1. 主页 > 知识大全 >

《平行四边形的认识》教学设计12篇(平行四边形的认识优秀教案)

作为一名辛苦耕耘的教育工作者,常常要根据教学需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。一份好的教学设计是什么样子的呢?下面这12篇《平行四边形的认识》教学设计是快回答为您整理的平行四边形范文模板,欢迎查阅参考。

平行四边形教案 篇一

教学目标

1、知识目标

(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.

2、能力目标

(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。

(2)验证猜想结论,培养学生的论证和逻辑思维能力。

(3)通过开放式教学,培养学生的创新意识和实践能力。

3、非智力目标

渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.

教学重点、难点

重点:平行四边形的概念及其性质.

难点:正确理解两条平行线间的距离的概念和性质定理2的推论。

平行四边形的概念及性质的灵活运用

教学方法:讲解、分析、转化

教学过程设计

一、利用分类、特殊化的方法引出平行四边形的概念

1.复习四边形的知识.

(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.

(2)将四边形的边角按位置关系分为两类:

教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.

2.教师提问:四边形中的两组对边按位置关系分为几种情况?

引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.

3.对比引出平行四边形的概念.

(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.

(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).

(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.

(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.

①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)

②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)

练习1(投影)

如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.

二、探索平行四边形的性质并证明

1.探索性质.

启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:

(3)对角线

⑤对角线互相平分(性质定理3)

教师注意解释并强调对角线互相平分的含义及表示方法.

2.利用化归的方法对性质逐一进行证明.

(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.

(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.

(3)写出证明过程.

3.关于“两条平行线间的平行线段和距离”的教学.

(1)利用性质定理2

导出推论:夹在两条平行线间的平行线段相等.

①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.

②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.

③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.

练习2

(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.

(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.

练习3

在图4-15(d)中,

①点A与点C的距离是线段__的长;

②点A到直线l2的距离是线段__的长;

③两条平行线l1与l2的`距离是线段__或__的长;

④由推论可得:两条平行线间的距离__.

三、平行四边形的定义及性质的应用

1.计算.

例1填空.

(1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;

(2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;

(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;

(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;

(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.

2.证明.

例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.

分析:

(1)尽量利用平行四边形的定义和性质,避免证三角形全等.

(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.

例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.

着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.

例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.

分析:

(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.

(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.

(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.

3.供选用例题.

(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?

(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.

(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.

四、师生共同小结

1.平行四边形与四边形的关系.

2.学习了平行四边形哪些方面的性质?

3.两条平行线的距离是怎样定义的?有什么性质?

五、作业

课本第143页第2,3,4,5,6题.

课堂教学设计说明

本教学设计需2课时完成.

这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.

平行四边形及其性质

教学目标

1、知识目标

(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.

2、能力目标

(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。

(2)验证猜想结论,培养学生的论证和逻辑思维能力。

(3)通过开放式教学,培养学生的创新意识和实践能力。

3、非智力目标

渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.

教学重点、难点

重点:平行四边形的概念及其性质.

难点:正确理解两条平行线间的距离的概念和性质定理2的推论。

平行四边形的概念及性质的灵活运用

教学方法:讲解、分析、转化

教学过程设计

一、利用分类、特殊化的方法引出平行四边形的概念

1.复习四边形的知识.

(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.

(2)将四边形的边角按位置关系分为两类:

教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.

2.教师提问:四边形中的两组对边按位置关系分为几种情况?

引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.

3.对比引出平行四边形的概念.

(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.

(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).

(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.

(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.

①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)

②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)

练习1(投影)

如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.

二、探索平行四边形的性质并证明

1.探索性质.

启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:

(3)对角线

⑤对角线互相平分(性质定理3)

教师注意解释并强调对角线互相平分的含义及表示方法.

2.利用化归的方法对性质逐一进行证明.

(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.

(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.

(3)写出证明过程.

3.关于“两条平行线间的平行线段和距离”的教学.

(1)利用性质定理2

导出推论:夹在两条平行线间的平行线段相等.

①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.

②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.

③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.

练习2

(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.

(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.

练习3

在图4-15(d)中,

①点A与点C的距离是线段__的长;

②点A到直线l2的距离是线段__的长;

③两条平行线l1与l2的距离是线段__或__的长;

④由推论可得:两条平行线间的距离__.

三、平行四边形的定义及性质的应用

1.计算.

例1填空.

(1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;

(2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;

(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;

(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;

(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.

2.证明.

例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.

分析:

(1)尽量利用平行四边形的定义和性质,避免证三角形全等.

(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.

例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.

着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.

例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.

分析:

(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.

(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.

(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.

3.供选用例题.

(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?

(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.

(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.

四、师生共同小结

1.平行四边形与四边形的关系.

2.学习了平行四边形哪些方面的性质?

3.两条平行线的距离是怎样定义的?有什么性质?

五、作业

课本第143页第2,3,4,5,6题.

课堂教学设计说明

本教学设计需2课时完成.

这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.

《平行四边形的认识》教学设计 篇二

教学目标

(一)知识与技能

结合生活实际认识平行四边形,掌握平行四边形的特征,认识平行四边形的底和高。培养学生抽象、概括的能力,渗透对应的数学思想。

(二)过程与方法

使学生经历动手操作和自主探究的过程,充分感受平行四边形的本质特征。

(三)情感态度和价值观

激发学生的学习兴趣,培养积极探索的精神,感受数学的价值。

教学重难点

教学重点:平行四边形的意义。

教学难点:认识平行四边形的底和高。

教学准备

课件、三角板

教学过程

一、巧用实例、激趣导入

我们认识过许多图形朋友,你们还记得它们吗?课件出示一组平面图形,有三角形、正方形、长方形……你能叫出每一幅图的名称吗?

