作为一名默默奉献的教育工作者,总归要编写教案,教案是备课向课堂教学转化的关节点。优秀的教案都具备一些什么特点呢?下面是快回答给大家整理的7篇数学圆柱的体积教案,希望可以启发您对于圆柱体积公式的写作思路。
小学六年级数学教案《圆柱的体积》 篇一
教学目标:
1、知识与技能:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程能够运用公式正确地计算圆柱的体积。
2、过程与方法:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究法。
3、情感态度与价值观:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:
掌握和运用圆柱体积计算公式进行正确计算。
教学难点:
理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。
教学过程:
一、情景导入:
1、教师:(出示)多么温馨的场面,今天是亮亮和爷爷的生日,幸福的一家人围坐在饭桌前享用着美酒佳肴,你能观察到今天的饭菜比平时多了什么吗?
学生:
1、比平日多了两个蛋糕。
2、两个蛋糕一个大一个小。
3、蛋糕都是圆柱形的。
2、教师:同学们观察的很仔细,那你能根据刚学过的知识说一说爷爷蛋糕较大意味着什么吗?
学生:蛋糕大,意味着圆柱的体积大。
3、教师:那你还知道什么是圆柱的体积吗?
学生:圆柱的体积就是圆柱体占空间的大小。
4、教师:两个蛋糕的体积相差较多,我们容易比较出那个体积大,如果体积相差较小我们怎么比较呢?
学生:拿出准备的圆柱体进行比较,讨论,各小组分别说明比较的方法并展示。
教师:板书:圆柱的体积
二、课上探究
1、教师:同学们回忆一下我们还学过那些立体图形?
学生:还学过正方体和长方体。
教师:它们的体积怎样计算?(多媒体出示长方体)有什么共同点?
学生:长方体的体积=长×宽×高,长×宽=底面积,V=sh;正方体的体积=棱长×棱长×棱长,棱长×棱长=底面积,V=sh;共同点都是底面积乘高。
2、猜测圆柱的体积与什么有关
师:拿出圆柱体,让学生猜想圆柱体积与什么有关。
生1、圆柱的体积与圆柱的高有关。
生2、圆柱的体积与圆柱的底面积有关。
生3、圆柱的体积与圆柱的底面周长有关。
生4、圆柱的体积与圆柱的底面半径有关。
3、推导圆柱体积公式
①师:同学们观察圆柱的底面是一个圆,学习圆面积时,我们是把圆转化成哪种图形来求面积的?
生:把圆转化成近似长方形来求面积的。
②师:我们一起来回忆把圆转化成近似长方形的过程,()
师:你发现了什么?
生:我发现把圆平均分成的份数越多,拼成的图形越接近长方形。
③师:圆柱可以看成多个圆片摞在一起,把圆剪拼成的每个近似长方形也摞在一起。我们就把圆柱转化成我们以前学过的哪种立体图形呢?
生:把圆柱转化成近似的长方体。
④师用圆柱体演示转换过程,让学生说怎样转换的。
生:把圆柱平均分成16份拼成一个近似的长方体。
⑤师:为了让大家看的更清楚,我们再演示一下这个转化过程。
再次演示把圆柱等分16等份,拼成近似的长方体。
再出示32等份的圆柱体拼成的近似的长方体,让学生观察,发现了什么?
生:分成的份数越多,拼成的图形越接近长方体。
⑥师:出示圆柱体和拼成的长方体,让学生观察,拼好的长方体与原来的圆柱比较,发现了什么?
学生分组讨论,汇报:
生:长方体的高和圆柱的高相等。
生:长方体的底面积和圆柱的底面积相等。
⑦师:你是怎么想的?
生:刚才我们复习了把圆转化成长方形,所以圆柱的底面积和长方体的底面积相等。
⑧师:再次用圆柱拼成近似长方体的过程,让学生仔细观察圆转化成长方形后,面积相等。
生:长方体的长是圆柱底面周长的一半,宽是圆柱底面半径
师:演示长方体的体积=底面积×高
⑨师:那么圆柱的体积等于什么呢?
