1. 主页 > 知识大全 >

绝对值教案优秀5篇(绝对值的教学设计(第二课时)

数学是人们对客观世界定性把握和定量刻画逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。这里给大家分享一些关于七年级数学《绝对值》教案,方便大家学习。下面是快回答给大家整理的5篇绝对值教案,希望可以启发您对于绝对值教案的写作思路。

.2.4 绝对值 篇一

一、教学目标:

1.知识目标:

①能准确理解的几何意义和代数意义。

②能准确熟练地求一个有理数的。

③使学生知道是一个非负数,能更深刻地理解相反数的概念。

2.能力目标:

①初步培养学生观察、分析、归纳和概括的思维能力。

②初步培养学生由抽象到具体再到抽象的思维能力。

3.情感目标:

①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

二、教学重点和难点

教学重点:的几何意义和代数意义,以及求一个数的。

教学难点:定义的得出、意义的理解及求一个负数的。

三、教学方法

启发引导式、讨论式和谈话法

四、教学过程

(一)复习提问

问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?

(二)新授

1.引入

结合教材P63图2-11和复习问题,讲解6与-6的的意义。

2.数a的的意义

①几何意义

一个数a的就是数轴上表示数a的点到原点的距离。数a的记作|a|。

举例说明数a的的几何意义。(按教材P63的倒数第二段进行讲解。)

强调:表示0的点与原点的距离是0,所以|0|=0。

指出:表示“距离”的数是非负数,所以是一个非负数。

②代数意义

把有理数分成正数、零、负数,根据的几何意义可以得出的代数意义:一个正数的是它本身,一个负数的是它的相反数,0的是0。

用字母a表示数,则的代数意义可以表示为:

指出:的代数定义可以作为求一个数的的方法。

3.例题精讲

例1. 求8,-8, ,- 的。

按教材方法讲解。

例2. 计算:|2.5|+|-3 |-|-3|。

解:|2.5|+|-3 |-|-3|=2.5+3 -3=6-3=3

例3. 已知一个数的等于2 ,求这个数。

解:∵|2 |=2 ,|-2 |=2

∴这个数是2 或-2 。

五、巩固练习

练习一:教材P64 1、2,P66习题2.4 A组 1、2。

练习二:

1.小于4的整数是____。

2.最小的数是____。

3.已知|2x-1|+|y-2|=0,求代数式3x2y的值。

六、归纳小结

本节课从几何与代数两个方面说明了的意义,由的意义可知,任何数的都是非负数。的代数意义可以作为求一个数的的方法。

七、布置作业

教材P66 习题2.4 A组 3、4、5。

七年级数学上册《绝对值》教案 篇二

教学目标

1.知识与技能

①能根据一个数的绝对值表示距离,初步理解绝对值的概念,能求一个数的绝对值

②通过应用绝对值解决实际问题,体会绝对值的意义和作用

2.过程与方法

经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力

3.情感、态度与价值观

①通过解释绝对值的几何意义,渗透数形结合的思想

②体验运用直观知识解决数学问题的成功

教学重点难点

重点:给出一个数,会求它的绝对值

难点:绝对值的几何意义、代数定义的导出

教与学互动设计

(一)创设情境,导入新课

活动 请两同学到讲台前,分别向左、向右行3米

交流

①他们所走的路线相同吗?

②若向右为正,分别可怎样表示他们的位置?

③他们所走的路程的远近是多少?

(二)合作交流,解读探究

观察 出示一组数6与-6,3.5与-3.5,1和-1,它们是一对互为________,它们的__________不同,__________相同

总结: 例如6和-6两个数在数轴上的两点虽然分布在原点的两边,但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是6,我们就把这个距离叫做6和-6的绝对值

绝对值:在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│

想一想 -3的绝对值是什么?

《绝对值》教案 篇三

第一部分:教学分析

(一)教学内容:

《绝对值》是七年级数学教材上册1.2.4节内容,此前,学生已经学习了有理数的分类,数轴与相反数等基础知识,为本课学习的基础。绝对值不仅可以使学生加深对有理数的认识,还会为以后学习两个负数的大小比较以及有理数的运算做准备。所以本课在有理数一章起到承上启下的作用。

(二)教学目标:

根据数学课程内容标准要求及教学内容的特点,以及学生的认知水平,确定本节课的教学目标如下:

1,理解、掌握绝对值概念。体会绝对值的作用与意义;

2,能正确求出一个数的绝对值;

3,掌握绝对值的几何意义,渗透数形结合和分类思想。体验运用直观知识解决数学问题的成功;

(三)教学重、难点分析:

教学重点:掌握绝对值的概念会求已知数的绝对值。

教学难点:掌握有理数的概念及分类。

(四)教学辅助手段

利用多媒体(实物投影)、学案进行辅助教学

第二部分:教学设计

教学过程

师生互动

设计意图

一、创设情境、引入新课

二、合作交流、探索新知

问题1:什么叫做绝对值?

怎么用数学符号表示一个数的绝对值?

问题2:互为相反数的绝对值的关系怎样?

问题3:正数的绝对值是什么数?零的绝对值是什么数?负数的绝对值是什么数?