师:生活中有哪些地方可以看到平行四边形呢?课件补充生活中含有平行四边形图案的物体。

师:平行四边形有什么特征?你们想知道吗?今天这节课我们就从数学的角度去认识平行四边形。教师板书课题。认识平行四边形

二、观察图形,合理猜想

请同学们观察平行四边形。大胆猜一猜:平行四边形有什么特点? 想好和同学说一说。动手操作,验证猜想

1、操作实践,学生小组验证。

2、汇报交流验证的过程。

(1)测量后发现对边相等,对角相等。

(2)延长对边不相交,所以对边平行

(3)用画垂线的方法,从一边向另一边画垂线,垂线段都相等,所以对边平行。

3、归纳特征。

师:现在请你用一句话概括平行四边形的特征。

教师帮助归纳并板书:两组对边分别平行且相等,对角相等。

三、动手操作,认识底和高。

1、教师:同学们,刚才我们认识了平行四边形的一些特征,下面请同学们拿出你们准备好的平行四边形纸,根据老师的要求动手折一折。(教师巡视,重点辅导个别有困难的学生),展开折的平行四边形纸,我们把这条边看做一条直线,这是直线外一点,你知道这条折痕叫做什么吗?(生答:直线外一点到已知直线的距离)也可以叫做直线外一点到已知直线的垂线,在平行四边形中,这条折痕就是这个平行四边形的高。既然是垂线就说明有垂足,垂足所在的这条边叫做平行四边形的底。

2、根据给出的高,判断谁是这条高的底。

3、教师:同学们,你还能在这个平行四边形上画出另一条不同的高吗?(能)

让学生独立操作后到展示台上展示。

教师:赶快试一试。(教师巡视,学生独立操作)

教师:同学们,通过刚才画平行四边形的。高,你有什么发现?

教师:对!平行四边形有无数条高。

四、体验平行四边形的特性---不稳定性

1、教师演示 :同学们喜欢看魔术表演吗?(喜欢)现在,老师就给同学们表演一个小魔术。(教师出示一个长方形方框)这个图形大家认识吗?(它是长方形)

教师:对!这是一个长方形。请大家看好了,老师分别将两只手握着这个长方形方框的两个对角,轻轻地拉一拉。变!这还是长方形吗?(平行四边形)对!这是平行四边形。

2、长方形在不改变边长的情况下可以改变成不同形状的平行四边形,这就是平行四边形的不稳定性。大家可以看一下老师带来的这个伸缩衣架,可以变成不同形状的平行四边形,这就是平行四边形的不稳定性在生活中的应用。

五、全课总结。说一说你有什么收获。对你自己的表现满意吗?

认识平行四边形

两组对边分别平行的四边形叫做平行四边形

对边相等且平行

对角相等 高

不稳定性底

《平行四边形的认识》教学设计 篇三

教学内容:

教材第16-15页例2及“想想做做”1—5题。

教学目标:

1、使学生通过观察、比较、操作等实践活动,感知平行四边形的特点,初步认识平行四边形,能指出平行四边形和围出平行四边形。

2、使学生经历从直观、操作中抽象出平行四边形的过程,形成平行四边形的直观表象,并能操作再现平行四边形的形状,积累通过多种感官学平面图形的经验,发展初步的空间观念。

3、使学生逐步形成参与数学活动的意识,培养独立思考、主动交流的学习习惯。

教学重点:

平行四边形的直观认识

教学难点:

平行四边形的直观表象

教具或学具准备:

三角尺、钉子板、小棒、长方形木框(教具)

教学过程:

一、直观认识

1、观察图形:三角形、四边形、五边形、六边形

你准备怎样把这些图形分类?

说明:有四条边的图形是四边形,四边形有各种各样的形状,今天我们认识一种特殊的四边形(出示例2)

2、学习例2

1、这是生活里常见的情境。你能在这些情境中找出四边形并用手沿四条边指一指吗?小朋友在课本例2的图上用笔描出这样的四边形。

交流:生活里一定看到过这样的四边形,你还在哪里看到过?

2、操作

请同学们拿出两个完全一样的三角尺。你能拼出这样的四边形吗?

交流:把你的'拼法介绍给大家。

说明:小朋友都拼出了生活里见到的这样的四边形,像这样的四边形是平行四边形(板书课题)

3、抽象出图形

引导:像这样的图形是平行四边形,你能在钉子板上围一个平行四边形吗?

学生操作,老师引导,让学生交流围法,老师适当引导(对边的方向、长短完全一样)。

二、练习巩固:

1、想想做做第1题

学生独立完成。交流:哪些是平行四边形?第一个为什么不是,说说你的理由。

2、想想做做第3题

学生画图,老师巡视指导。

交流所画的平行四边形,指出这些图形虽然大小不同,位置形状不一

样,但都是平行四边形。

3、想想做做第4题

同桌合作,动手操作,老师指导。

交流操作方法,想想平行四边形对边的要求。

4、想想做做第5题

演示,让学生注意观察,你有什么发现。

说明:一个长方形,不管怎样拉,虽然形状、大小会发生变化,但都是平行四边形。

三、回顾总结:

今天我们学习了什么?请你说说认识平行四边形的过程。

你有什么收获和体会。

四、布置作业

《补充习题》第 页。

平行四边形教案 篇四

一、素质教育目标

(一)知识教学点

1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用。

2.使学生理解判定定理与性质定理的区别与联系。

3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理。

(二)能力训练点

1.通过“探索式试明法”开拓学生思路,发展学生思维能力。

2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的。分析方法,进一步提高学生分析问题,解决问题的能力。

(三)德育渗透点

通过一题多解激发学生的学习兴趣。

(四)美育渗透点

通过学习,体会几何证明的方法美。

二、学法引导

构造逆命题,分析探索证明,启发讲解。

三、重点·难点·疑点及解决办法

1.教学重点:平行四边形的判定定理1、2、3的应用。

2.教学难点:综合应用判定定理和性质定理。

3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理

(强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理).