生:圆柱的体积=底面积×高
⑩下面我们再一起回忆一下转化的过程,()
让学生独立填答案,汇报:
三、我们知道了圆柱的体积公式,下面我们就来解决一些实际问题。
圆柱体体积教学设计 篇二
学 科:
数学
教学内容:
最新人教版六年级数学下册第三章《圆柱的体积》
教材分析:
《圆柱的体积》是数学课程标准中“空间与图形”领域内容的一部分。《圆柱的体积》一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,而这节课的顺利学习将为以后圆锥体积的学习铺平道路。学生已经有了把圆形拼成近似的长方形的经验,联想到把圆柱切拼成长方体并不难,但是学生还是喜欢用自己的方法解决问题,所以我给学生创设尽情展示自我的空间,通过自主的学习、合作探究、动手操作,让学生感知立体图形间的一些关系,从而解决生活当中常见的问题。由此、我制定以下三维教学目标:
教学目标
知识目标:
(1)通过学生体验圆柱体体积公式的推导过程,掌握圆柱的体积公式并能应用公式解决实际问题。
(2)通过操作让学生知道知识间的相互转化。
能力目标:
倡导自主学习、小组合作、动手操作的学习方式,培养学生动手操作的能力,合作交流的意识。从而建立空间观念培养学生的逻辑推理能力。
情感目标:
让学生感受数学与生活的联系,体验探索数学奥秘的乐趣,培养学生学习数学的积极情感。
教学重点:
掌握和运用圆柱体积计算公式。
教学难点:
推导圆柱体积计算公式的过程。
教具、学具准备:
采用的教具为PPT课件和学具。(圆柱体切割组合学具,各小组自备所需演示的用具)。
教学过程:
一、情景引入
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?
(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。
(4)说一说长方体体积的。计算公式。
2、出示橡皮泥捏成的圆柱体。
出示问题:大家想一想用什么办法来求出这个圆柱体橡皮泥的体积呢?
(有的学生会想到:老师将它捏成长方体就可以了;还有的学生会想到捏成正方体也可以的!)
3、创设问题情景。
(课件显示)如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?
刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)
(设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成任务驱动的探究氛围。)
二、新课教学
设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
(一)学生动手操作探究
1、回顾旧知,帮助迁移
(1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系? 启发学生回忆得出:圆柱的上下两个底面是圆形;侧面展开是长方形:所以……
(2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。
(通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫)
2、小组合作,探究推导圆柱的体积计算公式。
(1)启发猜想:可见,大部分图形公式的推导都可以把所学的转化为学过的。那么你觉得圆柱的体积和什么有关系?你能猜一猜圆柱的体积可以怎样计算呢? (这是学生会有圆的面积想到把圆柱转化为长方体)
老师激励同学们:大家同意他的猜想吗?但我们还是要小心地验证猜想的科学性。都说实践出真知,接下来同学们以小组为单位拿出学具,动手尝试着进行转化,并说一说转化的过程。
(2)学生以小组为单位操作体验。
老师引导学生探究:
① 说说你们小组是如何转化的。这是一个标准的长方体吗?为什么?
② 如果分割得份数越多,你有什么发现?(电脑演示转化过程)
③ 这是同学们刚才的转化过程。那书上是怎么说的?下面就请同学们打开书,自由读,用直线标记,找出关键句。全班齐读。
(3)现在再请一位同学到前面来演示转化过程。其他同学边观察边思考:
①切割后拼成了一个近似于什么的形体?
②圆柱的体积与拼成后的长方体的体积有什么关系?
③这个长方体的底面积等于圆柱的什么?
④长方体的高与圆柱体的高有什么关系?
(二)教师课件演示
1、课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成16份、32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。依次解决问题。
①把圆柱拼成长方体后,形状变了,体积不变。
(板书:长方体的体积=圆柱的体积)
②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。
(配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)
③圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?
圆柱体体积教学设计 篇三
教学目标
1、知识与技能:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程能够运用公式正确地计算圆柱的体积。
2、过程与方法:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究法。
3、情感态度与价值观:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:
掌握和运用圆柱体积计算公式进行正确计算。
教学难点:
理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。
教学过程:
一、情景导入:
1、教师:(出示课件)多么温馨的场面,今天是亮亮和爷爷的生日,幸福的一家人围坐在饭桌前享用着美酒佳肴,你能观察到今天的饭菜比平时多了什么吗?
学生:
1.比平日多了两个蛋糕。
2.两个蛋糕一个大一个小。
3.蛋糕都是圆柱形的。
2、教师:同学们观察的很仔细,那你能根据刚学过的知识说一说爷爷蛋糕较大意味着什么吗?
