作为一名为他人授业解惑的教育工作者,时常需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案要怎么写呢?读书之法,在循序而渐进,熟读而精思,下面是敬业的小编阿青为家人们分享的七年级数学《数轴》教案(优秀7篇),希望可以帮助到有需要的朋友。
.2数轴 篇一
教学内容:人教版六年级下册第一单元例4、例5
教学目标:
1、认识数轴、利用数轴上的点的位置关系比较负数大小的方法和正数、零、与负数的比较方法,会直观地比较数的大小;
2、结合学生的生活体验,培养学生观察,比较和归纳的能力;
3、渗透数形结合的数学思想方法,发展学生的一切形象思维。
教学重点、难点:理解用数轴比较负数大小方法的形成;
教学准备
教具:画有数轴的长纸条 、课件一份
分组:前后桌四人为一学习小组。
教学过程
一、创设情境,提出问题
课件出示:
观察下列几组数
和 , 1和-2, ⒉5和⒊5, -1和0, -3和-4
1、以上四组数中,你能运用你学过的知识比较哪几组数的大小?
2、与小组同伴交流,试猜想余下的几组数大小。你能证实你的猜想是否正确吗?
3、让学生先进行讨论,每个学习小组得出本组的答案,待探究后再给出答案。
二、合作讨论,探求新知
1、探究活动1:教师可在班上选一名身高适中(约为全班平均身高)的
学生,把他的身高定为0,规定高于此身高为正,低于此身高为负,并取一适
当的长度为单位长度自制一个身高测量图并固定。
(1)织班上几名学生(要有高于0的,又要有低于0的)上台测量
身高,并在身高测量图上用点分别标出表示学生身高的位置。
试把以上各位被测学生的身高用数表示出来,并说出它们的大小:
(2)把测量图按顺时针方向旋转90度(向右为正)的要求横着固定在黑板上
师:这样一来,身高测量图横放,就成了数轴。
师:课件演示。
0左边的是负数,0右边的是正数。(课件在数轴尺上出现文字“负数、正数” )
组织被测学生,按测量图中表示自己身高的点的位置排成横排,试说出点的位置从左到右,被测学生的身高有何规律,因此,你能找出数的大小规律吗?
教学反思:
(1)教师在活动过程中,让学生通过观察被测同学的身高,直观地认识表示身高的数的大小。
(2)测量图横放,给学生一个数轴的形象,活动中很自然地使每个被测同学的身高与数轴上的点一一对应,数轴上表示身高的点的位置从左到右,被测同学的身高由矮到高一目了然,在此基础上就可以找出数的大小规律。
2、探究活动2:
(1)一边反馈一边用课件出示图
(2)学生思考
问题1:怎样在数轴上比较两个负数的大小?
问题2:利用数轴上点的位置关系,试比较正数,零和负数的大小?
教学反思:学生采取分组讨论的方法,教师应参与到较弱的小组讨论交流,对各小组的探究结果,让学生自己评价,并不断地补充,完善。
各学习小组的同学交流、合作,各组派代表叙述本组的探究结果。
(课件出示探究结果)
1、在数轴上表示的两个数,右边的数总比左边的数大
2、正数都大于零,负数都小于零,正数大于负数。
(3)你还有什么发现?
引导学生得出:数轴上的数越往右越大。
2、体验:现在我们再回过头来看一下前面的四组数的大小比较,然后,再看看哪组的答案是正确的。
3、巩固运用:
课件出示各题
(1)同桌两人,各写一数,可以是正数,可以是负数,也可以是零。然后比较大小。
(2)在数轴上表示出下列各数(书中做一做第2题)
(3)比较各组数的大小(书中做一做第3题)
三、小结回顾,反思提高:
师:本堂课你有什么收获?(根据学生的回答作点评)
四、课后延伸
有没有最小的正数和最大的正数?有没有最小的负数和最大的负数?
