答后,教师板书:“S=(a+b)h÷2”。

第二层次,深化认识。

(1)启发学生回忆平行四边形面积公式的推导方法。

①提问:想一想平行四边形面积公式是怎样推导得到的?

②学生回答,教师在展示台再现平行四边形面积公式的推导方法。

(2)引导操作。

①学习的平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?

②学生动手操作、探究、讨论,教师作适当指导。

(3)信息反馈,扩展思路。

说一说你是怎样割补的?教师展示各种割补方法。

第三层次,公式应用。

(1)出示课本第89页的例题,教师指导学生理解“横截面”。

(2)学生尝试解答。

(3)展示台出示例题的解答,反馈矫正。

(4)完成例题下面的“做一做”。

3.巩固练习

(1)完成练习十七第1、2和3题。

(2)讨论完成练习十七第4和6题。

4.全课。(略)

梯形面积计算教学设计 篇六

教学内容:九年义务教育小学第九册69──71页的内容。

教学目标 :

知识目标

①使学生理解、掌握三角形面积的计算公式。

②能正确运用面积公式进行三角形面积计算。

能力目标

①通边操作,培养学生分析推理能力。

②培养学生的空间观念和思维能力。

③培养学生运用所学知识能决实际问题的能力。

德育目标:

引导学生装运用转化的方法搜规律。

美育目标:

能过演示和操作,使学生感悟数学知识的内在联系的逻辑之美,增强审美意识。

教学重点:理解掌握三角形面积的计算公式。

教学难点 :理解三角形面积计算公式的推导过程。

教具、学具:三角形课件,各小组准备3套三角形(同样大小的直角三角形,锐角三角表,钝角三各2个),及复合投影片。

教学过程 :

一、复习引入,激趣揭题

师:请同学们打开学具袋。看看带中有那几种图形?

生:……

师:你会计算几种图形的面积?

生:……

师:还剩什么图形?

生:……

师:这节课我们就来学习三角形面积的计算。(板书课题)

师:请同学们回忆一下我们在推导平行四边形面积的计算时运用那几种方法?

生:……

师:你们能不能用手中的学具想办法推倒出三角形的面积?

二、引导学生探索发现。

师:请同学们拿来出你们准备好的三组三角形(一组为两个完全一样的直角三角

形,一组为两个完全一样的锐角三角形,一组为两个完全一样的钝角三角形。)

师:能不能用每一组的'两个三角形拼成一个已学过的图形?

生:动手拼,并在展示台展示拼的过程。

师:随着学生在展示台上展示,选择有代表性的三组,通过计算机课件展示拉摆

过程。

师:思考:

①    拼成的平行四边形、长方形、(正方形)的面积与原来每个三角形的面积有什么关系?

② 平行四边形的底和高,长方形的长和宽,正方形的边长分别是原来三角形的哪部分?

③  三角形的面积应该怎样计算?

生:讨论、汇报。

结论:

经过学生讨论得出:拼成的平行四边形、长方形(正方形)、的面积等于原来每个三角形面积的2倍。平行四边形的底(长  方形的长、正方形的边)等于三角形的底,平行四边形的高(长方形的宽、正方形的边长)等三角形的高。每个三角形的面积等底乘以高除以2。

教师板书:三角形的面积=底×高÷2

师:三角形的面积为什么要除以2?

生:………

师:如果有S表示三角形的面积,a表示三角形的底, b表示高,你能写出三角

形面积的字母公式吗?

生:S=a×b÷2

发散思维

师:刚才我们都是用两个完全一样的三角形通过旋转和平移,转化成了我们学过

的图形,从而得出三角形面积的计算方法,如果用一个三角形能否转化成学

过的图形呢?同学们试试看,能否得到三角形面积的计算。

生:动手操作、汇报结果。看书反思,并填上书中的空格。

教学例1、出示大屏幕   (图)

师:①哪个面是三角形?能计算它的面积吗?

②标出底(5.6厘米),高(4厘米)后,现在能算了吗,为什么?

生:………

小结:计算三角形面积一般需要什么条件?特别注意什么?