《平行四边形的认识》教学设计 篇五

教学目标:

1、知识与技能目标:使学生掌握平行四边形的意义及特征,了解它的特性。

2、过程与方法目标:通过观察、动手,培养学生抽象概括能力和初步的空间观念。

3、情感态度与价值观:培养学生观察和认识周围图形的兴趣和认识。

教学重点与难点:

重点:平行四边形的意义。

难点:抽象概括平行四边形的意义。

教学准备:

用木条订成的三角形、平行四边形框架,小棒、钉子板、方格纸等。

教学过程:

(一)、老师出示一个长方形框架、

1.老师动手拉它的一组相对的角,请同学们观察:这个框架还是长方形吗?为什么? (这个图形不是长方形了,因为它的四个角不是直角)

今天,我们又认识了一个图形——平行四边形,我们把这样的图形叫做平行四边形、在黑板右上角贴出一个平行四边形、

2.问:同学们平时见过平行四边形吗?请举例来说、(有一种防盗网上的图形、篱笆上的图形,有的编织图案)

3.动手操作,感受平行四边形的特征

分组操作探究

师:第一组:量一量平行四边形各边的长度。

第二组:用小棒搭平行四边形。

学生的操作,教师巡视,并参与学生活动。

4.各组汇报探究结果,互相评价。

5.画平行四边形师:请你在方格纸上画一个你最喜欢的平行四边形。

6..平行四边形和长方形有什么相同点和不同点?(老师又一次演示长方形活动框架)

(它们的相同点是都有四条边且对边相等、它们都有四个角;不同点是:长方形的四个角必须是直角)

巩固练习

完成课本练习三十九第2题,指生订正并说出理由。

1、判断题:

(1)长方形、正方形和平行四边形都是四边形。( )

(2)四个角都是直角的四边形一定是正方形。( )

(3)一个四边形,它的四条边相等,这个四边形一定是正方形。( )

(4)对边相等的四边形都是长方形。( )

(5)有个四边形,它的。四个角都是直角,那么,这个四边形不是正方形就是长方形。( )

全课总结

通过今天的学习你有什么收获?谈一谈。

作业

请同学们下课后做一个三角形和平行四边形的框架,拉一拉。探究一下怎样才能使平行四边形不变形。

板书设计

教学反思:

在整节课的设计中,我注重将活动引入教学。如在导入新课时,创设问题情境,利用教具有熟悉的长方形一拉动变成了要学的内容平行四边形,既复习了旧知识长方形,又很自然地过渡到新知识,使学生体会到数学知识都有内在联系。让学生在实践活动中,经历、体验数学知识的形成过程。课堂上学生始终乐此不疲,兴趣盎然,充分发挥教师的引导作用,切实把学生当做学习的主体。

《平行四边形的认识》教学设计 篇六

教学目的

1、引导学生观察长方形、正方形的边和角的特点,认识长方形、正方形的共性和各自的特点、

2、会在方格纸上画长方形、正方形、

3、初步认识平行四边形、

教学重点

掌握长方形、正方形的特征

教学难点

长方形、正方形的区别和联系

教具、学具准备

多媒体课件一套(如果没有,可用学具代替)、长方形、正方形纸片,实物图片,七巧板、直尺、三角板、

教学过程

一、创设情境,提出问题、

出示8根小棒(6长、2短)

1、小组活动:你能用这8根小棒摆一些图形吗?看哪一个小组摆的又快又多、

2、交流:请各小组到投影上边摆边说有几种、

3、设疑:图形之间有很多相同的和不同的地方,提出长方形和正方形,它们各有几条边,几个角?每个角是什么角?它们的边和角的特点都一样吗?这两种图形可不可以变成别的形状?这就是我们这节课要研究的内容、(出示课题)

二、主动探索,研究问题、

1、认识长方形、

(1)独立探索,小组交流、从学具中拿出长方报纸片来,动手观察一下它的角和边,会发现什么?(与小组内其他同学交流、)

(2)小组汇报:请小组各出一名代表发言,分别说一说通过研究发现了角和边有什么特点,并且说一说怎样想的或者是怎样做的、找几个组说一说、(如果有用折纸这一办法的,请他说明怎样做的,演示一下,并给予表扬)

(3)辩论:长方形有什么特征呢?(小组讨论)

(4)教师总结:刚才有的同学利用身边的学具量一量,有的同学用折纸这个方法发现长方形相对着的两条边相等,也就是说长方形有两组对边相等,长方形有四个角,四个角都是直角、【演示动画长方形、正方形】

(5)学生之间交流长方形的特点、每个人都用纸折折看,再验证一下、

2、认识正方形、

(1)独立探索,小组交流、

同学们,刚才你们自己动手研究了长方形的一些知识,那么正方形的角和边又有什么特点呢?试试看,相信你能行、

(2)汇报交流:正方形有什么特征呢?(小组互相说)

(3)教师总结、我们用了同样的方法,验证了正方形的边和角的一些特点,也就是正方形的四条边都是相等的,一样长,四个角都是直角、(继续演示动画长方形、正方形)

3、小组讨论:长方形、正方形的联系和区别【演示动画长方形、正方形的特征】、

(1)师问:长方形与正方形有什么相同点和不同点吗?