.2数轴 篇二
【教学要求】
1.会正确画出数轴。
2.会用数轴上的点表示有理数,能说出数轴上(表示有理数)的点所表示的数。
3.会利用数轴比较有理数的大小。
4.初步感受“数形结合”的思想方法。
【教学过程设计建议(第一课时)】
1.情境创设
观察温度计或刻度尺上刻度的排列顺序,直观地将小学里用直线上的点表示数的方法推广到用来表示有理数,正确建立数轴的概念。除温度计和刻度尺外,杆秤、天平等都是较好的数学模型。
2.探索活动
(1)观察温度计或刻度尺上的刻度,根据课本上两个卡通人的提示,引导学生讨论:直线上的点能表示负数(如一10,一15)吗?通过在温度计上找一10 ℃、一15℃的位置的活动,感受可以用直线上的点表示负数。
(2)依据画数轴的步骤,正确画出数轴。可以在安排2~3名学生“板演”的同时巡视全班,及时给予针对性的操作指导。
数轴的位置通常是水平的,但也可以是任意位置的,要发现并及时展示那些画法正确但放置方向不同、单位长度不同的数轴。要特别注意指导学生正确标注负数。
可以让学生对照“做一做”的几个步骤共同评价 “板演”作业,形成对数轴的正确认识。
3.例题教学
例2是让学生学会在数轴上表示有理数,教师还可以再增加一些练习,然后引导学生评价卡通人的结论。需要注意的是,不要提及“数轴上任何一点是否都表示一个有理数”之类的话题,因为虽然任何一个有理数在数轴上都有惟一的点与它对应,但有理数与数轴上的点并不一一对应,而这是学生当前无法认识和回答的。
可以根据学生的实际情况,适当增加在数轴上表示分数的练习。
【教学过程设计建议(第二课时)】
1.探索活动
借助生活经验(温度的高低),引导学生探索:
数轴上的点的位置与它所表示的数的大小有什么关系,得出“在数轴上右边的点所表示的数大于左
边的点所表示的数”。
“议一议”中的第2个问题,应组织学生认真操作,为得出上述结论增加感性认识。
对于两个负数比较大小,学生比较陌生,教学中还可以采用以下方法:
在数轴上,表示一3的点a在原点左边3个单位长度,表示一2的点b在原点左边2个单位长度,不难看出点a在点b的左边,即得一3<一2.
数轴上的点从左到右的顺序,就是它所表示的数从小到大的顺序。这种规定与日常生活结论是一致的。
2.例题教学
例3较简单,直接应用结论的第二部分进行判断;例4给出了利用数轴比较两个负数大小的规范表述。
3.小结
“数形结合”是化抽象为直观、化难为易的一种常用的数学方法。华罗庚先生指出:“数缺形时少直观,形少数时难入微。”小结时,除要讲清数轴本身的意义外,还应通过有理数的大小比较,让学生感受到这一方法带来的便利。
上一篇:2.2 数轴 学案
下一篇:华师大版七上2.2 数轴(含答案)
.2数轴 篇三
教学目标
1.了解的概念和的画法,掌握的三要素;
2.会用上的点表示有理数,会利用比较有理数的大小;
3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。
教学建议
一、重点、难点分析
本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与上点的对应关系。的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用解决问题的方法,为今后充分利用这个工具打下基础。
二、知识结构
有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:
定义
三要素
应用
数形结合
规定了原点、正方向、单位长度的直线叫
原 点
正方向
单位长度
帮助理解有理数的概念,每个有理数都可用上的点表示,但上的点并非都是有理数
比较有理数大小,上右边的数总比左边的数要大
在理解并掌握概念的基础之上,要会画出,能将已知数在上表示出来,能说出上已知点所表示的数,要知道所有的有理数都可以用上的点表示,会利用比较有理数的大小。
三、教法建议
小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念。是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。与它所在的位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。要注意原点位置选择的任意性。
关于有理数与上的点的对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。根据几个有理数在上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。
四、的相关知识点
1.的概念
(1)规定了原点、正方向和单位长度的直线叫做。
这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不可。二是这三个要素都是规定的。
(2)能形象地表示数,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。
以是理解有理数概念与运算的重要工具。有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想。另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小。因此,应重视对的学习。
2.的画法
(1)画直线(一般画成水平的)、定原点,标出原点“O”。
(2)取原点向右方向为正方向,并标出箭头。
(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。
(4)标注数字时,负数的次序不能写错,如下图。
3.用比较有理数的大小
(1)在上表示的两数,右边的数总比左边的数大。
(2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
(3)比较大小时,用不等号顺次连接三个数要防止出现“ ”的写法,正确应写成“ ”。
五、定义的理解
1.规定了原点、正方向和单位长度的直线叫做,如图1所示。
2.所有的有理数,都可以用上的点表示。例如:在上画出表示下列各数的点(如图2).