学生:蛋糕大,意味着圆柱的体积大。
3、教师:那你还知道什么是圆柱的体积吗?
学生:圆柱的体积就是圆柱体占空间的大小。
4、教师:两个蛋糕的体积相差较多,我们容易比较出那个体积大,如果体积相差较小我们怎么比较呢?
学生:拿出准备的圆柱体进行比较,讨论,各小组分别说明比较的方法并展示。
教师:板书:圆柱的体积
二、课上探究
1、教师:同学们回忆一下我们还学过那些立体图形?
学生:还学过正方体和长方体。
教师:它们的体积怎样计算?(多媒体课件出示长方体)有什么共同点?
学生:长方体的体积=长×宽×高,长×宽=底面积,V=sh;正方体的体积=棱长×棱长×棱长,棱长×棱长=底面积,V=sh;共同点都是底面积乘高。
2、猜测圆柱的体积与什么有关
师:拿出圆柱体,让学生猜想圆柱体积与什么有关。
生1.圆柱的体积与圆柱的高有关。
生2.圆柱的体积与圆柱的底面积有关。
生3.圆柱的体积与圆柱的底面周长有关。
生4.圆柱的体积与圆柱的底面半径有关。
3、推导圆柱体积公式
①师:同学们观察圆柱的底面是一个圆,学习圆面积时,我们是把圆转化成哪种图形来求面积的?
生:把圆转化成近似长方形来求面积的。
②师:我们一起来回忆把圆转化成近似长方形的过程,(课件)
师:你发现了什么?
生:我发现把圆平均分成的份数越多,拼成的图形越接近长方形。
③师:圆柱可以看成多个圆片摞在一起,把圆剪拼成的'每个近似长方形也摞在一起。我们就把圆柱转化成我们以前学过的哪种立体图形呢?
生:把圆柱转化成近似的长方体。
④师用圆柱体演示转换过程,让学生说怎样转换的。
生:把圆柱平均分成16份拼成一个近似的长方体。
⑤师:为了让大家看的更清楚,我们再演示一下这个转化过程。
课件再次演示把圆柱等分16等份,拼成近似的长方体。
再出示32等份的圆柱体拼成的近似的长方体,让学生观察,发现了什么?
生:分成的份数越多,拼成的图形越接近长方体。
⑥师:课件出示圆柱体和拼成的长方体,让学生观察,拼好的长方体与原来的圆柱比较,发现了什么?
学生分组讨论,汇报:
生:长方体的高和圆柱的高相等。
生:长方体的底面积和圆柱的底面积相等。
⑦师:你是怎么想的?
生:刚才我们复习了把圆转化成长方形,所以圆柱的底面积和长方体的底面积相等。
⑧师:再次用圆柱拼成近似长方体的过程,让学生仔细观察圆转化成长方形后,面积相等。
生:长方体的长是圆柱底面周长的一半,宽是圆柱底面半径
师:课件演示长方体的体积=底面积×高
⑨师:那么圆柱的体积等于什么呢?
生:圆柱的体积=底面积×高
⑩下面我们再一起回忆一下转化的过程,(课件)
让学生独立填答案,汇报:
三、我们知道了圆柱的体积公式,下面我们就来解决一些实际问题。
四、学生谈收获。
圆柱体体积教学设计 篇四
教学目标
知识与能力
1.运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力
4.借助实物演示,培养学生抽象、概括的思维能力。
过程与方法
1.通过观察、实验、讨论,学生理解所学知识。
2.通过新旧知识的转化贯通,学生对所学知识形成体系,领悟数学思想迁移的重要性。
3.在讲解例题与巩固练习中,学生掌握基本的解题方法。
情感、态度与价值观
1.使学生感觉到数学就在身边,激发其学习数学的兴趣。
2.通过实验操作及设问,培养其创造性思维和大胆的猜想。
教学重点
圆柱体体积的计算
教学难点
圆柱体体积的公式推导方法
教学突破
本节的内容是这单元的重点的内容,且与实际生活有着密切关系。在教学上对于圆柱体积的计算,首先应从圆的面积推导人手,可以借助一些教具演示及鼓励学生实验操作来明确。
教 具
圆柱的体积公式演示教具,多媒体课件
教学过程
一、情景引入
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?
