1. 主页 > 知识大全 >

平均数教学设计(优秀9篇)2-18-99

作为一名教职工,可能需要进行教学设计编写工作,借助教学设计可以提高教学质量,收到预期的教学效果。我们该怎么去写教学设计呢?为了帮助大家更好的写作平均数教学设计,高考家长帮整理分享了9篇平均数教学设计。

平均数教学设计 篇一

以往在教学平均数的概念时,教师往往把教学重点放在平均数的求法上,整理了平均数的教学设计,希望可以帮助到老师。

[教学目标]

1、在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。

2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

3、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,树立学习数学的信心。

[教学重、难点]

理解平均数的意义,学会求简单数据的平均数。

[教具准备]

多媒体课件等

[教学时间]

1 课时

[教学过程]

一、创设情境,提出问题

(屏幕出示)看,三(1)班的几个男女生正在进行套圈比赛呢,他们每人套了 15 个圈,老师用两幅统计图分别表示出了男生和女生套中的个数。

从图中你得到了哪些信息?

二、自主探究,理解新知

1、初步引出平均数

问:你们的眼睛真亮!那根据这些信息你知道男生套得准一些还是女生套得准一些吗? 猜猜看。

师:到底事实情况怎样?我们必须想个方法来说服对方,请你们开动脑筋, 有了想法后小组内相互交流。

小组讨论,教师行间巡视。

问:有结果了吗?谁来说一说你的想法?你认为应该比什么?

师:你觉得哪一种比法更加合理?说明你的理由。 指名回答。

师: 在刚才的讨论中, 我们明白了参加比赛的人数不一样多, 算总数不好比, 也不公平,就不能用这种方法。只有求出男生平均每人套中的个数,女生平均每 人套中的个数,才能一比胜负。

(出示:男生平均每人套中的个数、女生平均每人套中的个数)

2、移多补少法。

⑴(出示:男生统计图)问:你能看图说说男生平均每人套中多少个圈呢?小组里讨论一下。

(预设 :把张明的 9 个移 1 个给陈晓杰,1+6=7,张明还有 8 个,再移 1 个 给李小钢,1+6=7,最后大家都是 7 个。(生答,师演示) )

师:通过把多的移一些补给少的,使每个人都一样多。我们给这种方法起个 名字。

⑵你能用移多补少法看出女生平均每人套中的个数吗?(生答,师演示)

3、先合再分

⑴提问:还有其它办法得到男生平均每人套中多少个吗?

(生答,师演示) 会列式吗?板书:6+9+7+6=28 (个),28÷4=7(个)

师:这种方法是先怎样,再怎样的?也给它取个名字“先合再分”。这里的 28 指的是什么?为什么要除以 4?不管用什么方法,最后都求出了男生平均每人套中 7个圈,反映了男生套中的平均水平。

⑵求女生平均每人套中的个数。

(出示:女生统计图)那么你会计算女生平均每人套中多少个圈吗?自己算一算。 (指名答,师板书)10+4+7+5+4=30(个) ,30÷5=6(个)。

问:刚才男生中用总数除以 4,到了女生中,怎么就除以 5 了呢?(因为女 生是 5 个人) 通过算平均成绩, 现在你能比较出是男生套得准一些还是女生套得准一些了吧?(出示:答:男生套得准一些。)

4、揭示课题。

(出示男、女生统计图)同学们,刚才我们算出男生每人套中 7 个,这个 7 就是 6、9、7、6 这一组数据的平均数。(出示课题:平均数)这个 6 是哪几个数的平均数呢?

5、理解平均数的范围。

(1)比较。 男生实际上是不是每个人都套中 7 个?把这 7 个跟男生实际套中的个数比一比,哪些人套中的个数比 7 个多?哪些人套中的个数比 7 个少? 女生中哪些人套中的个数比平均数多?哪些人套中的个数比平均数少?

(2)提问:平均数会比这里最大的数大吗?会比最小的数小吗?

(3)小结:平均数是通过把多的部分移给少的部分,使大家都相等而得到的数,所以平均数在最大数与最小数之间。

三、联系生活,灵活运用

学习了平均数能为我们解决一些生活中的问题吗?让我们继续研究。

1、想想做做第1题。

指名口答。 师小结:当数据较少而且数据之间相差不大时,适合用“移多补少”的方法 来算平均数。

2、想想做做第2题。

(课件出示) 快来解决小丽的问题吧。

问:这三条彩带中最长的有多长?最短的呢?这道题要求什么?想一想,你能不能估计出这三条丝带的平均长度在( )cm——( )cm 之间?当数据之间相差较大时,适合用先求和再平均分的方法。 学生尝试练习后评讲。 (实物投影)

3、想想做做第3题。

(课件出示) 看,篮球队员们的比赛多么激烈呀,你能解决这里的数学问题吗?

