作为一位优秀的人民教师,时常会需要准备好教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。教案应该怎么写才好呢?下面的6篇三角形的性质教案是由快回答精心整理的三角形的性质教案范文模板,欢迎阅读参考。
相似三角形的性质 篇一
相似三角形的判定
有两角对应相等;两边对应成比例,且夹角相等;三边对应成比例。通常用以上几种方法来证明三角形相似,另外平行于三角形的一边且和其他两边(或两边的。延长线)相交的直线,所截得的三角形与原三角形相似。
在书写过程中,证明两个三角形相似,与证明两个三角形全等一样,应把表示对应顶点的字母写在对应的位置上,方便得出下一步结论。全等三角形可以看做特殊的相似三角形,这时相似比等于1。
三角形内切圆的性质 篇二
性质
三边与圆相切
圆心与三顶点连线分辨平分三角
半径x三边和/2=三角形面积
三角形内切圆概念
三角形一定有内切圆,其他的图形不一定有内切圆(一般情况下,n边形无内切圆,但也有例外,如对边之和相等的四边形有内切圆。),且内切圆圆心定在三角形内部。
在三角形中,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。
内切圆的半径为r=2S/C,当中S表示三角形的'面积,C表示三角形的周长。
三角形内切圆半径公式
1、三角形内切圆半径:r=2S/(a+b+c);
2、三角形外接圆的半径:R=abc/4S。
其中,S为三角形的面积,a,b,c分别为三角形的三边。
角形的性质教案 篇三
教学目标
1.使学生认识三角形的特性,知道三角形任意两边之和大于第三边以及三角形的内角和是180°。
2.使学生认识锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形,知道这些三角形的特点并能够辨认和区别它们。
教学重点:
认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。
教学难点:
会在三角形内三条边上画高。
教学准备:
师生分别准备木条(或硬纸条)钉成的三角形。
教学过程
第一课时
一、引入新课
1.展示课本第80页情境图:我们的城市日新月异,每天都有新的变化。瞧,这是正在建设中的会展中心,你在图上发现三角形了吗?学生先说说哪里有三角形,再请学生在不同物体上描出两个三角形。
2.生活中哪些物体上也有三角形呢?让学生说一说。
房顶、红领巾、标志牌、画出的圣诞树的形状、自行车身上……
3.出示一些生活中常见的物体上的三角形:电视接收塔上的三角形、铁桥上的三角形、交通标志牌上的三角形、晾衣架上的三角形等。
4.三角形在生活中有这么广泛的运用,究竟它有什么特点?这节课我们将对它进行深入的研究。(板书课题)
二、新课学习
1.发现三角形的特征。
请你画出一个自己喜爱的三角形。三角形有几个顶点、几条边、几个角?
让学生在自己画的三角形上尝试标出边、角、顶点。
教师根据学生的汇报板书,标出三角形各部分的名称。
2.概括三角形的定义。
大家对三角形有了一定的了解,能不能用自己的话概括一下,什么样的图形叫三角形?由三条线段围成的封闭图形叫三角形。请学生对照上面的说法,议一议:下面的图形是不是三角形?
讨论:对于“三角形”怎样说更准确?
阅读课本:课本是怎样概括三角形的定义的?你认为三角形的定义中哪些词最重要?组织学生在讨论中理解“三条线段”“围成”。
教师用准备好的三条线段的教具在黑板上摆放帮助理解关键词:
三条线段、围、相邻两个端点相连。
学生发现:只有具备了这三个条件才能准确无误地围成三角形。
3.认识三角形的底和高。
出示练习纸:三角形屋顶的房子和斜拉桥。
你能测量出三角形房顶和斜拉桥的高度吗?
学生在练习纸上操作。反馈:你是怎么测量的?
将三角形房顶下面的边做底,房顶做顶点,过顶点作底边上的垂线就是房顶的高。
师带领学生一起回顾作高的方法,首先强调底和高的概念:
从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
明确:三角形有几个底,每个底边对应的顶点在哪里(学生依次指出来),从哪里向哪里作高,这条高是谁的高?
