1. 主页 > 知识大全 >

初中数学分式教案(优秀6篇)(分式不等式的解法教案)

作为一名教师,时常要开展教案准备工作,教案是实施教学的主要依据,有着至关重要的作用。优秀的教案都具备一些什么特点呢?快回答整理了6篇初中数学分式教案,希望您在阅读之后,能够更好的写作分式的基本性质。

分式的基本性质 篇一

分式的基本性质

一、教学目标

1.理解分式的基本性质。

2.会用分式的基本性质将分式变形。

二、重点、难点

1.重点: 理解分式的基本性质。

2.难点: 灵活应用分式的基本性质将分式变形。

3.认知难点与突破方法

教学难点是灵活应用分式的基本性质将分式变形。 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。

三、例、习题的意图分析

1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。

2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。

3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。

“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.

四、课堂引入

1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?

2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?

3.提问分数的基本性质,让学生类比猜想出分式的基本性质。

五、例题讲解

P7例2.填空:

[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。

P11例3.约分:

[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。

P11例4.通分:

[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号。

, , , , 。

[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变。

解: = , = , = , = , = 。

六、随堂练习

1.填空:

(1) = (2) =

(3) = (4) =

2.约分:

(1) (2) (3) (4)

3.通分:

(1) 和 (2) 和

(3) 和 (4) 和

4.不改变分式的值,使下列分式的分子和分母都不含“-”号。

(1) (2) (3) (4)

七、课后练习

1.判断下列约分是否正确:

(1) = (2) =

(3) =0

2.通分:

(1) 和 (2) 和

3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号。

(1) (2)

八、答案:

六、1.(1)2x (2) 4b (3) bn+n (4)x+y

2.(1) (2) (3) (4)-2(x-y)2

3.通分:

(1) = , =

(2) = , =

(3) = =

(4) = =

4.(1) (2) (3) (4)

分式的基本性质 篇二

第一课时

(一)教学过程

【复习提问】

1.分式的定义?

2.分数的基本性质?有什么用途?

【新课】

1.类比分数的基本性质,由学生小结出分式的基本性质:

分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即:

(其中是不等于零的整式。)

2.加深对分式基本性质的理解:

例1 下列等式的右边是怎样从左边得到的?

(1);

由学生口述分析,并反问:为什么?

解:∵

∴.

(2);

学生口答,教师设疑:为什么题目未给的条件?(引导学生学会分析(www.kuaihuida.com)题目中的隐含条件。)

解:∵

∴.

(3)

学生口答。

解:∵,

∴.

例2 填空:

(1);

(2);

(3);

(4).

把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据。

例3 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。

(1);

分析学生讨论:①怎样才能不改变公式的值?②怎样把分子分母中各项系数都化为整数?

解:.

(2).

解:.

例4 判断取何值时,等式成立?

学生分组讨论后得出结果:

∴.

(二)随堂练习

1.当为何值时,与的值相等

A.B.C.D.

2.若分式有意义,则,满足条件为( )

A.B.C.D.以上答案都不对

3.下列各式不正确的是( )

A.B.

C.D.

4.若把分式的和都扩大两倍,则分式的值

A.扩大两倍 B.不变

C.缩小两倍 D.缩小四倍

(三)总结、扩展

1.分式的基本性质。

2.性质中的可代表任何非零整式。

3.注意挖掘题目中的隐含条件。

4.利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数学化繁为简的策略,并为分式作进一步处理提供了便利条件。

(四)布置作业

教材P61中2、3;P62中B组的1

(五)板书设计

初中数学分式教案 篇三

第一课时

一、教学过程

【复习提问】

1.分式的基本性质?

2.分式的变号法则?

【新课】

数学小笑话:(配上漫画插图幻灯片)

从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”

问:这个富家子弟为什么会犯这样的错误?

分数约分的方法及依据是什么?

1.提出课题:分式可不可以约分?根据什么?怎样约分?约到何时为止?

学生分组讨论,最终达成共识.

2.教师小结:

(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.

(2)分式约分的依据:分式的基本性质.

(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.

(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.

3.例题与练习:

例1约分:

(1);

请学生观察思考:①有没有公因式?②公因式是什么?

解:.

小结:①分式的分子、分母都是几个因式的积的。形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.

(2);

请学生分析如何约分.

解:.

小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②注意对分子、分母符号的处理.

(3);

解:原式.

(4);

解:原式

(5);

解:原式.

例2?化简求值:

.其中,.

分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算提供了便利条件.

解:原式.

当,时.

二、随堂练习

教材P65练习1、2.

三、总结、扩展

1.约分的依据是分式的基本性质.

2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.

3.若分式的分子、分母中有多项式,则要先分解因式,再约分.

四、布置作业

教材P73中2、3.

分式的基本性质 篇四

第一课时

(一)教学过程

【复习提问】

1.分式的定义?

2.分数的基本性质?有什么用途?

【新课】

1.类比分数的基本性质,由学生小结出:

分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即:

(其中是不等于零的整式。)

2.加深对分式基本性质的理解:

例1 下列等式的右边是怎样从左边得到的?