师:我们对平均数又有了更深的了解,让我们用所学的知识一起来帮帮小明 吧!

4、95页练习九第1题。

怎么理解“平均水深110厘米”?想看看这个池塘水底下的真实情形吗?(出 示池塘水底)看来,认识了平均数,对于我们解决生活中的问题还真有不少帮 助呢。

四、全课总结

今天学习了平均数,静静地想一想,你有哪些收获?

总结:今天,我们认识了平均数,知道平均数在生活中有很大的作用,希望大家在生活中学会利用平均数解决问题。

五、拓展延伸

1、师:小玲参加歌唱比赛这是5位评委给她打得分,你能算算她的平均得分是多少吗?

学生自主计算,全班汇报。

2、出示打分规则,再次计算

平均数教学设计 篇二

教学目标:

1、经历用平均数刻画一组数据特征的过程,体会平均数的意义,掌握求简单平均数的方法。

2、经历移多补少、先合后分、估算等多样化算法的讨论,会利用图形直观估计平均数,能选择灵活的方法解决平均数问题。

3、体会平均数在现实生活中的广泛应用,激发参与热情,增强应用数学的意识。

教学重点:

体会平均数的意义,掌握求平均数的方法。

教学难点:

理解平均数的意义

教学具准备:

套圈统计图(每组一个)、多媒体课件

教学过程:

一、设疑引欲,提出问题

看套圈比赛的录像,出示统计图。

1、这幅统计图表示他们套中的个数,从中你知道了些什么?

2、想一想,是男生套得准一些还是女生套得准一些呢?

二、解决问题,探求新知

1、产生求平均数的心理需求

(1)学生讨论交流哪一队套圈套得准一些。

(2)提问:怎样比才既合理又公平呢?

(3)揭示:要比男生套得准一些还是女生套得准一些,就是要比较男女生平均每人套中的个数,也就是平均数。

2、自主探索平均数的意义和计算方法。

先求男生平均每人套中的个数,学生讨论交流。

(1)通过移多补少,直观揭示平均数的意义

(2)揭示“先求和再平均分”的求平均数的一般方法

列式计算:5+9+8+6=28(个)28÷4=7(个)

这里的28指的是什么?为什么要除以4?

求女生平均每人套中的个数。

(1)估一估

(2)算一算:11+4+8+2+5=30(个)30÷5=6(个)

这里的30指的是什么?为什么这里用总数除以的是5而不是4?

小结:通过比较,我们发现在这次比赛中,男生套得准一些。

3、理解平均数的范围

(1)比较

男生中哪些人套中的个数比平均数多?哪些人套中的个数比平均数少?

女生中哪些人套中的个数比平均数多?哪些人套中的个数比平均数少?

(2)提问:平均数会比这里最大的数大吗?会比最小的数小吗?

(3)小结:平均数是通过把多的部分移给少的部分,使大家都相等而得到的数,所以平均数在最大数与最小数之间。

三、拓展练习,深入理解

1、练习用“求和再平均分”的方法求平均数

(1)出示校运动队三年级学生肺活量情况统计图(三名学生)

提问:你能算出他们的平均肺活量吗?

交流:把你的想法与同学们交流交流。

(2)出示三年级部分学生肺活量情况统计图(四名学生)

提问:算算他们的平均肺活量。

比较:经常参加体育锻炼的学生平均肺活量比一般学生要大。

2、加深对平均数意义的理解

(1)出示游泳馆录像并配音:一天小明去学游泳,这个游泳池的平均水深130厘米。小明心想:我身高145厘米,下水学游泳不会有危险。同学们,你们觉得他想得对吗?

(2)学生交流

3、利用平均数在最大值和最小值之间的特点判断平均数的计算结果是否正确

(1)出示并配音:《中小学生体育锻炼运动负荷卫生标准》规定:心跳次数平均每分钟在120~200次为运动量适宜,低于120次为运动量过小,高于200次为运动量过大。

我们对小明在游泳过程中的心跳情况进行了统计。(出示:心率情况统计表)

次数第一次第二次第三次第四次第五次心率(次/分)150、160、180、170、140

(2)提问:从表中你知道些什么?

(3)他平均每分钟的心跳次数不可能是下面哪个答案?为什么?

①130次

②160次

③190次

(4)根据平均数的这个特点,你能说出这个平均数的范围吗?

