1. 主页 > 知识大全 >

数学教案高中教学优秀12篇(高中优秀数学教学设计)

一般地,从m个不同的元素中,任取n(n≤m)个元素为一组,叫作从m个不同元素中取出n个元素的一个组合。快回答整理了12篇数学教案高中教学,希望您在阅读之后,能够更好的写作高中数学教案范文。

www.kuaihuida.com 快回答…高中数学教案 篇一

教学准备

教学目标

掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。

教学重难点

掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。

教学过程

等比数列性质请同学们类比得出。

【方法规律】

1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题。方程观点是解决这类问题的基本数学思想和方法。

2、判断一个数列是等差数列或等比数列,常用的方法使用定义。特别地,在判断三个实数

a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)

3、在求等差数列前n项和的最大(小)值时,常用函数的思想和方法加以解决。

【示范举例】

例1:

(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为。

(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=.

例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数。

例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项。

高中数学教案设计范例 篇二

【教学目标】

1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

2.能根据几何结构特征对空间物体进行分类。

3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。

【教学重难点】

教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

教学难点:柱、锥、台、球的结构特征的概括。

【教学过程】

1.情景导入

教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。

2.展示目标、检查预习

3.合作探究、交流展示

(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?

(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。有两个面互相平行;其余各面都是平行四边形;每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

(3)提出问题:请列举身边的棱柱并对它们进行分类

(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。

(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)

(2)棱柱的任何两个平面都可以作为棱柱的底面吗?

(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

(5)绕直角三角形某一边的几何体一定是圆锥吗?

5.典型例题

例:判断下列语句是否正确。

⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。

⑵有两个面互相平行,其余各面都是梯形,则此几何体是棱柱。

答案AB

6.课堂检测:

课本P8,习题1.1A组第1题。

7.归纳整理

由学生整理学习了哪些内容

高中数学教学设计 篇三

提出问题:

新课程认为知识不是单方面通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(教师指导和同学的帮助)协作,主动建构而获得的。它强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。通过多年教学实践和对新课程的认识,我认为若遵循这个原则进行数学课堂教学,学生的学习将是一种高效的活动。

教材中的地位:

本节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第一种具体函数。是在初中已经初步探讨了正比例函数,反比例函数,一次函数,二次函数的图像和性质的基础上,在进一步学习了函数的概念及有关性质的前提下,去研究学习的。重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。这节课主要是学生利用描点法画出函数的图像,并描述出函数的图像特征,从而指出函数的性质。使学生从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。

设计背景:

在新教材的教学中,我慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性,实用性更明显的体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,它对于学生来说显得很抽象。所以如果再让让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。所以在教学中我尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识,是非常重要的。

教学目标:

一、知识:

理解指数函数的定义,能初步把握指数函数的图像,性质及其简单应用。

二、过程与方法:

由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图像,(有条件的话借助计算机演示验证指数函数图像)由图像研究指数函数的性质。利用性质解决实际问题。

三、能力:

1.通过指数函数的图像和性质的研究,培养学生观察,分析和归纳的能力,进一步体会数形结合的思想方法。

2.通过对指数函数的研究,使学生能把握函数研究的基本方法。

教学过程:

由实际问题引入:

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,?1个这样的细胞分裂x次后,得到的细胞的个数y与x之间的关系是什么?

分裂次数与细胞个数

1,2;2,2×2=22;3,2×2×2=23;x,2×2×……×2=2x

归纳:y=2x

问题2:某种放射性物质不断变化为其它物质,每经过1年剩留的这种物质是原来的84%,那么经过x年后剩留量y与x的关系是什么?

经过1年,剩留量y=1×84%=;经过2年,剩留量y=×=?经过x年,剩留量y=

寻找异同:

你能从以上的两个例子中得到的关系式里找到什么异同点吗?

共同点:变量x与y构成函数关系式,是指数的形式,自变量在指数位置,底数是常数;不同点:底数的取值不同。

那么,今天我们来学习新的一个基本函数:指数函数

得到指数函数的定义:定义:形如y=ax(a>0且a≠1)的函数叫做指数函数。

在以前我们学过的函数中,一次函数用形如y=kx+b(k≠0)的形式表示,反比例函数用形如y=k/x(k≠0)表示,二次函数y=ax2+bx+c(a≠0)表示。对于其一

般形式上的系数都有相应的限制。问:为什么指数函数对底数有这样的要求呢?若a=0,当x>0时,恒等于0,没有研究价值;当x≤0时,无意义。

若a

若a=1,则=1,是一个常量,也没有研究的必要。

所以有规定且a>0且a≠1。

由定义,我们可以对指数函数有一初步熟悉。

进一步理解函数的定义:

指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法则都适用,所以指数函数的定义域为R。

研究函数的途径:由函数的图像的性质,从形与数两方面研究。

学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数的图像及性质,然后利用其图像性质去解决数学问题和实际问题。根据以往的经验,你会从那几个角度考虑?(图像的分布范围,图像的变化趋势)图像的分布情况与函数的定义域,值域有关,函数的变化趋势体现函数的单调性。引导学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。

首先我们做出指数函数的图像,我们研究一般性的事物,常用的方法是:由特殊到一般。

我们以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图像,将学生画的函数图像展示,(画函数的图像的步骤是:列表,描点,连线。)。最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且,画出取不同的值时,函数的图像。

要求学生描述出指数函数图像的特征,并试着描述出性质。

数学发展的历史表明,每一个重要的数学概念的形成和发展,其中都有丰富的经历,新课程较好的体现了这点。对新课程背景下的学生而言,数学的知识应该是一个数学化的过程,即通过对常识材料进行细致的观察、思考,借助于分析、比较、综合、抽象、概括等思维活动,对常识材料进行去粗取精、去伪存真的精加工。该案例正是从数学研究和数学实验的过程中进行设计。虽然学生的思维不一定真实的重演了人类对数学知识探索的全过程,但确确实实通过实验、观察、比较、分析、归纳、抽象、概括等思维活动,在探索中将数学数学化,从而才使学生对数学学习产生了乐趣,对数学的研究方法有了一定的了解。

虽然学生要学的数学是历史上前人已建构好了的,但对他们而言,仍是全新的、未知的,需要用他们自己的学习活动来再现类似的过程。该案例正是从创设问题情景作为教学设计的重要的内容之一。教师应该把教学设计成学生动手操作、观察猜想、揭示规律等一系列过程,侧重于学生的探索、分析与思考,侧重于过程的探究及在此过程中所形成的一般数学能力。

教师的地位应由主导者转变为引导者,使教学活动真正成为学生的活动。在教学过程中,把学习的主动权交给学生,在时间和空间上保证学生在教师的指导下,学生能自己独立自主的探究学习。使教学活动始终处于学生的“最近发展区”,使每一个学生通过自己的努力,在自己原有的基础上都有所获,都有提高。总之,通过案例研究,不断研究新教材、新理念,不断调整教学策略优化课堂教学,培养学生探究学习与创新学习能力将是我们在数学教学中要继续探究的课题。

高中数学优秀教学设计 篇12

教学目标

1.明确等差数列的定义。

2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

3.培养学生观察、归纳能力。

教学重点

1. 等差数列的概念;

2. 等差数列的通项公式

教学难点

等差数列“等差”特点的理解、把握和应用

教具准备

投影片1张

教学过程

(I)复习回顾

师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

(Ⅱ)讲授新课

师:看这些数列有什么共同的特点?

1,2,3,4,5,6; ①

10,8,6,4,2,…; ②

生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)

对于数列②-2n(n≥1)(n≥2)

对于数列③(n≥1)(n≥2)

共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义:

等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,-2 。

二、等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

若将这n-1个等式相加,则可得:

即:即:即:……

由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)

数列②:(n≥1)

数列③:(n≥1)

由上述关系还可得:即:则:=如:三、例题讲解

例1:(1)求等差数列8,5,2…的第20项

(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

(Ⅲ)课堂练习

生:(口答)课本P118练习3

(书面练习)课本P117练习1

师:组织学生自评练习(同桌讨论)

(Ⅳ)课时小结

师:本节主要内容为:①等差数列定义。

即(n≥2)

②等差数列通项公式 (n≥1)

推导出公式:(V)课后作业

一、课本P118习题3.2 1,2

二、1.预习内容:课本P116例2P117例4

2.预习提纲:

①如何应用等差数列的定义及通项公式解决一些相关问题?

②等差数列有哪些性质?

高中数学教案 篇四

1.1.1 任意角

教学目标

(一) 知识与技能目标

理解任意角的概念(包括正角、负角、零角) 与区间角的概念。

(二) 过程与能力目标

会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.

(三) 情感与态度目标

1. 提高学生的推理能力;

2.培养学生应用意识. 教学重点

任意角概念的理解;区间角的集合的书写. 教学难点

终边相同角的集合的表示;区间角的集合的书写.

教学过程

一、引入:

1.回顾角的定义

①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

二、新课:

1.角的有关概念:

①角的定义:

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

②角的名称:

③角的分类: A

正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角

负角:按顺时针方向旋转形成的角

④注意:

⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

⑵零角的终边与始边重合,如果α是零角α =0°;

⑶角的概念经过推广后,已包括正角、负角和零角.