(2)教师总结:刚才我们研究了长方形和正方形的边角特点、发现它们都有四个角,而且四个角都是直角:它们都有四条边,但是长方形对边相等,正方形不仅对边相等,而且四条边都相等、

(3)引导学生揭示四边形的概念、

由四边形围成的图形就是四边形,长方形和正方形都是四边形、

(4)初步练习:在钉子板上围一个正方形和一个长方形、

4、平行四边形的初步认识、

(1)出示:

让学生自己观察发现,能找出什么图形,你想知道有关平行四边形的什么知识?

(2)投影出示画在方格纸上的平行四边形、

引导学生知道:它们有4个角,4条边、

教师明确:这些图形也是由四条边围成的图形,我们把这样的四边形叫做平行四边形、

教师说明:这些四边形相对的边之间的宽度总是保持一定的(用直尺演示出对边间的距离不变),我们就说它的对边是平行的,所以我们把这些图形叫做平行四边形、

引导学生观察、讨论:借助方格来看一看平行四边形有什么特征?(以小组为单位,研究它的边和角的特点、)

(3)小组研讨,汇报总结、

平行四边形 角:4个

边:四条 相对的`边相等

(4)利用学具摆2个不同的平行四边形、

(5)学生拿出制作长方形(平行四边形)框的学具,用手拉它的一组相对的角、如图:

讨论:平行四边形与长方形有哪些相同,有哪些不同?

引导学生:平行四边形和长方形都有四条边,都是相对的边相等、长方形的四个角都是直角,而捏住长方形相对的两个角的顶点一拉,它就不是长方形了,是一个平行四边形、当平行四边形的角一个变成直角时,四个角就都变成直角,这时平行四边形就又变成了长方形了、【演示动画变化的图形】

三、运用知识,解决问题、

1、要求:利用手中的小三角形摆长方形、正方形、平行四边形、(4个小三角形)

2、利用手中的七巧板摆一些漂亮的图形,再给它起个名字、

四、看书质疑,全课总结、

板书设计

探究活动

七巧板

《平行四边形的认识》教学设计 篇七

教学目标:

(一)知识与技能

1、理解平行四边形的概念及其特征,知道平行四边形两组对边分别平行且相等;知道平行四边形容易变形的特性。

2、认识平行四边形的高和底,能正确测量和画出它的高。

3、培养学生的实践能力、观察能力和分析能力。

(二)过程与方法

1、学生在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征,认识平行四边形的高。

2、在观察、操作、比较、判断的过程中,了解平行四边形的特性和其中的变化规律,形成平行四边形的空间观念。

(三)情感态度与价值观

让学生感受图形与生活的密切联系,感受平面图形的学习价值,使学生体会平行四边形在生活中的广泛应用,培养数学应用意识,进一步发展对“空间与图形”的学习兴趣,发展空间观念。

教学重点:

认识平行四边形的特征。

教学难点:

正确测量和画出平行四边形的高

课时安排:

1课时

教学过程:

一、引入课题:

1、复习旧知

师:同学们,在前两节课的学习中,我们知道了在同一平面内两条直线的位置关系有平行和相交,那么你们认识平行线吗?请看屏幕,这里面哪一组是平行线? (课件出示)

2、揭示课题:

师:我们来看这三组平行线,请同学们仔细观察。两组平行线相交得到了这样的一个四边形,你们认识这个四边形吗?(课件动态依次演示三组平行线分别交叉成两个平行四边形)

师:通过以前的学习,对平行四边形我们已经有了简单的了解,今天我们就深入研究一下平行四边形。(板书课题:平行四边形的认识)

二、认识平行四边形的特征

1、找一找生活中的平行四边形

师:你在哪些地方见过平行四边形?

师:除了刚才大家说到的这些,在很多的生活场景中我们都能找到平行四边形的影子,我们一起来欣赏一下。(出示课件:门口的电动门、教学楼的楼梯、花园的篱笆)那么你能找到上面的平行四边形吗?

(叫生上前来指,同时课件抽象出图片里的平行四边形)

师:这些平行四边形有什么共同特征呢?这就是我们接下来要研究的问题。

2、根据长方形的特征初步猜测平行四边形的特征

师:(教师手拿长方形可变形的框架),来,同学们看老师手里拿的是一个什么图形?那长方形有哪些特征?

(预设有四条边,对边相等、对边平行;有四个角,四个角都是直角。)

师:大家说的很全面,那接下来,仔细看,老师要变魔术了,(拉成一个平行四边形),看!现在变成了什么图形?

生:平行四边形。

师:那这个平行四边形有什么特征?谁来试着猜一猜。

预设:对边相等、对边平行。(板书猜想,教师不做任何点评)。

3、验证平行四边形的'特点。

(1)验证平行四边形两组对边相等

师:接下来我们先来验证平行四边形对边相等的特点,怎么来验证对边相等呢?(用尺子量)

师:那么就用尺子量一量平行四边形的四条边,并记录边长,然后看看你能得出什么结论,总结:通过量一量,我们验证了平行四边形两组对边分别相等,那么怎么验证平行四边形的对边平行呢?