(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。
(4)说一说长方体体积的计算公式。
(5)在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?
2,复习相关知识,为新课教学作铺垫。
(1)什么叫物体的体积?我们学过什么立体图形的体积计算?(学生自由回答)
(2)出示圆柱体物品,指名学生指出各部分名称。
二、新课教学
设疑揭题:
我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。
1.探究推导圆柱的体积计算公式。
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成16份、32份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。依次解决上面三个问题:
① 把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)
② 拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)
③ 圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)
讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的长方体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:V=Sh)(设计意图:要用这个公式计算圆柱的体积必须知道什么条件?
填表:请同学看屏幕回答下面问题,
④ 底面积(㎡)高(m)圆柱体积(m3)
4 3
5 6
9 2
(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,)
例:一个圆柱形油桶,底面内直径是6分米,高是7分米。它的容积约是多少立方分米?(得数保留整立方分米)
解: d=6dm,h=7dm.r=3dm
S底 =πr2=3.14×32 =3.14×9 =28.26(dm2)
V =S底h =28.26×7 =197.82198dm3 答:油桶的容积约是198立方分
(设计意图:使学生注意解题格式,注意体积的。单位为三次方)
三、巩固反馈
1.求下面圆柱体的体积。(单位:厘米)
同学板演,其余同学在作业本上做。板演的同学讲解自己的解题方法题。
⑤ ,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)
练习:(回到想一想中) 圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?
四、拓展练习
1.一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,A是用4分米做底高6分米,B是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(结果保留π)
2.一个底面直径是20cm的圆柱形容体里,放进一个不规则的铸铁零件后,容体里的水面升高4cm,求这铸铁零件的体积是多少?、
五、课堂小结
1.谈谈这节课你有哪些收获。
2.解题时需要注意那些方面。
六、布置作业
1.课后练习1,2题
2.拓展练习2题
板书设计
圆柱的体积
长方体的体积=底面积x高
圆柱——长方体 圆柱的体积=底面积x高
V=sh
圆柱的体积数学教案 篇五
教材简析:
本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。
教学目的:
1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力
4.借助实物演示,培养学生抽象、概括的思维能力。
教 具:圆柱的体积公式演示教具,多媒体课件
教学过程 :
一、情景引入
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。
2、创设问题情景。(课件显示)
如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?
今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)(设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成“任务驱动”的探究氛围。)
二、新课教学:
设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
1.探究推导圆柱的体积计算公式。
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。C、依次解决上面三个问题。①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积) ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)③圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)
讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的 体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:V=Sh)(设计意图:在新课教学中,先让学生通过复习旧知识,在观察中理解,在比较中归纳,通过这些措施可以使学生切实经历圆柱体积公式充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力)
要用这个公式计算圆柱的体积必须知道什么条件?
填表:请同学看屏幕回答下面问题:
底面积(㎡) 高(m) 圆柱体积(m3)
6 3
0.5 8
5 2
(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,夯实基础知)
例:一个圆柱形油桶,底面内直径是6分米,高是7分米。它的容积约是多少立方分米?(得数保留整立方分米)
解: d=6dm,h=7dm.r=3dm
S底 =πr2=3.14×32 =3.14×9 =28.26(dm2)
V =S底h =28.26×7 =197.82198dm3 答:油桶的容积约是198立方分
(设计意图:使学生注意解题格式,注意体积的单位为三次方)
三、巩固反馈
1. 求下面圆柱体的体积。(单位:厘米)
同学板演,其余同学在作业 本上做。板演的同学讲解自己的解题方法题,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)
练习:(回到想一想中) 圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?