出示教材第81页上的三角形。这是三角形的一组底和高吗?画出其他的底和高,画后提问:三角形有共几条高?
出示直角三角形(一条直角边作底),你能画出这条底边上的高吗?
学生试画,画后发现高是另一条直角边。出示另两条底边,学生在答题纸上画出对应的高。
4.用字母表示三角形
全班这么多同学我们是用什么来区分,不会认错的?(名字)黑板上这么多的三角形怎样很快说出每个三角形呢?
我们一般用字母来表示。标注A、B、C在顶点,我们叫它三角形ABC。
如果标注D、E、F在顶点,就叫做三角形DEF。
5.三角形的稳定性
(1)提出问题。
出示教材第81页插图:生产、生活中为什么要把这些部分做成三角形的,它具有什么特性?
(2)实验解疑。
学生拿出预先做好的三角形、四边形学具,分小组实验:拉一拉学具,有什么发现?
实验结果:三角形具有稳定性。
请学生举出生活中应用三角形稳定性的例子。
三、巩固练习
指导学生完成练习十四1、2、3题。
四、课堂总结
这节课我们学习了什么?你对三角形有了哪些进一步的认识?还有什么有关三角形的问题?
第二课时
一、引入新课
1.出示:课本82页例3情境图。
三角形教案
(1)这是小明同学上学的路线。请大家仔细观察,他可以怎样走?
(2)在这几条路线中哪条最近?为什么?(生:垂直线段距离最短)
教师出示不规则三角形路线图,现在还是垂直线段吗?为什么这一条路最近呢?
2.大家都认为走中间这条路最近,这是什么原因呢?
请大家看:连接小明家、商店、学校三地,近似一个什么图形?
连接小明家、邮局、学校三地,同样也近似一个什么图形?
大胆猜想:那走中间这条路,走过的路程是三角形的。一条边,走旁边的路走过的路程实质上是三角形的另两条边的和,走三角形的两条边的和要比第三边大,那么,是不是所有的三角形的三条边都有这样的关系呢?
操作交流:请学生任意画一个三角形,量一量三角形三条边的长,看是否任意两边的和大于第三边。
学生得出:的确有“两边的和大于第三边”这样的关系。
猜想还要用实验来验证,证明猜想对任意三角形都适合才能成立。我们来做个实验。
二、探究
1.实验l:用三根小棒摆一个三角形。
在每个小组的桌上都有5根小棒(2厘米、4厘米、5厘米、6厘米、10厘米),请大家随意拿三根来摆三角形,看看有什么发现?学生动手操作,发现随意拿三根小棒不一定都能摆成三角形。接着引导学生观察和比较摆不成三角形的三根小棒,寻找原因,深入思考。
2.实验2:进一步探究三根小棒在什么情况下摆不成三角形。
请不能摆成三角形的同学,说出不能摆成三角形的三根小棒的长度。
任意抽出三组,请学生试一下,看是否摆不成。
再请能摆成三角形的学生汇报用哪些尺寸的小棒摆成了三角形。学生汇报。
我们一起来研究一下,能摆成三角形的三条边的有什么关系,不能摆成三角形的三条边又有什么关系?
(1)每个小组用黑板上汇报的数据用小棒来摆三角形,并作好记录。
(2)观察上表结果,说一说能摆成三角形的三根小棒又有什么关系?不能摆成三角形的三根小棒关系有怎样的不同?为什么?
大家说的既形象又有道理,我们在判断三根小棒能否拼成三角形时,就看任意两边之和是否大于第三边,通过实验也进一步证实了只要是三角形,任意两边的和一定大于第三边。
(3)三角形任意两边的和大于第三边。
三、应用
1.通过实验,我们知道了三角形三条边的一个规律,我们就能用它来解释小明家到学校哪条路最近的原因了。(学生说说)
2.请学生独立完成82页例题中三道题,说说能否拼成三角形。
我们是否要把三条线段中的每两条线段都相加后才能作出判断?