(2)验证平行四边形两组对边平行(把对边延长,看是不是相交;平移三角板)

接下来用你喜欢的方法验证平行四边形对边平行的特点。

师 :通过我们的验证,我们明确了平行四边形的有什么特点?

概括总结平行四边形的特点:对边平行,对边相等。

4、抽象概括平行四边形的定义。

师:那么现在你能根据平行四边形的特点,用一句话概括什么叫平行四边形吗?

师:刚才大家总结的都非常好,看来我们课前预习的时候很用心。

师总结:两组对边分别平行的四边形叫做平行四边形(板书,齐读)

5、巩固平行四边形的定义。

师:下面我们来做两道练习题检测大家的掌握情况

师:看来大家对平行四边形的特征掌握的还不错,给自己的表现鼓鼓掌。

三、认识平行四边形的底和高

1、师:我们来看这个平行四边形,上、下对边是一组平行线段,你能量出这两条平行线段间的距离吗?应该怎么量呢?把你量的线段画出来并量一量这条线段的长度。

汇报交流(在黑板上展示几种不同的画法)

师:大家画的这些垂直线段就是平行四边形的高,对应的这条边就是平行四边形的底。

2、教师示范画高

师:我们一起来画一画平行四边形的高(黑板演示)从平行四边形一条边上的一点向它的对边做一条垂线,这个点和垂足之间的线段就是平行四边形的高,注意,画高的时候要用虚线,并且要标上直角符号;那么垂足所在的边就叫做平行四边形的底。高和底是一一对应的。接下来还以这条边为底,在画一条高,在自己的练习纸上画画。并量一量高的长度。

(教师提醒用虚线画,并画上直角标记)

师:为什么大家画出来的垂线段位置不一样?但量出来的距离又基本一致呢?这样的垂线段可以画多少条呢?

3、 练习画高

画平行四边形另外一组对边上的高

四、认识平行四边形的特性

师:在课一开始,老师把一个长方形框架一拉就变成了一个平行四边形,现在老师再轻轻的拉拉这个平行四边形框架,有没有变化?(反复拉动平行四边形框架,让学生观察说一说有什么发现)

师:在四条边固定的情况下,框架可以拉成不同形状的平行四边形,所以说平行四边形容易变形,非常的不稳定,(板书)这就是平行四边形的特性。

五、课堂总结师:

同学们,这节课通过你们自己的努力,认识并验证了平行四边形的特征,还学会了画平行四边形的高,也知道了平行四边形有容易变形的特性,你们真的很了不起。其实平行四边形容易变形的特性在我们的实际生活中有很广泛的应用,课下请同学们用你们那双发现的眼睛找一找,生活中哪儿应用了平行四边形容易变形的特性,下节课课前我们再一起交流,好不好?好,这节课就上到这儿,下课。

《平行四边形的认识》教学设计 篇八

[教学目标]

1、知识与技能

直观地认识平行四边形

学会从各种平面图或实物中辨认平行四边形

培养初步的观察能力,空间观念和动手能力。

2、过程与方法

让学生在观察、操作、合作交流中探索新知

3、情感态度与价值观

渗透事物之间相互联系及转化的辩证唯物主义思想。

[教学重点]

引导学生直观的认识平行四边形

[教学难点]

引导学生通过直观感知抽象出平行四边形。

[教学关键]

在教学过程中,尽可能为学生提供观察、操作的机会,丰富学生的感性认识,使学生的感性认识升华为理性认识。

[教学方法]

演示法、观察法、操作法等。

[教具准备]

多媒体课件、可拉动的长方形框架、钉子板,方格纸

[学具准备]

可拉动的长方形框架,一张长方形的纸。

[教学过程]

一、复习引入

游戏引入(出示课件)

以“七个小矮人”中的开心果讲游戏规则,老师先发一些基本图形给学生,有三角形、圆形、长方形、正方形、平行四边形等,叫到什么图形的时候,大一部分同学就起立把图形举高让大家看,最后,只剩下平行四边形没有叫着,揭示课题:今天我们就来认识这一种新的四边形。

板书课题:平行四边形

二、探索新知

1、观察感知(课件展示)

教学例1:课件出示生活中的实物图形,引导学生观察在观察的基础上进行小组交流讨论,这些图形都有什么共同点?

交流抽象:在小组讨论的基础上进行全班交流,教师引导学生观察发现:以上的图形都含有,指出这种图形就是我们今天要认识的。平行四边形,课件出示平行四边形的图和文字。

2、操作感知

教学例2

拉一拉:

⑴你能把长方形变成平行四边形吗?你是怎样变的?捏住长方形的两个对角,向相反的方向拉动,这样就变成了一个平行四边形。在学生独立操作、感知的基础上进行小组合作、交流:长方形有什么变化?

全班交流时引导学生发现:通过拉动长方形框架使它变成了平行四边形,在拉动的过程中,四条边的长短不变,所以平行四边形的对边相等;四个角变了,原来是四个直角,拉成平行四边形后,四个角分别变成了两个锐角和两个钝角。

⑵说一说,长方形和平行四边形有什么区别?(长方形的四个角都是直角,平行四边形的角不是。初步理解长方形是一种特殊的平行四边形)

⑶说一说平行四边形有什么特点?