生:………

三、练习反馈、拓展应用。

⑴一个三角形的底是40厘米,高是20厘米,这个三角形的面积是(    )平方厘米,和这个三角形等底等高的平行四边形的面积是(    )平方厘米。

⑵一个平行四边形的面积是60平方厘米,与它等底等高的三角形的面积是(     )平方厘米。

四:总结反思

教师:这节课你们学会了什么?有哪些收获?

生:………

板书:(略)

梯形的面积计算教案 篇七

教学思路:

“梯形面积的计算”是在学生已经熟练掌握了长方形、正方形,尤其是平行四边形、三角形面积计算,和梯形的认识的基础上学习的一个“几何求积”的数学问题。由于在上述学习中,学生已通过操作、实验等积累了探索平面图形面积计算公式的基本方法和策略(剪、移、转、拼等)并初步领悟了“新旧转化”的数学方法,都为学生自主研究、探索“梯形的面积计算”创造必要的条件,打下了良好的基础。基于以上认识,我在导学梯形的面积公式时,并没有沿袭以往的教学思路,而是立足与学生已有的数学现实与经验,以此为出发点,通过引导学生经历“发现问题——提出假设——进行验证——实践应用”,让学生在数学的再创造过程中建构新知,解决问题,获得体验。

教学目标:

1、引导学生主动参与探索,发现并掌握梯形的面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题。

2、结合学习过程,培养学生观察、操作、比较、推理等逻辑思维能力和初步的假设、试验和验证等科学探究能力。

3、进一步培养学生的空间观念,不断发展学生的空间想象力,培养学生的实践能力和创新意识,体验数学再创造的乐趣,并使不同的学生获得个性化的发展。

教学重、难点:运用转化推导梯形面积的计算公式。

教具、学具准备:一般梯形两个,两个完全一样的梯形,剪刀等。

教学过程:

一、自由操作联想,作好新课孕伏。

师:对于梯形,你们已经知道了什么?(可让学生自由发表)利用你手中的梯形,动手折折、剪剪、拼拼,还能发现些什么?(学生独立操作,在此基础上,在同桌或小组内交流自己的发现)

生1:我发现任何梯形都可以分成两个三角形;

生2:我们发现两个完全一样的梯形可以象三角形那样,通过重叠、旋转、平移,转化成一个平行四边形的;

生3:我们发现将一个梯形沿着它的两条高剪开,分成了两个三角形和一个长方形;

生4:我们发现梯形可分成一个三角形和一个平行四边形;

生5:还可以将梯形先剪下一个小三角形,再将剪下的小三角形通过旋转、平移的方法和剩下的图形拼成一个大三角形。

生6:我们认为还可以将梯形从中间剪开,分成两个梯形,然后将其中的一个梯形通过旋转、平移,和另一个梯形拼成一个平行四边形。(图略)

生7:在梯形的下面剪去两个小直角三角形,拼到上面,可以拼成一个长方形;

生8:将梯形上下对折,沿折痕剪开后所得的两个小梯形也能拼成一个平行四边形

……

师:善于观察、勇于实践,才给同学们带来如此丰富的发现,真了不得!

[点评:引导自由操作,有利于在宽松环境中激活原有数学经验,为随后有目的的尝试、实验和验证做好铺垫。]

二、“假设——验证——交流”,体验数学再创造乐趣

1、假设

师:请大家再想一想,这些方法都有一个共同之处,你看出来了吗?

生:都是将梯形转化成了我们已经学过的图形。

师:同学们将转化后的新的图形与原来的梯形进行比较,看看它们的面积有什么关系?为什么?你能推导出梯形面积的计算公式吗?谈谈你的来推导?

生2:可不可以象三角形那样,将两个完全一样的梯形拼成一个大平行四边形,再进行推导?

……

[点评:交流对问题的初步设想是准确把握学生已有数学现实的关键,这对教师引导学生进行随后的学习起着关键作用]

2、验证:

师:作出的假设是否正确,关键在于能不能经得住实验的验证。请大家借助手头的材料,小组互相合作,大胆试试看,并将结果记录下来。

(学生独立或合作尝试转化,教师深入倾听,对有困难学生进行必要的提示和启发。)

[点评:对数学材料实现“再创造”,不仅需要学生的独立思考,同时也需要组员间的相互启发和教师的及时点拨与引导。]

3、汇报、交流、:

师:不少同学已经成功对自己的假设进行了验证,请哪个小组先来展示你们验证的结果和方法?(学生借助实物投影展示各自的方法和结论)

生1:我们是将两个完全一样的梯形转化为一个平行四边形的,这个平行四边形的底是梯形上下底的和,高就是梯形的高,而梯形的面积只有平行四边形面积的一半。

因为:平行四边形的面积=底×高,所以:梯形的面积=(上底+下底)×高÷2。

(掌声)教师表扬。

生2:我们组将梯形分成了两个三角形。因为:小三角形的面积=上底×高÷2,大三角形的面积=下底×高÷2,所以:梯形的面积=上底×高÷2+下底×高÷2=(上底+下底)×高÷2。

生3:我们小组认为:将梯形上下对折,沿折痕剪开后所得的两个小梯形也能拼成一个平行四边形

这个梯形的底就是梯形的上下底的和,高就是梯形的高的一半,因为:平行四边形的面积=底×高,所以:梯形的面积=(上底+下底)×(高÷2)。[教学,尽在天下教!]

生4:我们小组沿着梯形的两条高,将梯形分成了一个长方形和两个三角形,长方形的面积可以求出,但三角形的面积无法求出,因为三角形的底不知道。

生5:我认为可以求出,但不知是否正确?

师:说说看,说错了也没问题。

生5继续:单独求其中一个三角形的面积比较困难,能不能将这两个三角形合并成一个大的三角形呢?因为它们都是直角三角形,而且高又相等。

师:你很爱动脑筋,想法也很好,请同学们按照这位同学的思路去剪一剪,拼一拼,看看三角形的底与梯形有没有关系?

生6:我发现了,这个三角形的底应该等于梯形的下底与上底的差。这样,长方形的面积为“上底×高”,两个三角形的面积为“(下底-上底)×高÷2”,合起来再化简即得“梯形的面积﹦(上底+下底)×高÷2”。

生7:我们小组将梯形右下方的小三角形剪下,再翻转上去,拼成一个平行四边形。平行四边形的底相当于梯形上下底和的一半,平行四边形的高相当于梯形的高。所以“梯形的面积=(上底+下底)÷2×高”。

……

师:现在我们来一下,通过我们刚才的观察,比较,那么在这些方法中,你最欣赏师:会用字母表示吗?

生:S=(a+b)h÷2

师:说一说各字母的意义。

[点评:通过动手操作,大胆实践,探索出多种方法来推导梯形面积的计算公式,引导学生及时交流,展示个性化的研究思路与成果,整个引导过程都充分发挥了学生的主体作用,使学生真正经历了“操作、观察、”的过程,经历了一个数学再创造的过程,既品尝了成功的体验,又激发了学生的实践欲望和创新能力。]

三、在实践中拓展、延伸

1、生尝试练习,帮助理解“横截面”的意义。

2、说一说计算梯形的面积应注意什么?

3、想一想,算一算:

出示圆木图,求圆木的根树。

4、计算:1+2+3+4+5+6+7+8+9=(想一想,怎样算比较简便)

[点评:有层次、有坡度、有趣味的练习,既能巩固所学的新知,又有利于学生灵活运用所学知识解决生活中的数学问题,使学生感到数学是有用的,为培养学生的应用意识起到了较好的促进作用。]

四、全课:

1、通过这节课的学习,每个同学都有很大收获,谈谈你的收获。

2、还有什么不懂的吗?

五、作业:(略)

教后反思:

探索新型情感性课堂教学,还学生的主体地位。

新的《数学课程标准》多处强调:“学生是数学学习的主人”,“数学教学,要紧密联系学生的生活环境,从学生的生活经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。”本课教学中尊重每一位学生,允许不同的学生从不同的角度认识问题,采用不同的方式表达自己的想法,用不同的知识和方法解决问题。《梯形面积的计算》一个,从课开始的自由操作联想,到公式推导的全过程,到公式的应用,自始至终都能将学生放到主体的地位上。通过学生的实验、操作、交流,让学生构建梯形与长方形、平行四边形、三角形之间的联系,从而正确的推导出梯形面积的计算公式,并灵活的应用于生活实际。

三人行,必有我师焉。上面这7篇数学教案梯形面积计算就是快回答为您整理的梯形面积范文模板,希望可以给予您一定的参考价值。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。