(5)小明的运动量适宜吗?

4、进一步理解平均数的意义

(1)出示一高一矮两名学生

指一指:他们俩的平均身高大概在什么位置?

(2)出示郭晶晶的照片和她与另一位体坛明星的平均身高的虚线(虚线比郭晶晶矮)

指一指:另一位体坛明星大概有多高?

(3)出示郭晶晶的照片和她与另一位运动员的平均身高的虚线(虚线比郭晶晶高)

指一指:这位运动员的身高大概在哪里?

猜一猜:他是谁?

(4)出示新浪网上的NBA排行榜

找一找:有平均数吗?

想一想:姚明的总得分比特里要高,为什么他们的均分却相等呢?

四、全课总结,提升认识

平均数教学设计 篇三

一、教学目标

(一)知识与技能

理解平均数的意义,初步学会简单的求平均数的方法。

(二)过程与方法

学生经历用平均数知识解决简单生活问题的过程,积累分析和处理数据方法,发展统计观念。初步感知“移多补少”“对应”等数学思想。

(三)情感态度和价值观

感受平均数在生活中的应用价值,体验学习数学解决实际问题的乐趣。

二、教学重难点

教学重点:理解平均数的含义,掌握求平均数的方法。

教学难点:借助“移多补少”的方法理解平均数的意义。

三、教学准备

课件、实物投影。

四、教学过程

(一)创设情境

1.谈话引入。

以幻灯片形式出示教师家的书橱。

现在,我的书架上层有12本书,下层有10本书,我想请同学们帮忙,重新整理一下,使每层书架上的书一样多。

2.感知课题。

(1)学生思考,想象移动的过程。

(2)教师操作并提问:现在每层都有11本书了,这个11是它们的什么数?

(3)教师:像这样把几个不同的数,通过“移多补少”的方法,得到相同的数,就是这几个数的平均数。

今天,我们就来认识一下“平均数”这个新朋友,好吗?

(板书:平均数)

(二)探究新知

1.引发质疑,探索新知。

教师:看到这个课题,你想通过这节课学习到哪些知识?

预设:

(1)平均数是一个什么数?

(2)怎样计算平均数?

(3)平均数在生活中有什么用?

2.理解含义,探求方法。

出示例1,为了保护环境,学校四年级1班的一组同学利用业余时间收集矿泉水瓶,做环保小卫士。

仔细观察统计图,从图中知道了什么?你能根据统计图提出什么问题?

预设:

(1)小红比小兰多收集多少个瓶子?

(2)小明再给小亮几瓶,他俩的瓶子就一样多?

(3)他们平均每人收集了多少个瓶子?

你怎样理解“平均每人收集了多少个瓶子?”你怎样才能让他们的瓶子数量一样多呢?

学生汇报交流。

小结1:求平均数实际就是把多的补给少的,在数学上叫做“移多补少”。

小结2:求平均数也可以采用计算的方法,用他们一共收集的矿泉水瓶个数总和除以人数,得到平均每人收集多少个。

(14+12+11+15)÷4=13(个)。

【设计意图】注重让学生自主探索、合作交流,通过解决平均每人收集多少个矿泉水瓶的问题,引导学生思考并理解求平均数的方法,掌握“移多补少”以及“先求和再平均分”的数学方法。

3.理解平均数的含义。

教师:刚才我们通过移多补少和计算,求出平均每人收集了13个矿泉水瓶,看这个平均数13,它是不是每个人真正收集的矿泉水瓶数量?

引导学生体会13不是每个人真正收集的矿泉水瓶数量,而是4个人的总体水平。

小结:平均收集13个矿泉水瓶,不是每个人真正收集的数量,是一个“虚拟”的数,反映了这组收集矿泉水瓶数的情况。

教师:生活中你还在哪些地方或什么事情中遇到或用到过平均数吗?举例说一说。

预设:

(1)本周平均最高气温6摄氏度。

(2)三年级学生的平均身高是140厘米。

(3)四年级2班五位同学平均每人捐10本图书。

(4)李莉同学平均每天上学路上花费15分钟。

【设计意图】初步理解平均数的意义,并在现实生活中寻找实例,感受数学源于生活。

(三)知识应用

1.判断。

(1)某小学全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。

(2)学校排球队队员的平均身高是160厘米,有的队员身高会超过160厘米,有的队员身高不到160厘米。

(3)小明所在的1班学生平均身高1.4米,小强所在的2班平均身高1.5米。小明一定比小强矮。

【设计意图】让学生结合具体情境,进一步理解平均数的含义,初步感受平均数的特点:一组数据的平均数比数据中最大数小,比最小数大。

2.选择。

小明家平均每月用水( )吨。

A.(16+24+36+27)÷365

B.(16+24+36+27)÷12

C.(16+24+36+27)÷4

【设计意图】通过解决平均用水量的问题,巩固所学知识,根据所求问题找准与总数相对应的份数。

(四)全课小结

今天你有什么收获?