思考一下:有没有更快捷的方法?
(用较小的两条线段的和与第三条线段的关系来检验。)
做练习十四第四题,利用快捷方式判断。你能用下图中的三条线段组成三角形吗?有什么办法?
3.有两根长度分别为2cm和5cm的木棒。
(1)用长度为3cm的木棒与它们能摆成三角形吗?为什么?
(2)用长度为1cm的木棒与它们能摆成三角形吗?为什么?
(3)要能摆成三角形,第三边能用的木棒的长度范围是多少?
四、课堂总结
在这节课里,你有什么收获?学会了什么知识?是怎样学习的?
第三课时
一、引入新课
1.引导学生回顾锐角、直角和钝角的定义。
大于0小于90的角,叫做锐角;
等于90"的角,叫做直角;
大于90,小于180的角,叫做钝角。
2.让学生分别画出满足下列条件的三角形。
(1)画一个有一个角是锐角的三角形;
(2)画一个有二个角是锐角的三角形;
(3)画一个有三个角是锐角的三角形。
3.给学生足够的时间,教师可巡视班级,观察学生的学习情况。
4.一段时间后,让同桌的学生相互检查,验证所画的三角形是否满足要求。
5.肯定学生的积极表现,进一步指出:大家所画的三角形各不相同,由此我们可以知道三角形的种类很多,怎样对这些不同种类的三角形进行分类呢?本节课我们就来探讨这个问题。
二、新课学习
(一)从角的方面给三角形分类
1.多媒体展示三个图形,请学生观察。
2.提示学生先从角的方面人手,让学生观察上述三个三角形各内角,可以让学生先目测三角形内角大小,然后用量角器测量三角形内角大小。提问:这些角分别属于锐角、直角、钝角中的哪一类?
3.组织学生进行分组讨论。讨论的主题是:如何对三角形进行分类。教师可参与到学生的讨论中,及时了解学生的想法和状态,教师可作适当提示。
4.一段时间后,请各组派代表发言,介绍本组的讨论-情况。学生可能想到将三角形所含锐角个数分成三类,也可能想到将三角形分成锐角三角形,直角三角形,钝角三角形。
5.师生共同分析讨论,指出按三角形所含锐角的个数分类是不合理的,因为只含一个锐角的三角形是不存在的。
6.教师指出按照如下的分类是合理的,多媒体展示:
文本框:三个角都是锐角的三角形叫做锐角三角形;#13;#10;有一个角是直角的三角形叫做直角三角形;#13;#10;有一个角是钝角的三角形叫做钝角三角形。#13;#10;
7.指出已有图中,哪个是锐角三角形,哪个是直角三角形,哪个是钝角三角形。让学生任意画一个三角形,总可以将它归为上述三类三角形中的一类。因此,一个三角形要么是锐角三角形,要么是直角三角形,要么是钝角三角形。
多媒体展示下图:
(二)从边的方面给三角形分类
1.多媒体展示三个图形,请学生观察。
2.提示学生从边的方面考虑,可让学生自己或和同桌合作剪出如上的三角形纸片。
3.教师可巡视班级,监督学生的活动情况,随时给予学生指导。
4.请学生分别用直尺和量角器测出上述三个三角形的三条边的长度及各个角的度数。
5.学生发现其中一个三角形的三条边相等,三个角的度数都是60°。也有三角形有两条边相等,两个角相等;另一个三角形的三条边和三个角互不相等。
6.给出等腰三角形和等边三角形的定义。多媒体展示:
文本框:有两条边相等的三角形,叫做等腰三角形;#13;#10;三条边都相等的三角形,叫做等边三角形。#13;#10;
7.展示等腰三角形和等边三角形课件,讲解等腰三角形顶角、底角、腰和底的概念。
8.师生共同分析等腰三角形和等边三角形的性质。
性质l:等腰三角形的两腰相等,两底角相等。(板书)
性质2:等边三角形的三条边相等,三个角相等并且都是60°。(板书)
9.请学生列举生活中等边三角形和等腰三角形的例子,体会数学与现实的广泛联系。
三、课堂总结
引导学生回顾本节课的主要内容:三角形的分类。
从角的角度,三角形可以分为锐角三角形、直角三角形和钝角三角形;
从边的角度,三角形可以分为一般三角形、等腰三角形、等边三角形。
第四课时
一、引入新课
1.三角形按角的不同可以分成哪几类?