A点表示-4; B点表示-1.5;
O点表示0; C点表示3.5;
D点表示6.
从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道:
正数都大于0,负数都小于0,正数大于一切负数。
因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用 ,表示 是正数;反之,知道 是正数也可以表示为 。
同理, ,表示 是负数;反之 是负数也可以表示为 。
3.正常见几种错误
1)没有方向
2)没有原点
3)单位长度不统一
第 1 2 3 4 页
数轴 篇四
一、素质教育目标
(一)知识教学点
1.掌握数轴的三要素,能正确画出数轴.
2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.
(二)能力训练点
1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.
2.对学生渗透数形结合的思想方法.
(三)德育渗透点
使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.
(四)美育渗透点
通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.
二、学法引导
1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣―手脑并用―启发诱导―反馈矫正”的教学方法.
2.学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习.
三、重点、难点、疑点及解决办法
1.重点:正确掌握数轴画法和用数轴上的点表示有理数.
2.难点:有理数和数轴上的点的对应关系。
四、课时安排
1课时
五、教具学具准备
电脑、投影仪、自制胶片.
六、师生互动活动设计
师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习
七、教学步骤
(一)创设情境,引入新课
师:大家知识温度计的用途是什么?
生:温度计可以测量温度
(出示投影1)
三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.
师:三个温度计所表示的温度是多少?
生:2℃,-5℃,0℃.
我们能否用类似温度计的图形表示有理数呢?
这种表示数的图形就是今天我们要学的内容―数轴(板书课题).
【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容―数轴.再从温度计这个实物形象抽象出数轴来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.
(二)探索新知,讲授新课
1.数轴的画法
与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:
第一步:画直线定原点 原点表示0(相当于温度计上的0℃).
第二步:规定从原点向右的为正方向 那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).
第三步:选择适当的长度为单位长度 (相当于温度计上每1℃占1小格的长度).
【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.
让学生观察画好的直线,思考以下问题:
(出示投影1)
(1)原点表示什么数?
(2)原点右方表示什么数?原点左方表示什么数?
(3)表示+2的点在什么位置?表示-1的点在什么位置?
(4)原点向右0.5个单位长度的A点表示什么数?原点向左 个单位长度的B点表示什么数?
根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.
学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充.
【教法说明】通过“观察―类比―思考―概括―表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.
教师根据学生回答给予肯定或否定,纠正后板书.
2.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.
向学生提出问题:数轴上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道数轴三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是数轴的依据.
学生活动:同桌之间、前后桌之间讨论.使学生从直观认识上升到理性认识.
3.尝试反馈,巩固练习
请大家回答下列问题:
(出示投影2)
(1)有人说一条直线是一条数轴,对不对?为什么?
(2)下列所画数轴对不对?如果不对,指出错在哪里?
学生活动:学生思考,不准讨论,想好后举手回答.
让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解.
【教法说明】此组练习的目的是巩固数轴的概念.
答案:(2)①缺原点,②缺正方向,③数轴不是射线而是直线,④缺单位长度,⑥提醒学生注意在同一数轮上必须用同一单位长度进行度量.⑤⑦是数轴,同时⑦为学习习近平面直角坐标系打基础.
4.有理数与数轴上点的关系
通过刚才的学习我们知道所有的有理数都可以用数轴上的点来表示.
例1 画一条数轴,并画出表示下列各数的点:
1,5,0,-2.5, .
学生练习:同学们在练习本上画一条数轴,然后在数轴上标出各点,一名学生板演.教师巡回指导,发现问题及时纠正.
【教法说明】让学生动手自己画数轴,有助于培养学生实际操作能力.例1是把给定的有理数用数轴上的点来表示,完成由“数”到“形”的思维过程,有助于学生加深对数轴概念的理解.