圆柱体体积教学设计 篇六
教学目标:
1、通过教学,使学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题;
2、使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力。
3、培养学生初步的空间概念、动手能力、操作能力和逻辑思维推理能力。
教学重点:
掌握和运用圆柱体积计算公式进行正确计算。
教学难点:
理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。
教学准备:
1、用于演示把圆柱体积转化成长方体体积的教具。
2、多媒体课件。
教学过程:
一、复习导入、揭示课题
谈话:前几节课我们已经认识了圆柱体,学会了计算圆柱的侧面积、底面积和表面积,今天这节课我们继续来研究圆柱的体积。同学们回忆一下,什么叫体积?(指名回答,生:物体所占空间的大小叫做体积。)我们学会计算哪些立体图形的体积呢?(指名学生回答,教师演示课件。根据学生的回答,板书:长方体的体积=底面积×高)
1、呈现长方体、正方体和圆柱的直观图。
2、揭题:老师为大家准备了长方体、正方体、圆柱。其中我们学过了长方体和正方体的体积计算方法。大家想不想知道圆柱体的体积计算方法?今天我们一起来探索圆柱体积的计算方法。(板书课题:圆柱的体积)
3、教师:在研究这个问题之前,我们先来复习一下,圆的面积是怎样计算的呢?圆的面积计算公式是怎样推导出来的?(学生:把一个圆,平均分成若干个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径。)根据学生的叙述,教师课件演示。
二、自主探究,精讲点拨
1、教师:那么今天我们要研究的圆柱的体积,能不能也像刚才圆的面积公式推导过程一样,转化成我们学过的立体图形,推导出计算圆柱体积的公式呢?
2、学生小组讨论、交流。
教师:同学们自己先在小组里讨论一下
(1)你准备把圆柱体转化成什么立体图形?
(2)你是怎样转化成这个立体图形的?
(3)转化以后的立体图形和圆柱体之间有什么关系?
3、推导圆柱体积公式。
学生交流,教师动画演示。
(1)把圆柱体转化成长方体。
(2)怎样转化成长方体呢?(指名叙述:把圆柱体底面分成平均分成若干个扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。)你会操作吗?(学生演示教具)
(3)教师说明:底面扇形平均分的份数越多,拼成的立体图形就越接近长方体。
(4)教师:这个长方体与圆柱体比较一下,什么变了?什么没变?(生:形状变了,体积大小没变。)
(5)推导圆柱体积公式。
讨论:切拼成的长方体与圆柱体有什么关系?(学生回答:切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。教师根据学生回答演示课件。)
教师:圆柱的体积怎样计算?用字母公式,怎样表示?板书:
圆柱的体积 = 底面积×高
V = S h
三、运用公示,解决问题
教师:根据圆柱体积的计算公式,如果要求圆柱的体积,你必须知道哪些条件就可以求?
①知道圆柱的底面积和高,可以求圆柱的体积。
练习七的第1题:填表。
②知道圆柱的底面半径和高,可以求圆柱的体积。
试一试。
③知道圆柱的底面积直径和高,可以求圆柱的体积。
练一练的第1题:计算下面各圆柱的体积。
④知道圆柱的底面周长和高,可以求圆柱的体积。
一根圆柱形零件,底面周长是12.56厘米,长是10厘米,它的体积是多少?
四、迁移应用,质疑反馈。
1、判断正误,对的画“√”,错误的画“×”。
2、计算下面各圆柱的体积。
3、智慧屋:已知一个圆柱的侧面积为37.68平方厘米,底面半径为3厘米,求这个圆柱的体积。
五、全课小结。
这节课我们一起学习了运用转化的方法推导出圆柱体积的'计算公式,并且能够运用圆柱体积的计算公式解决一些实际问题。在今后的学习中,特别提醒大家一定正确计算出圆柱的体积,并且能灵活运用圆柱的体积计算公式。
六、作业布置:
完成作业纸上的习题
教学反思
本节可的教学内容是九年义务教育苏教版六年级下册的《圆柱的体积》,以前教学此内容时,直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:V=Sh,让学生套公式练习;我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:
一、学生学到了有价值的知识。
学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。
二、培养了学生的科学精神和方法。
新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。
三、促进了学生的思维发展。
传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。
而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。
《圆柱的体积》教案 篇七
一、揭示课题,确定目标
谈话:前面我们认识了圆柱,学习了圆柱的底面积、侧面积和表面积,今天学习“圆柱的体积”。(教师板书,学生齐读)
启发:看到这个课题,你们会想到什么?这堂课要解决什么问题呀?(可能学生会提出以下几个问题)
引导:
(1)什么是圆柱的体积?
(2)圆柱的体积和什么有关?
(3)圆柱的体积公式是怎样推导出来的?
(4)圆柱的体积是怎样求出来的?
(5)学习圆柱的体积公式有什么用?