⑤练习:请说出角α、β、γ各是多少度?

2.象限角的概念:

①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.

例1.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.

⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;

答:分别为1、2、3、4、1、2象限角.

3.探究:教材P3面

终边相同的角的表示:

所有与角α终边相同的角,连同α在内,可构成一个集合S={ β | β = α +

k·360° ,

k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k∈Z

⑵ α是任一角;

⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差

360°的整数倍;

⑷ 角α + k·720°与角α终边相同,但不能表示与角α终边相同的所有角.

例2.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.

⑴-120°;

⑵640°;

⑶-950°12’.

答:⑴240°,第三象限角;

⑵280°,第四象限角;

⑶129°48’,第二象限角;

例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.

例5.写出终边在y?x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.

4.课堂小结

①角的定义;

②角的分类:

正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角

负角:按顺时针方向旋转形成的角

③象限角;

④终边相同的角的表示法.

5.课后作业:

①阅读教材P2-P5;

②教材P5练习第1-5题;

③教材P.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,

解:??角属于第三象限,

? k·360°+180°<α<k·360°+270°(k∈Z)

因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)

故2α是第一、二象限或终边在y轴的非负半轴上的角. 又k·180°+90°<

各是第几象限角?

<k·180°+135°(k∈Z) .

<n·360°+135°(n∈Z) ,

当k为偶数时,令k=2n(n∈Z),则n·360°+90°<此时,

属于第二象限角

<n·360°+315°(n∈Z) ,

当k为奇数时,令k=2n+1 (n∈Z),则n·360°+270°<此时,

属于第四象限角

因此

属于第二或第四象限角.

1.1.2弧度制

(一)

教学目标

(二) 知识与技能目标

理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.

(三) 过程与能力目标

能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题

(四) 情感与态度目标

通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点

弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点

“角度制”与“弧度制”的区别与联系.

教学过程

一、复习角度制:

初中所学的角度制是怎样规定角的度量的? 规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.

二、新课:

1.引 入:

由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便。在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?

2.定 义

我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad.在实际运算中,常常将rad单位省略.

3.思考:

(1)一定大小的圆心角?所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?

(2)引导学生完成P6的探究并归纳: 弧度制的性质:

①半圆所对的圆心角为

②整圆所对的圆心角为

③正角的弧度数是一个正数.

④负角的弧度数是一个负数.

⑤零角的弧度数是零.

⑥角α的弧度数的绝对值|α|= .

4.角度与弧度之间的转换:

①将角度化为弧度:

②将弧度化为角度:

5.常规写法:

① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数.

② 弧度与角度不能混用.

弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.

例1.把67°30’化成弧度.

例2.把? rad化成度.

例3.计算:

(1)sin4

(2)tan1.5.

8.课后作业:

①阅读教材P6 –P8;

②教材P9练习第1、2、3、6题;

③教材P10面7、8题及B2、3题.

高中数学教学设计 篇五

一、课题:

人教版全日制普通高级中学教科书数学第一册(上)《2.7对数》

二、指导思想与理论依据:

《数学课程标准》指出:高中数学课程应讲清一些基本内容的实际背景和应用价值,开展“数学建模”的学习活动,把数学的应用自然地融合在平常的教学中。任何一个数学概念的引入,总有它的现实或数学理论发展的需要。都应强调它的现实背景、数学理论发展背景或数学发展历史上的背景,这样才能使教学内容显得自然和亲切,让学生感到知识的发展水到渠成而不是强加于人,从而有利于学生认识数学内容的实际背景和应用的价值。在教学设计时,既要关注学生在数学情感态度和科学价值观方面的发展,也要帮助学生理解和掌握数学基础知识和基本技能,发展能力。在课程实施中,应结合教学内容介绍一些对数学发展起重大作用的历史事件和人物,用以反映数学在人类社会进步、人类文化建设中的作用,同时反映社会发展对数学发展的促进作用。

三、教材分析:

本节内容主要学习对数的概念及其对数式与指数式的互化。它属于函数领域的知识。而对数的概念是对数函数部分教学中的核心概念之一,而函数的思想方法贯穿在高中数学教学的始终。通过对数的学习,可以解决数学中知道底数和幂值求指数的问题,以及对数函数的相关问题。

四、学情分析:

在ab=N(a>0,a≠1)中,知道底数和指数可以求幂值,那么知道底数和幂值如何求求指数,从学生认知的角度自然就产生了这样的需要。因此,在前面学习指数的基础上学习对数的概念是水到渠成的事。