2.一个平角是多少度?1个平角等于几个直角?
3.如图,已知∠1=35°,∠2=75°,求∠3的'度数。
二、新课学习
1.投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?三角形的这三个角,就叫做三角形的三个内角。(板书:内角)
2.三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。
3.以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?
4.指名学生汇报各组度量和计算的结果。你有什么发现?
5.大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。
6.刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?
提示学生,可以把三个内角拼成一个角,就只需测量一次了。
7.请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。
8.三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)
9.拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)
10.那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)
11.老师板书结论:三角形的内角和是180°。
12.一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?
13.出示教材85页做一做。让学生试做。
14.指名汇报怎样列式计算的。两种方法均可。
∠2=180°-140°-25°=15°
∠2=180°-(140°+25°)=15°
三、巩固练习
1.88页第9题
这一题是不是只知道一个角的度数?另一个角是多少度,从哪看出来的?独立完成,集体订正。
直角三角形中的一个锐角还可以怎样算?
2.88页第10题
①等腰三角形有什么特点?(两底角相等)
②列式计算180°-70°-70°=40°或
180°-(70°×2)=40°
2.88页第10题
①连接长方形、正方形一组对角顶点,把长方形、正方形分成两个什么图形?
②一个三角形的内角和是180°,两个三角形呢?
四、课堂总结
通过这节课的学习你有什么收获?
《三角形的特性》教学设计 篇四
(一)、内容:
《三角形的特性》是人教版义务教育课程标准实验教科书80-81页内容,这部分内容包括三角形的定义,三角形各部分名称,三角形的稳定性等。学生通过上册对空间与图形内容的学习对三角形已有了直观认识,能够从平面图中分辩出三角形。例题1:是有关三角形定义的教学,着重是让学生在“画三角形”的操作活动中进一步感知三角形的属性。抽象出概念。例题2:着重于三角形的重要特性是“稳定性”,在生活中有着广泛应用。它可以让学对三角形有更为全面和深入的认识。同时有利于培养学生的实践精神和实践能力。
(二)、教学目标:
1、通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。
2、通过实验,使用权学生知道三角形的稳定性及其在生活中的应用。
3、培养学生观察,操作能力和应用数学知识解决实际问题。
(三)、教学重点:
理解三角形的特性。
(四)、教学难点:
在三角形内画高。
(一)、情境教学法。
在特定的情境中进行学习,能激发学生兴趣,激活学生思维。为了解决问题,学生会主动探索新方法,从而将问题的解决和方法融为一体,这样安排有利于密切数学与生活的联系。
(二)、操作讨论法。
在动手操作,讨论交流时学生各抒己见,这样即启迪学生思维,又能增强其合作意识。学生动手、动脑,在探索发现问题的过程中解决问题,真正体现了以学生为主体的教学理念,教师在课堂上起到了组织者,引导者与合作者的作用。
(一)、自主探究《数学课程标准》指出有效的数学活动不能单纯地进行模仿与记忆,动手实践,自主探究与合作交流是学生学习数学的重要方法。因此在教学中我让学生通过动手实践,亲身体验。如:画一画、议一议、说一说等活动发现新知、建构新知,从而掌握新知,培养合作意识和探究品质,发展思维能力和解决问题的能力。
(二)、学以致用,在学完新知后,我及时引导学生运用所学知识解决生活中的一些实际问题。这样,不仅增长学生智慧又使学生进一步感受到了数学与生活密不可分的关系,增强了学习数学兴趣和信心。
(一)、联系生活,情境导入
1、出示80页情境图,学生观察,发现描述三角形。
2、说一说:生活中还有哪些物体上有三角形。
3、课件出示生活中常见的物体上的三角形。
4、导入并板书课题。
(二)、操作感知,理解概念
1、发现三角形的特征
2、概括三角形的定义
(1)、引导学生用自己的话概括什么叫三角形?