问题4:设a表示一个数,|a|等于什么?

三、拓展提高、应用巩固

1.判断下列说法是否正确:

(1)符号相反的数互为相反数().

(2)符号相反且绝对值相等的数互为相反数()

(3)一个数的绝对值越大,表示它的点在数轴上越靠右。()

(4)一个数的绝对值越大,表示它的点在数轴上离远点越远。()

2.求下列各数的绝对值:,,0,,.

四、概括总结、布置作业

课堂小结:

1、本节课收获:由学生进行总结,其他同学帮忙补充,教师提示。

2、对于本节课的知识,如果还有不明白的地方请提出来,同学和老师共同帮助解决

布置作业:

课本p11第1,2,3,

教师展示投影,甲乙两车相向而行问题,学生在学案上画出数轴,并根据学案的要求,思考甲乙两车行驶的距离引出的三个问题。

本环节教师关注重点:

学生能否区分方向和距离的不同。

学生能够理解从距离角度看数即绝对值的意义。

教师展示投影,讲解-10到原点的距离叫做-10的绝对值,然后引导学生回答10的绝对值表示什么意义?为加深记忆在大屏幕上展示-2,0.25绝对值代表什么意义?

学生口头回答老师的问题

对绝对值意义理解后教师让学生用自己的语言概括绝对值的定义?

学生相互讨论发言,教师进行补充并板书在黑板上,给出绝对值的数学符号书写规范。

学生巩固练习。

本环节教师关注重点:

学生是否正确理解了绝对值的概念并自己概括出来。

通过以下表格内容:

数值

-3

-2

0

2

3

绝对值符号

绝对值

让学生填写表格后并通过表格小组讨论这些数能发现哪些规律?

学生进行小组讨论共同分析总结,得出组内结论。

本环节教师关注重点:

学生能否从正负数的角度看数的绝对值。

组织好小组讨论,使小组能真正发挥作用。

教师根据小组结论内容进行提问,得出绝对值的规律。

教师提醒和引导从正负数零的角度来思考。

学生小组讨论后教师进行补充。

给学生2分钟时间完成习题

学生完成后,教师在黑板上进行板演写出完整的解题过程。

学生独立完成,找两名学生到黑板进行板演,对比过程的书写并由学生进行纠错,总结出完成的解题过程。

计算结果正确的学生举手示意教师;

本环节教师关注重点:

(1)学生对于绝对值概念的掌握及灵活应用。

(2)培养学生的分类的数学思维

学生独立完成,教师检查各组组长完成情况,并由组长检查组内成员,最后统一各组完成情况反馈给教师并进行展示

有本题引出下节课所要研究的重点内容。

本环节教师关注重点:

(1)注重学生数学思维的形成

(2)提高学生的解题能力。

学生总结本节课内容后,小组间互相提问,看哪组将问题处理的正确、清晰。

用一个小情境让学生在兴趣中体验绝对值所代表的距离的意义,有实际问题引出绝对值的概念。

让学生通过实际的意义来正确的了解绝对值的概念,并通过讨论自己发表对绝对值概念的理解,发散学生的思维。

让学生通过自主学习找答案,观察数的规律自己总结不同数的绝对值的规律,提高学生的观察力和思考能力。

让学生自己总结,既锻炼学生的语言表达能力,又能加深学生对知识的掌握和理解。培养学生的数学语言及分类的数学思维。

通过习题加深学生的记忆和对绝对值的概念的掌握。

通过总结和提问帮助学生记忆本节课知识点,并加深理解,进行实际运用。

.2.4 绝对值 篇四

教学目标1、知识与技能:初步理解绝对值的概念,理解绝对值的几何意义,会通过画数轴的方法求一个数的绝对值。2、过程与方法:经历将实际问题数学化的过程,感受数学与生活的关系,3、情感、态度与价值观:经历将实际问题数学化的过程,感受数学与生活的联系。进一步渗透数形结合的思想,感知数学知识具有普遍的联系性。教学重点:绝对值的概念。 通过画数轴的方法求一个数的绝对值。教学难点:理解绝对值的几何意义。教学过程:1.课间预习   小明的家在学校西边3km处,小丽的家在学校东边2km处,如下图,我们可以把学校门前的大街想象为数轴,把学校 定为原点, 把小明、小丽两家看成数轴上的两点a、b.

-2

-1

2

1

0

a

-3

b`思考:1、a、b两点离原点的距离各是多少?    2、a、b两点离原点的距离与它们表示的数是正数还是负数有没有关系?    3、在数轴上分别描出下列数所对应的点,并指出它们到原点的距离:

2.自主探究   我们把数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。(absolute value)   例如上图, 表示-3的点a到原点的距离是3,所以-3的绝对值是3, 问: 表示-2点到原点的距离是 ,所以-2的绝对值是 .表示2点到原点的距离是 ,所以2的绝对值是 .表示0到原点的距离是 ,所以0的绝对值是 .重点也也是难点注意:绝对值为正数的数有两个。 例如:绝对值为5的数是+5和-5你做对了吗+2.3和-2.3的绝对值都为2.3提问;绝对值为0的数是 『小试牛刀』1、数轴上与原点的距离为3.5的点有 个,它们分别表示有理数 和 。2、绝对值等于6的数是 。