(出示投影4)
例2 指出数轴上 A、B、C、D、E各点分别表示什么数?
先让学生思考一会,然后学生举手回答
解:A表示-3;B表示 ; C表示3;D表示 ;E表 .
【教法说明】例2是让学生说出数轴上的点表示的有理数,完成了由“形”到“数”的思维过程.例1、例2从各自不同的两个侧面,体现出数形结合,渗透了数形之间相互转化的数学思想.
5.尝试反馈,巩固练习
(出示投影5)
①说出下面数轴上A、B、C、D、O、M各点表示什么数?
②将-3, ,1.5,-6, ,2.25, ,-5,1
各数用数轴上的点表示出来.
【教法说明】①题由点读数练习,②题由数找点练习,进一步巩固加深本节所学的内容.
(三)归纳小结
师:①数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示数与形之间的内在联系,是帮助学生理解数学、学习数学的重要思想方法.本章有理数的有关性质和运算都是结合数轴进行的.
②掌握数轴三要素,正确地画出数轴,提醒同学们,所有的有理数都可用数轴上的各点来表示,但是反过来不成立,即数轴上的各点,并不是都表示有理数.以后再研究.
八、随堂练习
1.判断题
(1)直线就是数轴( )
(2)数轴是直线( )
(3)任何一个有理数都可以用数轴上的点来表示( )
(4)数轴上到原点距离等于3的点所表示的数是+3( )
(5)数轴上原点左边表示的数是负数,右边表示的数是正数,原点表示的数是0.( )
2.画一条数轮,并画出表示下列各数的点
,-5,0,+3.2,-1.4
九、布置作业
(-)必做题:课本第56页1、2.
(二)选做题:课本第56页及第57页B组l.
(三)思考题:
①在数轮上距原点3个单位长度的点表示的数是_____________
②在数轮上表示-6的点在原点的___________侧,距离原点___________个单位长度,表示+6的点在原点的__________侧,距离原点____________个单位长度.
【教法说明】由于学生在知识、技能、能力方面发展不尽相同,所以分层次地布置作业 ,兼顾学习有困难和学有余力的学生,使他们都能达到大纲中规定的基本要求,并使部分学生能发展他们的数学才能.
十、板书设计
随堂练习答案
1.× √ √ × √ 2.略
作业 答案
(一)必做题
1.(1)依次是
(2)依次是
2.依次是
(二)选做题:
3.略 B组1.(1)-6,(2)-1,(3)3;(4)0
(三)思考题:① ②左,6,右,6
探究活动
(1)在数轴上表示出距离原点3个单位长度和4.5个单位长度的点,并用“<”号将这些点所表示的数排列起来;
(2)写出比-4大但不大于2的所有整数.
分析:画数轴时,数轴的三要素:原点、正方向、单位长度缺一不可.
(1)在数轴上,距离原点3个单位长度和4.5个单位长度的点各有两个,它们分别在原点两旁且关于原点对称.画出这些点,这些点所表示的数的大小就排列出来了;
(2)在数轴上画出大于-4但不大于2的数的范围,这个范围内整数点所表示的整数就是所求.“不大于2”的意思是小于或等于2.
解:(1)数轴上,距离原点3个单位的点是+3和-3,距离原点4.5个单位的点是+4.5和-4.5.
由图看出:
-4.5<-3<3<4.5
(2)在数轴上画出大于-4但不大于2的数的范围.
由图知,大于-4但不大于2的整数是:-3,-2,-1,0,1,2.
点评:利用数轴,数形结合,是解这一类问题的好方法.