平行四边形有四条边,对边相等,有四个角,对角相等。

三、动手实践

1、围一围:

你能根据平行四边形的特点,在钉子板上围一个平行四边形吗?试试看

2、涂一涂:

把下面的图形是平行四边形的涂上自己喜欢的颜色(106页课堂活动的第2题)

3、剪一剪

⑴请在长方形纸上剪出一个平行四边形。(注意先要照着书上的方法,对折,再对折,然后把其中的两个长方形再对折,剪去其中的一个三角形。教师要引导学生怎样折纸)

四、知识拓展

让学生用七巧板拼摆出自己喜欢的各种图形,发展他们的创新思维和求异思维,同时也培养学生的空间观念。

五、全课小结

通过我们的观察、动手操作、小组合作等,我们已经知道了平行四边形的奥秘,你有什么收获?还有什么不懂得地方?

其实生活中无处不有我们的数学问题,只要我们做生活的有心人,你就会真正成为数学和生活的主人?

[板书设计]

平行四边形

有四条边,对边相等

有四个角,对角相等

《平行四边形的认识》教学设计 篇九

一、教学目标

1、在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征。

2、认识平行四边形的高,明白高与底的对应关系,能测量和画出平行四边形的高。

3、通过观察、动手操作,培养学生抽象概括能力和初步的空间观念、

二、教学重难点

教学重点:理解平行四边形的概念及特性。

教学难点:画平行四边形的高,明白底和高的对应关系。

三、教学方法

教法:通过教师引导、启发,引导学生理解和总结平行四边形的概念及特征。

学法:通过学生自主探究、小组合作、动手操作等结合的方法认识平行四边形的底和高及平行四边形的特性。

四、教学准备

课件、平行四边形纸片、三角板等

五、教学过程

(一)谈话导入

1、生活中你见过平行四边形吗?在哪见过,能给大家说一说吗? ①学生尝试举例。

②教师课件出示生活中与平行四边形有关的实例。

2、课件出示不同的平行四边形,让同学们仔细观察。

师:同学们你能说说你知道平行四边形的什么知识?(指名学生)

3、揭题 、导入

那今天我们就一起来深入研究平行四边形,板书课题

(二)合作交流、动手操作,探究新知

1、小组活动,探究平行四边形的特征。

(1)出示学具(两个平行四边形、学生用三角板、直尺、量角器等)

师:刚才有的同学已经谈到了平行四边形的相关知识,那现在我们分小组仔细观察,看看你还发现了平行四边形的什么知识?然后把你的发现写下来。(看一看哪个小组最认真、完成的最快、发现的最多?)

(2)学生小组合作,利用三角板、直尺等学具研究平行四边形的特征。

(3)小组汇报:

预设:

量一量:发现平行四边形两组对边分别相等、对角相等。

画一画:分别在对边之间画垂线段,经过测量发现垂线段的长度都一样。说明平行四边形的两组对边分别平行。

(4)在汇报的过程中,教师要及时总结并适时板书在黑板上。

2、抽象概括平行四边形的定义。

(1)学生尝试概括平行四边形的定义。

师:平行四边形的边有什么特点?如果请你说一说什么是平行四边形,你想怎么说?你们先四人一组互相说一说,推荐一个你们组认为说的。最好的,到前面来说给大家听,让大家一听就能明白是平行四边形。

(2)师总结并板书在黑板上。

(3)巩固平行四边形的定义。

师:下面哪些图形是平行四边形?

3、认识平行四边形的底和高

(1)出示一张平行四边形的学具,量出两条平行线之间的距离。 师:你能量出平行四边形两条红线间的距离吗?应该怎么量?把你量的线段画出来。

(2)学生自己尝试后交流。

(3)老师刚才发现,大家画的距离位置都不一样,你们想想这是为什么呢?这样的线段到底有多少条呢?(一组平行线之间的距离处处相等,有无数条。)

(4)师引导总结:从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。

(5)你能画出另一组对边上的高吗?学生继续尝试。

4、认识平行四边形的不稳定性。

(1)教师演示

教师拿一个长方形木框,用两手捏住长方形的两个对角,向相反方向拉、引导学生观察两组对边有什么变化?拉成了什么图形?什么没有变?

(2)学生仔细观察,小组讨论后汇报。

(3)归纳平行四边形特性、

根据刚才的实验、测量,引导学生概括出:平行四边形具有不稳定性、(板书:易变形)

(4)举例

这种不稳定性在实践中有广泛的应用、你能举出实际例子来吗? (如汽车间的保护网,推拉门、放缩尺等、)

(三)巩固练习,强化认知

自己找,三题左右,要有层次有梯度

(四)总结梳理,拓展延伸

1、今天这节课我们学习了哪些知识?你有什么收获?

2、平行四边形在我们的生活中有着哪些实际应用呢?下节课我们继续学习。

平行四边形教案 篇十

一、垂直与平行

1、认识平行和垂直

①同一平面内的两条直线的位置关系只有两种:相交和不相交。相交又有成直角的和不成直角的两种情况。

X“同一平面”是确定两条直线平行关系的前提,如果不在同一平面内,即便不相交,也不能称为互相平行。

②平行线:在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

平行的表示方法:a//b,读作a平行于b。

生活中平行的例子:窗户相对的框,黑板相对的两条边,公路上的斑马线、、、、、、

③垂直:如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

垂直的表示方法:ab

生活中垂直的例子:三角尺上的两条直角边互相垂直、、、、、、

④三条直线的特殊关系:

a//b,b//c,那么a//c:在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线互相平行

ab,bc,那么a//c:在同一平面内,如果两条直线都和第三条直线垂直,那么这两条直线互相平行。

2、垂线的画法和性质

①过直线上和直线外一点怎样画这条直线的垂线:把三角尺的一条直角边与已知直线重合;沿着直线移动三角尺,使三角尺的顶点和直线上的已知点重合;从直角的顶点起,沿着另一条直角边画出一条直线,这条直线就是已知直线的垂线。