0

1

2

3

4

5

-1

-2

-3

-4

-5

a

b

c

d

e例1、说出数轴上a、b、c、d、e各点所表示的数的绝对值 。 例2、求4、0与-3.5的绝对值。分析:解此题应画数轴,在数轴上画出表示4、0、-3.5的点,求出表示4、0、-3.5的点到原点的距离,即是它们的绝对值。    绝对值的符号: 4的绝对值记为|4|, 0的绝对值记为|0|, -3.5的绝对值记为|-3.5|,例2的结论就可以记为:|4|=4,|0|=0,|-3.5|=3.5 例3、比较下列各组数的绝对值的大小。   (1)2与-3    (2)-3与-6     例4、一小球在数轴上来回滚动,如果向右滚动1个单位长度,我们就用+1表示。现小球从表示-2的点处开始滚动,滚动过程记录如下:-1.5,-3,+7,-3,+4.5。问小球最终停在何处?小球共滚动了多少个单位长度? 解答: 『供你尝试』a类1、数轴上 ,叫做这个数的绝对值。2、在数轴上,表示-5的点到原点的距离是 ,则-5的绝对值是 。3、在数轴上,到表示-1的的距离是3的点所表示的数是 4、一个数的绝对值为9,那么这个数是 。5、下列说法:①7的绝对值是7②-7的绝对值是7③绝对值等于7的数是7或-7④绝对值最小的有理数是0。其中正确说法有(   )a、1个    b、2个    c、3个    d、4个6、下列说法中正确的是(   )a、绝对值小于2的数有三个。    b、绝对值是2的数有二个。c、绝对值是-2的数有一个。d、任何数的绝对值都是正数。b类7、(1)绝对值等于4的数有____个,它们是____ (2)绝对值小于4的整数有_____个,它们是_____ (3)绝对值不大于4的整数有 个,它们是 。(4)绝对值不大于4的负整数有_____个,它们是______ (5)绝对值大于1且小于5的整数有___个,它们是____ c类8、正式乒乓球比赛对所使用乒乓球的重量是有严格规定的。检查5只乒乓球的重量,超过规定重量的毫克数记作正数,不足规定重量的毫克数记作负数,检查结果如下:   请指出哪只乒乓球的质量好一些?你能

第1只

第2只

第3只

第4只

第5只

+25

-15

+40

-5

-20用绝对值的知识进行说明吗?

板书设计

教后感

.2.4 绝对值 篇五

学习目标:1、理解有理数的绝对值和相反数的意义。

2、会求已知数的相反数和绝对值。

3、会用绝对值比较两个负数的大小。

4、经历将实际问题数学化的过程,感受数学与生活的联系。

学习重点:1.会用绝对值比较两个负数的大小。

2.会求已知数的相反数和绝对值。

学习难点:理解有理数的绝对值和相反数的意义。

学习过程:

一、创设情境

根据绝对值与相反数的意义填空:

1、

2、

-5的相反数是______,-10.5的相反数是______, 的相反数是______;

3、|0|=______,0的相反数是______。

二、探索感悟

1、议一议

(1)任意说出一个数,说出它的绝对值、它的相反数。

(2)一个数的绝对值与这个数本身或它的相反数有什么关系?

2、想一想

(1)2与3哪个大?这两个数的绝对值哪个大?

(2)-1与-4哪个大?这两个数的绝对值哪个大?

(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?

(4)两个有理数的大小与这两个数的绝对值的大小有什么关系?

三。例题精讲

例1. 求下列各数的绝对值:

+9,-16,-0.2,0.

求一个数的绝对值,首先要分清这个数是正数、负数还是0,然后才能正确地写出它的绝对值。

议一议:(1)两个数比较大小,绝对值大的那个数一定大吗?

(2)数轴上的点的大小是如何排列的?

例2比较-10.12与-5.2的大小。

例3.求6、-6、14 、-14 的绝对值。

小节与思考:

这节课你有何收获?

四。练习

1. 填空:

⑴ 的符号是 ,绝对值是 ;

⑵10.5的符号是 ,绝对值是 ;

⑶符号是“+”号,绝对值是 的数是 ;

⑷符号是“-”号,绝对值是9的数是 ;

⑸符号是“-”号,绝对值是0.37的数是 .

2. 正式足球比赛时所用足球的质量有严格的规定,下表是6个足球的质量检测结果(用正数记超过规定质量的克数,用负数记不足规定质量的克数).

请指出哪个足球质量最好,为什么?

第1个第2个第3 m.shancaoxiang.com 个第4个第5个第6个

-25-10+20+30+15-40

3.比较下面有理数的大小

(1)-0.7与-1.7 (2) (3) (4)-5与0

五、布置作业:

p25 习题2.3 5

家庭作业:《评价手册》 《补充习题》

六、学后记/教后记

熟读唐诗三百首,不会做诗也会吟。以上5篇绝对值教案就是快回答小编为您分享的绝对值教案的范文模板,感谢您的查阅。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。