数轴说课稿 篇五
数轴说课稿
一、教材分析:
本节是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。
二、学习任务分析;
1、要求学生会正确画出数轴初步了解有理数与数轴上的点的对应关系。
2、能将有理数用数轴上的点来表示。
3、通过观察数轴上的。点的位置关系初步比较有理数的大小,并能通过数轴上点的移动说出表示点的数
三、目标分析:
1、通过回忆和实例使学生掌握数轴的概念,并理解其三要素。
2、通过动手画数轴和数轴的概念,观察数轴上点的位置关系,了解点与数之间的关系。
3、通过图形与数量的对应关系了解数学研究的一种重要方法-----数形结合。
4、通过实例启发思维调动学生学习数学的兴趣使学生充分体验实践生活离不开数学
四、教法选择
创设情景、动手操作、模拟演示、启发引导、学习应用、发展能力。针对学生的年龄特点和心理特征,以及他们的认知水平,采用探究式教学方法,教学中注意课堂民主、平等氛围的营造使学生始终处于主动学习的状态,鼓励学生团结协作、大胆猜想、动手操作。同时,教师要给学生思维活动提供具体、直观、感性的支持,所以本节课的设计借助直观演示、动手操作、启发诱导,由感性认识逐步上升到理性认识。
本节课的引入采用先回忆再从实例引入的教学方法,激发学生学习兴趣。
概念的得出采用比较探索式的教学方法,坚持以学生为主体,充分发挥学生的主观能动性。教学中,让学生自已动手画数轴,培养学生探究问题的能力。改变原来的“听数学”为“做数学”。
数轴应用采用分层式的教学方法,根据不同学生的实际,进行不同层次的教学。促进他们的全面发展。特别注重基本理论在实际生活中的应用,体现数学应用于生活的一面。
五、教学重难点的确定和突破
1、正确画出数轴是本节教学的重点。
首先回忆小学生学过的知识直线上用点表示数量数轴的三角形,再通过实物如:标尺、温度计等,要求同学们通过观察能建立数轴的概念模型通过提问:标尺及温度计上的数据有什么规律?从而引出数轴的方向性及数轴的原点和单位长度,上面的过程可以由学生讨论,教师补充从而概括数轴的概念即三要素。
2、变式;从而也可归纳出数轴商店表示即,数与点的对应关系。
通过例题要求学生动手操作画出数轴并描述点
说明:(1),可能有不少学生会忘记正方向
(2),原点左边的数的表识会发生标反的错误。
(3),数轴上的正方向,同时也表示由小到大的方向。
(4),单位长度的截取可以是任意长度,不是唯一的。
(5),数轴的方向也不是唯一的,如温度折线图等,方向也可以是向上的。
3、正确画出数轴后,即使点在数轴上的表示,整数的表示学生很容易理解,强调一下,分数和小数的表示是这一节课的难点,首先通过例题:
数轴说课稿 篇六
尊敬的各位老师们:你们好
今天我说课的题目是人教版数学七年级上册第一章第2节《数轴》。下面,我将从背景分析、教学目标设计、、课堂结构和教学媒体设计、教学过程设计及教学评价设计等几个方面对本课的设计进行说明。
一。背景分析
1. 教材的地位及作用
“数轴”是人教版七年级数学上册第一章第二节“有理数” 的重点内容之一,是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。
2. 教学重点、难点的分析
教学的重点:1)正确理解数轴的概念;2)正确掌握数轴的画法和用数轴上的点表示有理数。
教学的难点:正确理解有理数与数轴上点的对应关系,体会数形结合的数学思想。
3. 教材的处理
1)通过观察温度计及师生互动表示课本第10页中的问题,使学生明白数与形的对应,初步认识数形结合的美妙之处。
2)通过讲解数轴的概念,概括出数轴三要素,指导学生正确地画出数轴。
3)通过练习,使学生准确地掌握数轴的概念,并会用数轴表示有理数,进一步体会数形结合。
4)通过课本第11页的归纳,使学生深化对数轴概念的理解。
二、教学目标设计
1. 知识技能
1)掌握数轴的概念,并理解其三要素,能正确地画出数轴。2)会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数。理解任何有理数在数轴上都有唯一的点与之对应
2.数学思考
1)通过观察与思考,建立数轴的概念。
2)通过对数轴的学习,初步体会对应的思想、数形结合的思想。
3.解决问题
.2数轴 篇七
数轴
年 级:七年级
科 目:数 学(七年级上册)
课 题:数 轴
课 时:1
教
学
目
标
知识与能力
通过与温度计的对比,认识数轴,会用数轴上的点表示有理数;借助数轴理解相反数概念,知道互为相反数的一对数在数轴上的位置关系;会求一个有理数的相反数;能利用数轴比较有理数的大小。
过程与方法
合理利用新旧知识的迁移,借助形(数轴)来理解数,经历从实际(温度计)中抽出数学模型(数轴),从数形结合两个侧面理解问题,并有选择处理数学信息,作出大胆猜测。
情感态度
与价值观
体会数学知识与现实世界的联系,体现数学充满着探索性,培养学生良好的数学兴趣;能够在师评、生评、自评的影响下,树立学习数学的自信心。
重点
和难点
重点
会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来。
难点
利用数轴比较有理数的大小。
课前
准备
小黑板准备有关题目
教 学 过 程 设 计
教 师 活 动
学 生 活 动
说 明
一、引入新课
1、师:大家学过数轴吗?