②过直线外一点怎样画这条直线的垂线:把三角尺的一条直角边与已知直线重合;沿着直线移动三角尺,使三角尺的另一条直角边与直线外的一点重合;沿着三角尺的另一条直角边画一条直线

③垂线的性质:从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。

3、平行线的画法及运用

①平行线的画法:固定三角尺,沿一条直角边先画一条直线;用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺;再沿第一步中的直角边画出另一条直线。

②检验两条直线是否平行的方法:把三角尺的一条直角边与其中的一条直线重合;用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺;如果第一步的三角尺的直角边与另一条直线完全重合,这两条直线就互相平行,如果不完全重合,这两条直线就不平行。

③两条平行线之间的距离处处相等。

④怎样画长方形:

画垂线的方法:按画出长3厘米的线段,做长方形的长;从画出的线段两端画两条与这条线段垂直的线段,使这两条线段长2厘米;把两条2厘米长的线段点连接起来。

画平行线的方法:画出长3厘米的线段,做长方形的长;把三角尺的一条直角边与这条线段重合,用直尺紧靠三角尺的另一条边,固定直尺,然后平移三角尺使移动的距离达到宽所指定的长度,沿第一步中的直角边画出长所指定的长度;把两条线段相对应的端点连接起来。

二、平行四边形和梯形

1、认识平行四边形和梯形

①四边形分类:一类是两组对边分别平行;另一类是只有一组对边平行

②平行四边形:两组对边分别平行的四边形叫做平行四边形。长方形和正方形是特殊的平行四边形。正方形是特殊的长方形。

③梯形:只有一组对边平行的四边形叫做梯形。生活中的'梯形:梯子、堤坝的横截面等

④平行四边形和梯形的相同点和不同点:

相同点:都是四边形;都有平行的对边

不同点:平行四边形的两组对边平行且相等;梯形有且只有一组对边平行,且平行的这组对边不相等

2、平行四边形的特征:平行四边形容易变形,具有不稳定性。

生活中平行四边形不稳定的应用:校园电动推拉门,商店面铺推拉门等

3、平行四边形和梯形各部分名称及高的画法

①为平行四边形和梯形各条边命名

平行四边形的底和高:从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。

②梯形中互相平行的一组对边,较短的边叫做梯形的上底,较长的边叫做梯形的下底,不平行的那组对边,分别叫做梯形的腰。

③等腰梯形:两腰相等的梯形。

④直角梯形:当一条腰与上底、下底垂直时,这个梯形叫直角梯形。

⑤画高时注意:所画的高要用虚线表示;一定要画垂足符号。

平行四边形教案 第十一篇

一、内容和内容解析

1.内容

平行四边形对角线的性质。

2.内容解析

这节课承接了上一节平行四边形的性质:对边相等,对角相等,本节继续研究对角线互相平分的性质,课本先设置一个探究栏目,让学生发现结论,形成猜想,然后利用三角形全等证明这个结论,对角线互相平分是平行四边形的重要性质,在九年级上册“旋转”一章,通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分,学生会有进一步体会。平行四边形是最基本的几何图形,它在生活中有着十分广泛的应用。这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用。是中心对称图形的具体化,是以后学习平行四边形判定的重要依据。

教科书例2是的平行四边形对角线的性质的直接运用,而且涉及勾股定理以及平行四边形面积的计算。

基于以上分析,本节课的教学重点是:平行四边形对角线性质的探究与应用。

二、目标和目标解析

1.目标

(1)探究并掌握平行四边形对角线互相平分的性质。

(2)能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题。

2.目标解析

达成目标(1)的标志是:能发现平行四边形对角线互相平分这一结论并形成猜想,会利用三角形全等证明猜想。

达成目标(2)的标志是:能发现平行四边形的边、角、对角线等基本要素间的关系,会运用等量代换等进行线段长、图形面积等的计算,掌握简单的逻辑论证。

三、教学问题诊断分析

本节课在已学习了三角形全等证明,平行四边形定义,平行四边形边、角的性质的基础上,在积累了一定的经验的情况下学习本节课内容。例2是既是巩固平行四边形对角线互相平分的性质,又复习了勾股定理以及平行四边形面积的计算。这些问题常常需要运用勾股定理求平行四边形的高或底。这些问题比较综合,需要灵活运用所学的有关知识加以解决。

基于以上分析,本节课的教学难点是:综合运用平行四边形的性质进行有关的论证和计算。

四、教学过程设计

引言:前面我们研究了平行四边形的边、角这两个基本要素的性质,下面我们研究平行四边形对角线的性质。

1. 引入要素 探究性质

问题1 我们研究平行四边形边、角这两个要素的性质时,经历了怎样的过程?

师生活动:学生回顾我们研究平行四边形边、角这两个要素的性质时经历的过程,并请学生代表回答。

设计意图:回顾研究研究平行四边形边、角这两个要素的性质时经历的过程,总结研究平行四边形的'性质的一般活动过程(即观察、度量、猜想、证明等),积累研究图形的活动经验,为本节课研究对角线要素作准备。

问题2如图,在ABCD中,连接AC,BD,并设它们相交于点O,OA与OC,OB与OD有什么关系?你能证明发现的结论吗?