五、教学目标:

(一)教学知识点:

1.对数的概念。

2.对数式与指数式的互化。

(二)能力目标:

1.理解对数的概念。

2.能够进行对数式与指数式的互化。

(三)德育渗透目标:

1.认识事物之间的相互联系与相互转化,

2.用联系的观点看问题。

六、教学重点与难点:

重点是对数定义,难点是对数概念的理解。

七、教学方法:

讲练结合法八、教学流程:

问题情景(复习引入)——实例分析、形成概念(导入新课)——深刻认识概念(对数式与指数式的互化)——变式分析、深化认识(对数的性质、对数恒等式,介绍自然对数及常用对数)——练习小结、形成反思(例题,小结)

八、教学反思:

对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,教材内容的处理收到了一定的预期效果,尤其是练习的处理,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。

对于本教学设计,时间仓促,不足之处在所难免,期待与各位同仁交流。

高中数学教案 篇六

各位评委、各位专家,大家好!今天,我说课的内容是人民教育出版社全日制普通高级中学教科书(必修)《数学》第一章第五节“一元二次不等式解法”。

下面从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计、效果评价六方面进行说课。

一、教材分析

(一)教材的地位和作用

“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

(二)教学内容

本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。

二、教学目标分析

根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:

知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。

能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。

情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。

三、重难点分析

一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。

要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。

四、教法与学法分析

(一)学法指导

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。

(二)教法分析

本节课设计的指导思想是:现代认知心理学——建构主义学习理论。

建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。

本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。

五、课堂设计

本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。

(一)创设情景,引出“三个一次”的关系

本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把“=”改成“”则变成一元二次不等式x2-x-60让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。

为此,我设计了以下几个问题:

1、请同学们解以下方程和不等式:

①2x-7=0;②2x-70;③2x-70

学生回答,我板书。

2、我指出:2x-70和2x-70的解实际上只需利用不等式基本性质就容易得到。

3、接着我提出:我们能否利用不等式的基本性质来解一元二次不等式呢?学生可能感到很困惑。

4、为此,我引入一次函数y=2x-7,借助动画从图象上直观认识方程和不等式的解,得出以下三组重要关系:

①2x-7=0的解恰是函数y=2x-7的图象与x轴

交点的横坐标。

②2x-70的解集正是函数y=2x-7的图象

在x轴的上方的点的横坐标的集合。

③2x-70的解集正是函数y=2x-7的图象

在x轴的下方的点的横坐标的集合。

三组关系的得出,实际上让学生找到了利用“一次函数的图象”来解一元一次方程和一元一次不等式的方法。让学生看到了解决一元二次不等式的希望,大大激发了学生解决新问题的兴趣。此时,学生很自然联想到利用函数y=x2-x-6的`图象来求不等式x2-x-60的解集。

(二)比旧悟新,引出“三个二次”的关系

为此我引导学生作出函数y=x2-x-6的图象,按照“看一看 说一说 问一问”的思路进行探究。

看函数y=x2-x-6的图象并说出:

①方程x2-x-6=0的解是

x=-2或x=3 ;

②不等式x2-x-60的解集是

{x|x-2,或x3};

③不等式x2-x-60的解集是

{x|-23}。

此时,学生已经冲出了困惑,找到了利用二次函数的图象来解一元二次不等式的方法。

学生沉浸在成功的喜悦中,不妨趁热打铁问一问:如果把函数y=x2-x-6变为y=ax2+bx+c(a0),那么图象与x轴的位置关系又怎样呢?(学生回答:△0时,图象与x轴有两个交点;△=0时,图象与x轴只有一个交点;△0时,图象与x辆没有交点。)请同学们讨论:ax2+bx+c0与ax2+bx+c0的解集与函数y=ax2+bx+c的图象有怎样的关系?

(三)归纳提炼,得出“三个二次”的关系

1、引导学生根据图象与x轴的相对位置关系,写出相关不等式的解集。

2、此时提出:若a0时,怎样求解不等式ax2+bx+c0及ax2+bx+c0?(经讨论之后,有的学生得出:将二次项系数由负化正,转化为上述模式求解,教师应予以强调;也有的学生提出画出相应的二次函数图象,根据图象写出解集,教师应给予肯定。)

(四)应用新知,熟练掌握一元二次不等式的解集

借助二次函数的图象,得到一元二次不等式的解集,学生形成了感性认识,为巩固所学知识,我们一起来完成以下例题:

例1、解不等式2x2-3x-20

解:因为Δ0,方程2x2-3x-2=0的解是

x1= ,x2=2

所以,不等式的解集是

{ x| x ,或x2}

例1的解决达到了两个目的:一是巩固了一元二次不等式解集的应用;二是规范了一元二次不等式的解题格式。

下面我们接着学习课本例2。

例2 解不等式-3x2+6x2

课本例2的出现恰当好处,一方面突出了“对于二次项系数是负数(即a0)的一元二次不等式,可以先把二次项系数化为正数,再求解”;另一方面,学生对此例的解答极易出现写错解集(如出现“或”与“且”的错误)。

通过例1、例2的解决,学生与我一起总结了解一元二次不等式的一般步骤:一化正—二算△—三求根—四写解集。

例3 解不等式4x2-4x+10

例4 解不等式-x2+2x-30

分别突出了“△=0”、“△0”对不等式解集的影响。这两例由学生练习,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬。

4道例题,具有典型性、层次性和学生的可接受性。为了避免学生学后“一团乱麻”、“一盘散沙”的局面,我和学生一起总结。

(五)总结

解一元二次不等式的“四部曲”:

(1)把二次项的系数化为正数

(2)计算判别式Δ

(3)解对应的一元二次方程

(4)根据一元二次方程的根,结合图像(或口诀),写出不等式的解集。概括为:一化正→二算Δ→三求根→四写解集

(六)作业布置

为了使所有学生巩固所学知识,我布置了“必做题”;又为学有余力者留有自由发展的空间,我布置了“探究题”。

(1)必做题:习题1.5的1、3题

(2)探究题:①若a、b不同时为零,记ax2+bx+c=0的解集为P,ax2+bx+c0的解集为M,ax2+bx+c0的解集为N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求实数k的取值范围。

(七)板书设计

一元二次不等式解法(1)

五、教学效果评价

本节课立足课本,着力挖掘,设计合理,层次分明。以“三个一次关系→三个二次关系→一元二次不等式解法”为主线,以“从形到数,从具体到抽象,从特殊到一般”为灵魂,以“画、看、说、用”为特色,把握重点,突破难点。在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究能力的训练,创新精神的培养,引导学生发现数学的美,体验求知的乐趣。

高中数学教学设计 篇七

一、目标

1.知识与技能

(1)理解流程图的顺序结构和选择结构。

(2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图

2.过程与方法

学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。

3.情感、态度与价值观

学生通过动手作图,用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。

二、重点、难点

重点:算法的顺序结构与选择结构。

难点:用含有选择结构的流程图表示算法。

三、学法与教学用具

学法:学生通过动手作图,用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。

教学用具:尺规作图工具,多媒体。

四、教学思路

(一)、问题引入 揭示题

例1 尺规作图,确定线段的一个5等分点。

要求:同桌一人作图,一人写算法,并请学生说出答案。

提问:用字语言写出算法有何感受?

引导学生体验到:显得冗长,不方便、不简洁。

教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。

本节要学习的是顺序结构与选择结构。

右图即是同流程图表示的算法。

(二)、观察类比 理解题

1、 投影介绍流程图的符号、名称及功能说明。

符号 符号名称 功能说明

终端框 算法开始与结束

处理框 算法的各种处理操作

判断框 算法的各种转移

输入输出框 输入输出操作

指向线 指向另一操作

2、讲授顺序结构及选择结构的概念及流程图

(1)顺序结构

依照步骤依次执行的一个算法

流程图:

(2)选择结构

对条进行判断决定后面的步骤的结构

流程图:

3.用自然语言表示算法与用流程图表示算法的比较

(1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。

解:

算法(自然语言)

①把10赋与r

②用公式 求s

③输出s

流程图

(2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。

算法:(语言表示)

① 输入X值

②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值

③输出Y的值

流程图

小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)

(三)模仿操作 经历题

1.用流程图表示确定线段A.B的一个16等分点

2.分析讲解例2;

分析:

思考:有多少个选择结构?相应的流程图应如何表示?

流程图:

(四)归纳小结 巩固题

1.顺序结构和选择结构的模式是怎样的?