再看看开始想解决的问题:

(1)平均数是一个什么数?

(2)怎样计算平均数?

(3)平均数在生活中有什么用?现在能解决了吗?

平均数教学设计 篇四

教学内容:

教科书第43页例1及相关练习

教学目标:

1、体悟“平均数”的实际意义。

2、探索求“平均数”的多种方法,并能根据具体情况灵活解答。

3、培养学生估算的能力,能对数据分析结果作出简单的推断和预测。

4、体会“平均数”在现实生活中的实际意义及广泛应用,逐步具有自主探索与合作交流的意识和能力。

教学重点、难点:

灵活选用求平均数的方法解决实际问题。理解平均数的意义

教具、学具准备:

PPT等

教学流程:

一、谈话引入、初步感知平均数

1、学生交流课前收集到的有关平均数的信息。

2、师提问:为什么你们认为平均年龄、平均工资、人均住房面积这些都是平均数呢?能解释一下它是什么意思吗?

3、师:看来大家对“平均数”或多或少都有些了解。这节课,我们就去数学王国探索一下有关“平均数”的奥秘。 板书:平均数 你想了解平均数的哪些知识呢?

4、师:看来同学们对平均数充满了好奇,一起进入迷宫探秘。

二、构建新知

1.理解含义,探求方法。

观察棋子,提出问题。(多媒体显示)

师提问:看着你面前的棋子,你获得了哪些信息?你还想提出什么数学问题?

2、感悟“平均数”的实际意义。

动手操作:以小组为单位研究怎样才能使三排棋子同样多。

师提问:现在每排棋子都是几个?这个数,你能给他取个名字吗?

这个平均数4与原来每排棋子的个数有什么关系呢?

3、探索求平均数的不同方法。

师:四人小组合作,想一想还有没有别的方法可以求出平均数,并且把你们小组独特的方法取个名字!等一下我们来评选最佳创意奖和最佳命名奖。比一比,哪个小组最爱动脑筋!

①小组活动讨论。

②汇报交流。(生说方法多媒体显示棋子移动过程)

移多补少! 先假设后均分。先求和再均分。

三、初步应用,内化拓展。

师:刚才同学们通过讨论、尝试不但知道了什么是平均数,而且探索出了许多求平均数的方法。那么你们能解决有关平均数的实际问题吗?

四、课堂总结

1、你现在所认识的平均数是什么?

2、理解平均数是个虚的数。

五、随堂作业

平均数教学设计 篇五

教学内容:

义务教育课程标准青岛版(五·四分段)小学数学四年级上册P131~133。

教学目标:

1、通过学生自主探究,理解平均数的意义,掌握求平均数的方法,学会求平均数。

2、学生经历探究求平均数的过程,培养操作、观察、归纳、概括和自主探究的能力。

3、培养学生在探究活动中获得积极的情感体验和合作意识,激发学习数学的兴趣,增强学好数学的信心。

教学重点:

理解平均数的意义,掌握求平均数的方法,并能灵活运用所学知识解决实际问题。

教学难点:

平均数意义的理解。

教学准备:

课件、小正方体、学习评价表。

教学过程:

一、创设情境,提出问题

课件展示校园篮球场上四(1)班和四(2)班篮球比赛的精彩片断[四(1)班的得分明显落后,学生观赏。

提出问题:假如你是四(1)班的教练,这时你准备怎么做?你在换运动员上场时,会考虑哪些因素?

出示两名运动员平日训练在小组赛中的得分情况统计表,如下:

现在就请你当教练,根据上面统计表中的数据,你会选谁上场?并说出自己强有力的理由。(学生充分讨论,发表自己的意见)

[评析:教师恰当运用CAI课件,创设一个学生熟悉且比较喜欢的真实生活情境,让学生身临其境,自己提出在比分落后的情况下“需要换人”这样一个生活化的问题。这样,不仅一下子激发了学生积极参与的兴趣,培养了学生的问题意识,而且在不知不觉中引发了学生的思考。通过小组赛中得分情况统计表,又将生活化问题转化为根据“平均分”换人这样一个数学问题,使学生感受到平均数产生的需要,为下面的探索活动提供了动力与明确了方向。]