若有学生产生疑问,则出示小黑板题目:
用直线上的点表示下列各数:
0、2、 、1.5
(在数轴上标出0、1、2、3)
2、师:学上节课的时候,“数不够用了”,就出现了谁?
若生只答负数,后面教学“任何一个有理数都可以用数轴上的一个点来表示”时则通过有理数的“正数、0、负数”分类来帮助学生理解。
若生答有理数,则引导回忆有理数的“整数、分数”分类,再举相应的数例,后面将这些数在数轴上表示,以帮助学生理解。
评价学生表现,激发学生学习兴趣,转入下一环节。
二、新授:
1、学画数轴。
让学生举生活中负数的例子。
出示温度计的局部放大图(小黑板),让生读出其读数。
(温度计的读数绝对值不宜过大,便于作图时确定单位长度,本课中的数轴尽量使单位长度确定为1。)
师:想不想将它们也在数轴上表示呢?
师示范画数轴。
板书时,隐含强调数轴的三要素,在标注负数时,方法有二:一是与温度计比较;二是观察距离原点正(反)方向几个单位长度。
强调:负数从0向左写起。
2、用数轴上的点表示有理数。
师:请将小黑板上的温度计读数在数轴上表示出来。
教师口述例1。
师:将有理数分类时的例数在数轴上表示出来。
师:是不是每一个有理数都用数轴上的点表示?
板书“任何一个有理数都可以用数轴上的一个点来表示”
出示例2,指名板演。
3、相反数。
师:观察–2和2有什么相同点和不同点。
师引导学生从两方面考虑:①数的表现形式;②数轴上的位置。
师小结,给出“相反数”的概念,强调“互为相反数”。
师:再举几组例子。
师生找朋友:师口述一数,生答其相反数。
师:相反数还有什么特点?再议一议。
师:有人不愿意了,“你们都有朋友,我好孤单!”是谁孤单?(师可提示谁不说正负)
特别地:0的相反数就为0吧。
4、通过数轴比较有理数的大小。
由生活中温度由–5℃、
–2℃、0℃、2℃的变化,结合小黑板温度计图,引导学生。
师:数轴上越往哪边数值越大?(侧放小黑板,温度计真像数轴)越往哪边数值越小?
师:试从数轴上指出两 个数,比较它们的大小。
思考:正数与0、负数与0、正数与负数的大小关系。
出示例3,指名板演,讲评。
补充:﹣5<( )
﹣5 >( )
﹣3<( )< 3
三、练习:
教科书第39页“随堂练习”内容。引导,讲评。、
四、课堂总结,评价。
师生总结本课内容。
师:你感到自己今天的表现怎样?