(1);

由学生口述分析,并反问:为什么?

解:∵

∴.

(2);

学生口答,教师设疑:为什么题目未给的条件?(引导学生学会分析题目中的隐含条件。)

解:∵

∴.

(3)

学生口答。

解:∵,

∴.

例2 填空:

(1);

(2);

(3);

(4).

把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据。

例3 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。

(1);

分析学生讨论:①怎样才能不改变公式的值?②怎样把分子分母中各项系数都化为整数?

解:.

(2).

解:.

例4 判断取何值时,等式成立?

学生分组讨论后得出结果:

∴.

(二)随堂练习

1.当为何值时,与的值相等

A.B.C.D.

2.若分式有意义,则,满足条件为( )

A.B.C.D.以上答案都不对

3.下列各式不正确的是( )

A.B.

C.D.

4.若把分式的和都扩大两倍,则分式的值

A.扩大两倍 B.不变

C.缩小两倍 D.缩小四倍

(三)总结、扩展

1..

2.性质中的可代表任何非零整式。

3.注意挖掘题目中的隐含条件。

4.利用将分式的分子、分母化成整系数形式,体现了数学化繁为简的策略,并为分式作进一步处理提供了便利条件。

(四)布置作业

教材P61中2、3;P62中B组的1

(五)板书设计

初中数学分式教案 篇五

教学目标

1.通过实践总结分式 的乘 除法,并能较熟练地进行式的乘除法 运算。

2.理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘 方运算

3.引 导学生通过分析、归纳,培养学生用类比的 方法探索新知识的能力

教学重点 分式的。乘除法、乘方运算

教学难点 分式的乘除法、混合运算,分式乘法,除法 、乘方运算中符号的确定。

教学过程

(一)复习与情境导入

1.(1)什么叫做分式的约分?约分的根据是什么?

(2):下列各式是否正确?为什么?

2.(1)回忆:

计算:

(2)尝试探究:计算:

(1) ; (2) .

概括 :分式的乘除法用式子表示即 抢答

尝试 探究用式子表示,用文字表达。培养学生的合情推理能力。

(二)实践与探索 1

例2计算

分析:①本题是几个分式在进行什么运算?

②每个分式的分子 和分母都是什么代数式?

③在分式的分子、分母中的多项式是否可以分解因式,怎样分解?

④怎样应用分式 乘法法则得到积的分式?

解 原式= = .

练习:①课本练习1.

②计 算:

(三)实践与探索2

探索分式的乘方的法则1.思 考

我们都学过了有理数的乘方,那么分式的乘 方该是怎样运算的呢?

先做下面的乘法:(1) = =( )3;

(2) = =( )k.

2.仔细观察这两题的结果,你能发现什么 规律?与同伴交流一下,然后完成下面的填 空: )(k) =___________(k是正整数)

老师应格外强调符 号问题 自主探究,后合作交流学习探索分式的乘方的法则

(四)小结与作业 怎样进 行分式 的乘除法?怎样进行分式的乘方?

作业:

(五)板书设计

初中数学分式教案 篇六

分式(2课时)

上课时间 年 月 日星期

一、复习要点

1、分式的通分和约分

2、分式的定义域

3、分式的化简和求值

二、复习过程

1、求代数式的值:①化 ②代 ③算

例:①已知x+y=5;xy=3,求x3y+2x2y2+xy3

②已知a=-1,b=-3,c=1,求 a2b--3abc

③已知a= 求 ÷( - )+

④已知x= y= ,求 +

2、分式的通分和约分

(1)通分最简公分母:小;高

(2)约分:注: 与 和

3、分式的定义域

①分式 (1)何时有意义(2)何时无意义(3)何时值为0

4、分式的。化简和求值

①1- ÷ +

其他例题见复习用书13页5(6、7、8、)6

三、小结 1、分式的通分和约分

2、分式的定义域

3、分式的化简和求值

四、练习:略

五、作业:

见复习用书

分式(2课时)

上课时间 年 月 日星期

一、复习要点

1、分式的通分和约分

2、分式的定义域

3、分式的化简和求值

二、复习过程

1、求代数式的值:①化 ②代 ③算

例:①已知x+y=5;xy=3,求x3y+2x2y2+xy3

②已知a=-1,b=-3,c=1,求 a2b--3abc

③已知a= 求 ÷( - )+

④已知x= y= ,求 +

2、分式的通分和约分

(1)通分最简公分母:小;高

(2)约分:注: 与 和

3、分式的定义域

①分式 (1)何时有意义(2)何时无意义(3)何时值为0

4、分式的化简和求值

①1- ÷ +

其他例题见复习用书13页5(6、7、8、)6

三、小结 1、分式的通分和约分

2、分式的定义域

3、分式的化简和求值

四、练习:略

五、作业:

见复习用书

阅读是学习,摘抄是整理,写作时创造。以上这6篇初中数学分式教案是来自于快回答的分式的基本性质的相关范文,希望能有给予您一定的启发。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。