谈话:对!刚才这几位同学跟老师想的一样。
启发:圆柱的体积就是圆柱所占空间的大小
谈话:这堂课我们主要解决三个问题:(出示探究问题)
1、圆柱的体积和什么有关?
2、这个公式是怎样推导出来的?
3、学习了圆柱的体积能解决什么实际问题?
【设计意图】直接揭示课题,启发学生自己提出教学的要求,这样既创设了问题情境,激发学生学习的兴趣,又使学生明确这堂课的教学目标。
二、温故知新,自学课本
1、提出问题
谈话:现在请大家回忆一下,我们以前学过哪些立体图形的体积计算。是怎样计算的?
引导:我们已经学过长方体、正方体的体积计算。(教师随着学生的回答,逐一出示出上述图形)。
谈话:长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
统一为:长方体或正方体的体积=底面积×高
谈话:长方体和正方体和今天学习的圆柱有什么显著的区别?
引导:长方体的面都是平面图形,圆柱的侧面是一个曲面。
谈话:因为圆柱的侧面是一个曲面,计算圆柱的体积就比较困难了。能不能直接用体积单位去量呢?
引导:它的侧面是一个曲面,用体积单位直接量是有困难的。
2、引发猜想
谈话:圆柱的体积和什么有关系呢?(准备三组比较圆柱体杯里饮料的多少:一组是底面积一样,高不同;另一组高一样,底面积不同;最后一组底面积、高都不同)
引导:圆柱体的体积既和底面积有关,又和高有关。
3、自学课本
谈话:圆柱体的体积和底面积、高到底有什么关系呢?如何求圆柱体的体积?
启发:请大家阅读课本,在课本中寻找答案。(教师要求学生利用预先准备好的平均分成16份圆柱学具拼一拼,学生一边看书,一边操作。学生阅读课本后,全班交流。)
引导:我们用图形转化的方法,求圆柱的体积。
谈话:这个办法很好。那么把圆柱转化成什么图形呢?
引导:长方体。
谈话:以前我们学习圆的面积时也是运用转化的策略,把圆转化成近似的长方形,“化曲为直”、“化圆为方”推导出圆的面积计算公式。
(用多媒体演示圆形的转化过程,边出示、边交流)
【设计意图】在不能用体积单位直接量的情况下,启发学生运用转化的数学思想解决问题。通过复习了旧知识,又为学习新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。
三、合作交流,发展能力
谈话:同学们观察一下,拼成的是什么图形?
引导:近似的长方体。
启发:说得很好,为什么说是近似的长方体,哪里不太像?
引导:长都是许多弧线组成,不是直的。
谈话:这里我们把圆柱分成16等分,还能分吗?
谈话:究竟能分多少份呢?
引导:无数份,可以永远分下去。
谈话:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长就越接近于直线段,这个图形就越接近于长方体。
四、师生合作,归纳结论
谈话:从分割、拼接的操作过程中,比较拼成的近似长方体与原来的圆柱,你发现了什么?
汇报:把圆柱体转化为近似的`长方体,形状变了,体积没有变。
谈话:要求圆柱的体积,我们只要求转化后的长方体的体积就可以了。
汇报:
(1)转化后的近似长方体的底面积与原来的圆柱体的底面积相等。
(2)转化后的近似长方体的高与原来的圆柱体的高相等。
因为:长方体的体积=底面积×高
所以:圆柱的体积=底面积×高
(教师要求学生观察自己在课堂上拼出的图形,一边讨论,一边逐步写出推导的过程。)
长方体的体积=底面积×高
圆柱的体积=底面积×高
交流:我们也可以用字母表示圆柱的体积计算公式:v=sh(板书)
引导:刚才我们的猜想是正确的,圆柱的体积既和底面积有关,又和高有关。
现在请同学们把圆柱体积公式的推导过程再完整地说一遍。
谈话:通过猜一猜我们知道了圆柱体积的大小与圆柱的底面积和高有关。
通过分一分、拼一拼我们把圆柱转化成了近似的长方体。
通过比一比、算一算成功地推导出圆柱的体积计算公式,解决了我们前两个要探究的问题。
【设计意图】要求每个学生动手操作,打破了过去教师演示教具学生看的框框,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆柱体积的公式。
读书破万卷,下笔如有神。上面就是快回答给大家整理的7篇数学圆柱的体积教案,希望可以加深您对于写作圆柱体积公式的相关认知。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。