2.怎样用流程图表示算法。

(五)练习P99 2

(六)作业P99 1

高中数学教案设计范例 篇八

一、复习内容

平面向量的概念及运算法则

二、复习重点

向量的概念及运算法则的运用及其用向量知识,实现几何与代数之间的等价转化。

三、具体教学过程

1.学生准备课前预习回家做作业。其具体步骤是:相应知识的系统梳理;典型例题的摘录;搜集平时作业,测验作业中存在的典型错误;提出针性训练的练习题;准备思考题,以及家庭作业。学生的准备可以从中选择一项,学有余力的同学可以多选。

2.学生可以分为出题组、答题组和归纳组(每组3~4人),三个小组又可构成一个大的探究组,各小组的角色在其过程中可以互换;教师从旁引导,控制教学节奏,并有机、适时地对有争议的问题或引起认知冲突的部分作相应的释疑,最后选出具有代表性的题目和表达最完整的归纳展示给学生。

出题组:在教师的引导下,确立出题意图后,可以自编或在课本、资料中寻找适当的例题。

答题组:迅速给出题目答案或解题思路步骤(由学生自己讲解),同时确立该题所考察的知识点和方法,并互相讨论解题过程中的易错点和容易忽视的问题。

归纳组:对照相应的问题,归纳出解决问题的关键和方法及其需要注意的事项。并以书面的形式给出,可充分利用投影的方式展示给学生。

3.教学中教师按上述环节顺序,让每一环节准备相同内容,学生自己选择一人担任主讲,其余同学组成评议组,主讲讲解完后,由评议组补充、完善或评价、矫正……。

4.教师控制教学节奏,并有机、适时地对有争议的问题或引起认知冲突的部分作相应的释疑。

5.在学生自己完成这一复习环节后,师生共同完成教师的精选题例题的讲解,同样采用启发讨论式,尽可能地让学生自己完成问题的解答。

6.课尾教师进行点评、归纳、小结(由学生自己完成),并评选本课“主讲明星”与“评议”。

四、案例分析及其反思

1.让学生走上讲台,既为学生提供展示才华的舞台,满足其表现欲,尝试成功感,又让学生亲历知识掌握的构建过程。

2.由于要自己完成课前的准备作业和讲解内容,迫使学生进行章节的全面复习,对知识进行系统整理,这一复习环节,却真正达到了学生自觉地学习,使学生由被动学习转化为主动学习,提高学习效率。

3.组织这样的课堂教学流程,培养了学生口才、组织能力、逻辑思维能力、应变能力、心理承受能力等等,促使学生的个性达到良性的发展。

4.由于改变了课堂的传统座位排法,学生得到了互相帮助的机会,学习较差的学生能直接得到学有余力的同学的帮助和指导,更容易掌握和理解所学的知识,调动兴趣,提高了学习能力。互帮互学为学生营造了一个轻松、愉快的学习氛围。打破教师出题,学生解答的单调教学模式。通过学生自己变式,充分体现学生的主体性,使他们对一类问题有根本性地掌握,起到以点带面的效果。通过以组题的形式让学生通过有目的的联想,探索习题之间的内在联系,明确问题产生的背景,领会问题的实质,进而找到相应的解题策略,培养学生的思维的灵活性和广阔性,进一步完善、深化学生的认知结构。

5.教学模式恰当,引人入胜

“探究讨论式”是一种常用的教学方法。然而,本课探索“向量的应用”却颇有难度,尤其是几何与代数之间的问题转化。为了突破这一难点,首先复习旧知识,预备铺垫,接着设计简单的几何图形中的代数求值问题。教师在思想方法上的点拔,思维层次上的递进,让学生分享自己成果的乐趣,体现了“学生是数学学习的主人,教师是数学学习的组织者、引领者与合作者。”的教学理念。整个教学设计,思路清楚,层次转换自然,点拨及时,自然流畅,引人入胜。

6.体现先进理念,合作探索

建构主义认为:学生的学习不是被动的接受,而是一种主动的学习,一种知识的重组或重新建构的过程。因此,学习方式的转变,对学生的学习至关重要,也是二期课改成败的要害。本课注重学生学习方式的转变,教者适时点拨,发现问题,培养探索精神。从轻易混淆的性质入手,让学生发现问题,出现迷惑,接着,对向量平行充要条件的研究,培养了学生思维的深刻性,通过概念的辨析,使学生对向量有了更深的理解,此时推出综合应用题,过渡自然,符合认知规律。同学探究,思维得到进一步的升华,攻克难点,培养了合作精神。通过展示研究成果,让学生感到爱好盎然而布满探索求知的愿望,学生的主体地位得到了淋漓尽致的发挥。体验成功的喜悦,分享快乐,提高了学习的积极性。

熟知,课堂教学“以教师为主导,以学生为主体”这句话好说难做。如何落在实处,本课做了有益的尝试。案例的设计,具有时代气息,以问题为先导,直接引导学生进入思考的境界。教案的设计说明,体现了教者“以学生发展为本的教学理念”。

《数学课程标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能……”。这就是一次很好的机会,教师要鼓励、引导学生敢于质疑、敢于实践,培养学生主动探究问题的能力,转变学生学习方式,即变单一的传授方式为学生自主体验、探究等学习方式。