五、作业。
生思考,作答。
指名完成题目。
生思维活跃:数轴原来已学过,忆旧知,完成题目。
生:负数。
生:还学习了有理数。
生接受评价,增强学习的主动性。
生:……、温度计、……
生读出读数。
生:想。
生积极动手,认真作图,同步完成。
指名板演。
侧放小黑板,师生订正。
生口答。
指名板演。
生试举例,并表示。
若学生举的数的绝对值偏大,可让学生口述在原点的哪边多少个单位长度处描点。
生板演。同桌互查互评、自评。
查评:1、画图部分。2、数的表示部分。
同桌小议,交换看法。
生:①书写只是符号不同;②位于原点两侧;③距原点的距离相等。
生踊跃回答。
成对出现,一正一负。
生思考后答:0
生结合生活经验,思考后得出温度逐渐上升。得出结论温度计上的温度值越往上,表示温度越高
生很容易作答。
思考后作答,举例,并说出自己是怎么想的。
生板演,完成例3。
同桌讨论,推荐代表发言,师生共同分析其数据分布。
生思考,作答。
师生对话,总结,评价。
抛出“数轴”,给出悬念,随之用小学六年级学过的“用直线上的点表示数”释疑,一紧一松,即吸引了学生的注意力,也激起了学生学习兴趣,建立数轴的初步印象。
复习上节有理数分类,为有理数在数轴上用点表示做准备。
考虑到了学生的回答及后续教学有关内容的处理,即怎样帮助学生更好地理解“任何一个有理数都可以用数轴上的一个点来表示”,根据的是有理数的分类:
1、有理数{正数、0、负数}
2、有理数{整数(正整数、0、负整数)、分数(正分数、负分数)}
课堂阶段性评价,既是对前一环节学生表现的总结,也为下一环节学生的积极参与教学做了铺垫。
温度计在本课中是一个非常重要的道具。请出学生学习的帮手。实际的温度计有大格小格,采用局部放大,提供给学生的是每个小格,刚好是1℃。而将小黑板倾斜,更像数轴,还可略去实物温度计上下有限可能对学生的误导。
由温度计的温度值引入,而不是直接问“负数在数轴上怎么表示”,是便于后面教学在数轴上表示负数和有理数的大小比较时,更便于学生理解(温度计平放即可判定相应的点是否画正确。)
手把手传授画法,没有将作图步骤中的直线与三要素并列,便于突出三要素,但也要注意“直线”也是学生作图时容易出错之处(按线段对待,平均分成若干份)。
教学时先原点,再单位长度(本节每个单位长度表示1,暂不写,因为还没有正方向),指出正方向,最后根据单位长度及正方向标注有关点。
所涉及的数据难度不大,学生兴致高涨。
生举例的数值或教师提供数值如
–,注意是平均分3份后,从0向左取2份处描点。
通过“有理数的所有子类都可以用数轴上的点表示”来证明。
第二次课堂阶段性评价:互查互评、自评。
①从书写出的“形”或读法入手。②③从数轴上观察。学生积极参与讨论,交流中获取知识。创造条件使喜“静”的学生也“动”起来。
也可通过数轴上观察,原点左有一个有理数,必然在原点右侧有它的一个相反数,而0充当了服务角色,突出0的特殊。
师举此例,也隐含着这几个数的大小关系。特别是–5 <–2。学生比较有理数的大小,也可从此方面考虑。
多次与温度计做比较,让学生体会数学与现实生活的联系。
多次让学生板演,给学生提供上讲台的机会,调动学生的积极性。
渗透了集合概念,更明确了数轴上数的大小关系与左右方向的联系。
通过对话评价,找出学生理解掌握本课还有什么问题,促进教师改进,同时,使学生一定程度地了解自己课堂学习的不足,明确改进方向,增强学生学习数学的自信心。
板书设计:数 轴
–2 2
数轴(直线) 小 ←——→ 大 相反数 互为相反数
(有理数 1、原点(此处是教师示范的数轴) 0的相反数是0
的分类) 2、单位长度正数>0
3、正方向任何一个……来表示。 负数<0
正数>负数
(例2学生板演区) ﹣5<( ) ﹣5>( )
﹣3<( )< 3
(例3学生板演区)
教学反思:
1、有关有理数的分类,“分数”已不同于小学阶段“分数”的内涵,而是将部分小数已纳入其中,在此(或第一课时)学生有疑问,教师只略讲,而是到学习无理数时再详解。
2、要求学生画数轴,怎样确定原点的位置?怎样确定单位长度?在数轴上画出几个单位长度?这些都与有理数的绝对值有关,要根据具体情况而定,学生在本节掌握时还存在疑问。
3、关于数轴上有理数之间的位置关系,练习不够,可设计游戏:指定若干名学生站成一排,间距相同,每位学生表示数轴上的若干个点,教师任意指定某学生为原点,其余学生说出自己所表示的有理数;较高一个层次,指定某学生为非原点的一个有理数。培养学生对数轴的正方向感。
4、对利用数轴将几个有理数排序练习不够