师生活动:启发学生去发现并猜想:平行四边形的对角线互相平分。

你能证明上述猜想吗?

教师操作投影仪,提出下面问题:

图中有哪些三角形全等?哪些线段是相等的?请同学们用多种方法加以验证。

学生合作学习,交流自己的思路,并讨论不同的验证思路。

教师点拨:图中有四对三角形全等,分别是:△AOB≌△COD,△AOD≌△COB,

△ABD≌△BCD,△ADC≌△CBA.有如下线段相等:OA=OC,OB=OD,AD=BC,AB=DC证明中应用到“AAS”,“ASA”证明。

师生归纳整理:

定理:平行四边形的对角线互相平分。

我们证明了平行四边形具有以下性质:

(1)平行四边形的对边相等;

(2)平行四边形的对角相等;

(3)平行四边形的对角线互相平分。

设计意图:应用三角形全等的知识,猜想并验证所要学习的内容。

2.例题解析 应用所学

问题3如图,在ABCD中,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积。

师生活动:教师分析解题思路, 可以利用平行四边形对边相等求出BC=AD=8,CD=AB=10,在求AC长度时,因为∠ACB=90°,可以在Rt△ACB中应用勾股定理求出AC= =6,由于OA=OC,因此AO=3,求ABCD面积是48,学生板演解题过程。

变式追问:在上题中,直线EF过点O,且与AB,CD分别相交于点E,F.求证:OE=OF.图中还在哪些相等的量?

设计意图:对于几何计算或证明,分析思路和方法是根本,本题既巩固平行四边形对角线互相平分的性质,又复习勾股定理和平行四边形面积计算的知识,通过本例,让学生学会如何分析,渗透“综合分析法”。 让学生理解平行四边形对角线互相平分的性质的应用价值。

3.课堂练习,巩固深化

(1)ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC的周长大8cm,则AB、BC的长分别是_________.

(2)如图,在ABCD中,BC=10,AC=8,BD=14,△AOD的周长是多少?△ABC与△DBC的周长哪个长?长多少?

设计意图:通过练习,深化理解平行四边形的性质,提高选择运用平行四边形定义、性质解决问题的能力。

4.反思与小结

(1)我们学习了平行四边形的哪些性质?

(2)结合本节的学习,谈谈研究平行四边形性质的思想方法。

(3)根据研究几何图形的基本套路,你认为我们还将研究平行四边形的什么问题?

5.布置作业

教科书P49页习题18.1 第3题;

教科书第51页第14题。

平行四边形教案 第十二篇

课型:

新授课。

教学分析:

本节课是在学生已经认识长方形、正方形的基础上进行教学。重点是让学生通过亲自观察、动手测量、比较掌握长方形、正方形的特点,初步认识平行四边形。

教学目标:

(一)知识与技能:

引导学生观察长方形、正方形的边、角的特点,认识长方形和正方形的共性及各自的特性。会在方格纸上画长方形、正方形,并认识平行四边形。

(二)过程与方法:

学生通过观察比较、动手操作、交流合作等活动发现长方形和正方形的特点,积累感性认识,初步认识平行四边形。

(三)情感态度价值观:

培养学生积极参与的学习品质,使学生获得成功的`体验,感受教学与日常生活的密切联系,树立学好数学的信心。

教学策略:

创设情景、动手实践、交流合作。

教具学具:

多媒体课件、长方形、正方形、格子纸、三角板。

教学流程:

一、创设情景,提出问题。

今天,我们的好朋友智慧星要带领大家到图形王国去参观。参观之前提一个小小的要求,请你仔细观察、多动脑筋。(多媒体演示图片)你能说出这些事物中你认识的图形吗?(抽出长方形、正方形。引出课题)

二、协作探索,研究问题。

1、教学长方形、正方形。

(1)多媒体出示长方形、正方形:请大家仔细观察他们各有几条边,几个角?

(2)教学对边的概念:

在生活中我们把两个人面对面叫做对面,在长方形中上下两条边我们把它们叫做对边、左右两条边也叫对边。(多媒体演示)

(3)小组合作研究长方形、正方形的特点。

下面请大家利用你手中的工具量一量、折一折、比一比,和组内同学说一说。

长方形的对边和正方形的边有什么特点,角有什么特点?

(4)指名汇报,并演示自己发现的过程。

共同总结:长方形和正方形都是四条边围成的图形,它们都是四边形,它们的每个角都是直角,长方形的对边相等,正方形的四条边都相等。

(5)在方格纸上画出长方形、正方形

2、教学平行四边形。

(1)多媒体演示:在生活中我们还会看到这样一些图形,它们是长方形吗?是正方形吗?

我们把这样的四边形叫做平行四边形。

(2)平行四边形的特点:

出示格子图中平行四边形:引导学生观察,用数格子的方法数一数你发现平行四边形的对边有什么特点?

(3)总结:平行四边形有四条边,四个角,对边相等。

(4)动手操作:拿出活动的四边形:拉动之后你发现了什么?

动手操作

三、运用知识,解决问题。

1、猜一猜。(多媒体演示)

2、找一找。(多媒体演示)

3、说一说。

四、总结。

你今天从智慧星那里学到了什么?

板书设计:

长方形正方形和平行四边形

边:4条

4条4条

对边相等全都相等对边相等

角:4个直角4个直角4个

三人行,必有我师焉。以上就是快回答给大家分享的12篇《平行四边形的认识》教学设计,希望能够让您对于平行四边形的写作更加的得心应手。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。