复习课上都有一个突出的矛盾,那就是时间太紧,既要处理足量的题目,又要充分展示学生的思维过程,二者似乎是很难兼顾。教师可采用“焦点访谈”法较好地解决这个问题,如:例2和例2的变式1的探究,因题目是“入口宽,上手易”,但在连续探究的过程中,在两种方法会得出两个相反的答案这一点上搁浅受阻(这一点被称为“焦点”,其余的则被称为“外围”)。这里教师不必在外围处花精力去进行浅表性的启发诱导,好钢要用在刀刃上,而要在焦点处发动学生探寻突破口,通过交流“访谈”,集中学生的智慧,让学生的思维在关键处闪光,能力在要害处增长,弱点在隐蔽处暴露,意志在细微处磨砺。

高中数学教案 篇九

教学目的:

(1)使学生初步理解集合的概念,知道常用数集的概念及记法

(2)使学生初步了解“属于”关系的意义

(3)使学生初步了解有限集、无限集、空集的意义

教学重点:集合的基本概念及表示方法

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

授课类型:新授课

课时安排:1课时

教 具:多媒体、实物投影仪

内容分析:

集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑。

本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。

这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明。

教学过程:

一、复习引入:

1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

2、教材中的章头引言;

3、集合论的创始人——康托尔(德国数学家)(见附录);

4.“物以类聚”,“人以群分”;

5.教材中例子(P4)

二、讲解新课:

阅读教材第一部分,问题如下:

(1)有那些概念?是如何定义的?

(2)有那些符号?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有关概念:

由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。

定义:一般地,某些指定的对象集在一起就成为一个集合.

1、集合的概念

(1)集合:某些指定的对象集在一起就形成一个集合(简称集)

(2)元素:集合中每个对象叫做这个集合的元素

2、常用数集及记法

(1)非负整数集(自然数集):全体非负整数的集合 记作N,

(2)正整数集:非负整数集内排除0的集 记作N*或N+

(3)整数集:全体整数的集合 记作Z ,

(4)有理数集:全体有理数的集合 记作Q ,

(5)实数集:全体实数的集合 记作R

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

(2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*

3、元素对于集合的隶属关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

(2)不属于:如果a不是集合A的元素,就说a不属于A,记作

4、集合中元素的特性

(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

(2)互异性:集合中的元素没有重复

(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的开口方向,不能把a∈A颠倒过来写

三、练习题:

1、教材P5练习1、2

2、下列各组对象能确定一个集合吗?

(1)所有很大的实数 (不确定)

(2)好心的人 (不确定)

(3)1,2,2,3,4,5.(有重复)

3、设a,b是非零实数,那么 可能取的值组成集合的元素是_—2,0,2__

4、由实数x,-x,|x|, 所组成的集合,最多含( A )

(A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素

5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:

(1) 当x∈N时, x∈G;

(2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G

证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,则x= x+0* = a+b ∈G,即x∈G

证明(2):∵x∈G,y∈G,

∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

∵a∈Z, b∈Z,c∈Z, d∈Z

∴(a+c) ∈Z, (b+d) ∈Z

∴x+y =(a+c)+(b+d) ∈G,

又∵ =且 不一定都是整数,

∴ = 不一定属于集合G

四、小结:本节课学习了以下内容:

1、集合的有关概念:(集合、元素、属于、不属于)

2、集合元素的性质:确定性,互异性,无序性

3、常用数集的定义及记法

数学教案高中教学 篇十

概率统计

一、 知识梳理

1.三种抽样方法的联系与区别:

类别 共同点 不同点 相互联系 适用范围

简单随机抽样 都是等概率抽样 从总体中逐个抽取 总体中个体比较少

系统抽样 将总体均匀分成若干部分;按事先确定的规则在各部分抽取 在起始部分采用简单随机抽样 总体中个体比较多

分层抽样 将总体分成若干层,按个体个数的比例抽取 在各层抽样时采用简单随机抽样或系统抽样 总体中个体有明显差异

(1)从含有N个个体的总体中抽取n个个体的样本,每个个体被抽到的概率为

(2)系统抽样的步骤: ①将总体中的个体随机编号;②将编号分段;③在第1段中用简单随机抽样确定起始的个体编号;④按照事先研究的规则抽取样本。

(3)分层抽样的步骤:①分层;②按比例确定每层抽取个体的个数;③各层抽样;④汇合成样本。

(4) 要懂得从图表中提取有用信息

如:在频率分布直方图中①小矩形的面积=组距 =频率②众数是矩形的中点的横坐标③中位数的左边与右边的直方图的面积相等,可以由此估计中位数的值

2.方差和标准差都是刻画数据波动大小的数字特征,一般地,设一组样本数据 , ,…, ,其平均数为 则方差 ,标准差

3.古典概型的概率公式:如果一次试验中可能出现的结果有 个,而且所有结果都是等可能的,如果事件 包含 个结果,那么事件 的概率P=

特别提醒:古典概型的两个共同特点:

○1 ,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的;

○2 ,即每个基本事件出现的可能性相等。

4. 几何概型的概率公式: P(A)=

特别提醒:几何概型的特点:试验的结果是无限不可数的;○2每个结果出现的可能性相等。

二、夯实基础

(1)某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名。为了解职工的某种情况,要从中抽取一个容量为20的样本。若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为____________.

(2)某赛季,甲、乙两名篮球运动员都参加了

11场比赛,他们所有比赛得分的情况用如图2所示的茎叶图表示,

则甲、乙两名运动员得分的中位数分别为( )

A.19、13 B.13、19 C.20、18 D.18、20

(3)统计某校1000名学生的数学会考成绩,

得到样本频率分布直方图如右图示,规定不低于60分为

及格,不低于80分为优秀,则及格人数是 ;

优秀率为 。

(4)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:

9.4 8.4 9.4 9.9 9.6 9.4 9.7

去掉一个分和一个最低分后,所剩数据的平均值

和方差分别为( )

A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016

(5)将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率________.

(6)在长为12cm的线段AB上任取一点M,并且以线段AM为边的正方形,则这正方形的面积介于36cm2与81cm2之间的概率为( )

三、高考链接

07、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒

; 第六组,成绩大于等于18秒且小于等于19秒。右图

是按上述分组方法得到的频率分布直方图。设成绩小于17秒

的学生人数占全班总人数的百分比为 ,成绩大于等于15秒

且小于17秒的学生人数为 ,则从频率分布直方图中可分析

出 和 分别为( )

08、从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )

分数 5 4 3 2 1

人数 20 10 30 30 10

09、在区间 上随机取一个数x, 的值介于0到 之间的概率为( ).

08、现有8名奥运会志愿者,其中志愿者 通晓日语, 通晓俄语, 通晓韩语。从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组。

(Ⅰ)求 被选中的概率;(Ⅱ)求 和 不全被选中的概率。

高中数学教案 第十一篇

一、课程性质与任务

数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。二、课程教学目标

1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。

3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。三、教学内容结构

本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。

1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。

3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。四、教学内容与要求

(一)本大纲教学要求用语的表述1.认知要求(分为三个层次)

了解:初步知道知识的含义及其简单应用。

理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)

计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。

空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。

分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。

数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。

(二)教学内容与要求1.基础模块(128学时)第1单元集合(10学时)

第2单元不等式(8学时)

第3单元函数(12学时)

第4单元指数函数与对数函数(12学时)

第5单元三角函数(18学时)

第6单元数列(10学时)

第7单元平面向量(矢量)(10学时)

第8单元直线和圆的方程(18学时)

第9单元立体几何(14学时)

第10单元概率与统计初步(16学时)

2.职业模块

第1单元三角计算及其应用(16学时)

第2单元坐标变换与参数方程(12学时)

第3单元复数及其应用(10学时)

高中数学教案 第十二篇

教学目标:

(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;

(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

教学重点:

集合的基本概念与表示方法;

教学难点:

运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:

一、引入课题

军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

二、新课教学

(一)集合的有关概念

1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,研究对象统称为元素(element),一些元素组成的。总体叫集合(set),也简称集。

3.关于集合的元素的特征

(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样

4.元素与集合的关系;

(1)如果a是集合A的元素,就说a属于(belongto)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(notbelongto)A,记作aA(或aA)

5.常用数集及其记法

非负整数集(或自然数集),记作N

正整数集,记作N__或N+;

整数集,记作Z

有理数集,记作Q

实数集,记作R

(二)集合的表示方法

我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

(1)列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},;

思考2,引入描述法

说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},;

强调:描述法表示集合应注意集合的代表元素

{(x,y)|y=x2+3x+2}与{y|y=x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

辨析:这里的{}已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

三、归纳小结

本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。课题:§1.2集合间的基本关系

教材分析:类比实数的大小关系引入集合的包含与相等关系

熟读唐诗三百首,不会做诗也会吟。以上就是快回答给大家分享的12篇数学教案高中教学,希望能够让您对于高中数学教案范文的写作更加的得心应手。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。