(2)、议一议:下面的图形是不是三角形?
(3)、讨论:哪种说法更准确?
(4)、指导阅读80页“三角形”定义。
3、认识三角形的底和高
(1)、出示三角形屋顶的房子。(问:你能测出三角形房顶的高度吗?学生动手操作)。
(2)、你是怎么测量的?(学生交流汇报)。
(3)、讲解测量过程?(得出:三角形高、底的概念)。
(4)、出示81页三角形(问:这是这个三角形的一组底和高吗?你还能画出其它的底和高吗?学生动手操作,然后评议交流)。
4、拓展
在三角形abc中,以ab为底边的高是();以ac为底边的高是();以bc为底边的高是()。
(三)、实验解疑,探索特性
1、提出问题:出示81页插图,问图中哪里有三角形?生产生活中为什么要把这部分做成三角形呢?它具有什么特性?
2、实验解疑
(1)、学生拿出准备好的三角形、四边形学具分小组实验,拉一拉学具会有什么发现?
(2)、得出结论:三角形具有稳定性。
(3)、举例说出生活中应用三角形稳定性。
(四)、巩固运用,提高认识
课件出示练习十四:1、2、3题
(五)、总结评价,质疑问难
1、本节课学习了什么内容?
2、你对三角形有了哪些认识?
内接三角形性质 篇五
定理:
三角形的外接圆有关定理:三角形各边垂直平分线的交点,是外心。外心到三角形各顶点的距离相等。外心到三角形各边的`垂线平分各边。
三角形的内切圆有关定理:三角形各内角平分线的交点,是内心。内心到三角形各边的距离相等。三角形任一顶点到内切圆的两切线长相等。三角形顶点到内切圆的切线长,是这点到圆心的距离与它圆外部分的比例中项。
三角形教案 篇六
教学目标:
1、知识目标:
(1)掌握已知三边画三角形的方法;
(2)掌握边边边公理,能用边边边公理证明两个三角形全等;
(3)会添加较明显的辅助线。
2、能力目标:
(1)通过尺规作图使学生得到技能的训练;
(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:
(1)在公理的形成过程中渗透:实验、观察、归纳;
(2)通过变式训练,培养学生“举一反三”的学习行为;
教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。
教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。
教学用具:直尺,微机
教学方法:自学辅导
教学过程:
1、新课引入
投影显示
问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?
这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素DD三条边。
2、公理的获得
问:通过上面问题的分析,满足什么条件的两个三角形全等?
让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)
公理:有三边对应相等的两个三角形全等。
应用格式:(略)
强调说明:
(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)
(3)、此公理与前面学过的公理区别与联系
(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
(5)说明AAA与SSA不能判定三角形全等。
3、公理的应用
(1)讲解例1。学生分析完成,教师注重完成后的点评。
例1如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架
求证:AD⊥BC
分析:(设问程序)
(1)要证AD⊥BC只要证什么?
(2)要证∠1=
只要证什么?(3)要证∠1=∠2只要证什么?
(4)△ABD和△ACD全等的条件具备吗?依据是什么?
证明:(略)
学而不思则罔,思而不学则殆。快回答为大家整理的6篇三角形的性质教案到这里就结束了,希望可以帮助您更好的写作三角形的性质教案。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。