二、解决问题,探求新知

怎样计算7号和8号运动员的平均分呢?下面,请同学们根据统计表中的数据和手中的操作材料,小组合作,共同来探讨。注意:一个小正方体代表一分。看哪个小组最先完成。

1、小组合作探求算法。

2、汇报交流。

操作法:重点让学生把移多补少求平均数的方法讲明白。

小结:刚才同学们都是在总数不变的情况下,把多的移走补给了少的,使它们变得同样多,这个同样多的数就是它们的平均分。

计算法:重点让学生理解平均分除了可以用移多补少的方法求出来外,还可以先求出各场得分总数,再除以上场的次数,也可以得出每个队员的平均分。

小结:同学们通过自己的探索,解决了选谁上场的问题。因为7号运动员的平均分11分高于8号运动员的平均分10分,所以应选7号运动员上场。同时,我们知道求平均数有两种算法,数据少的时候可以用移多补少的方法,数据多的时候用计算的方法会更方便。(板书课题和算式,如下)

(9+11+13)÷3=11(分)(7+13+12+8)÷4=10(分)

[评析:学生的学习过程充满了自主性、探索性与合作性。教师充分发挥学生的主体作用,放手让他们在开放的空间里运用手中的材料动手操作、自主探索,解决了问题。这既是一个学生自我探究的过程,也是一个相互交流的过程。教师只是以参与者、合作者的身份融入学生的活动中,和他们平等相处,及时获取反馈信息,引领学生归纳概括出平均数的计算方法。]

3、理解平均数的意义。

对10分的理解:你对10分这个数是怎样认识与理解的?与它的各场得分相比较,你有什么发现?10分是8号运动员哪一场的得分?

对11分的理解:11分是7号运动员第三场的得分吗?为什么?它是什么?

小结:平均数比大数小,比小数大,介于二者之间。它不是一个实实在在的数,可能存在于一组数据之中,也可能不存在。平均数能较好地反映出一组数据的整体水平。(板书:比最大数小、比最小数大、较好地反映出一组数据的整体水平)

[评析:在学生的亲自感受中,他们用自己质朴而稚嫩的语言道出了他们对平均数意义的理解,虽然这只是粗浅的,但却是非常有价值的。]

三、实践运用,体验生活

在生活中,你见过平均数吗?

(学生列举日常生活中见到的平均数的例子)

在我们的生活、生产,特别是在统计当中,平均数的应用非常广泛,因为它能帮助我们了解事物的整体水平与分析存在的问题。

评价时,师问:看着王红的成绩,你想对她说点什么?

不计算,估一估他们的平均身高会是哪个答案?(让学生谈观点,加深对平均数意义的理解)

先不计算,同学们估计可能会是多少?然后用自己喜欢的方法计算一下,他们的平均成绩是多少次?

4、过河问题。

身高145厘米的小华,要过平均水深110厘米的小河到底有没有危险?(让学生在讨论的过程中,进一步感受平均数的意义)

通过这个题目的思考,你觉得应该对大家说点什么?(没错,徐老师希望同学们每天都能安安全全地来校,平平安安地回家)

[评析:练习设计由浅入深,形式多样,且能紧密联系现实生活实际,不仅加深了学生对本课知识的理解,同时提高了学生运用知识解决实际问题的能力。]

四、评价总结,拓展延伸

通过本节课的学习,大家肯定都想知道自己表现如何。现在请拿出学习评价表,给自己一个诚恳的评价吧!(附表,如下)

学习评价表

本节课,你认为自己的表现怎样?请在相应栏目中填上相应的分数,并算出平均分。(优秀90分,良好80分,一般70分)

(小组交流后,学生展示)

看着自己的评价表,你想对大家说点什么?你觉得本节课有什么收获?

师评价:其实,从平均分可以看出你整节课的表现还是非常不错的!徐老师相信在评价过程中,同学们又一次加深了对平均数的理解。

[评析:让学生自我评价,增强了学生数学学习的自信心。通过自己给自己打分及平均分的计算,既强化、巩固了本课学习的内容,再现了“求平均数”在生活中的实际应用,又体现了课程标准倡导的评价形式多元化的思想,同时还为随后的课堂小结作了巧妙的预设,可谓“一举三得”。]

注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。

平均数教学设计 篇六

教学目标:

1.在具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义。

2.能运用平均数的知识解释简单生活现象,解决简单的实际问题,进一步积累分析和处理数据的方法,发展数感。

3.在生活中增强与他人交流的意识与能力,在解决实际问题的过程中体验运用知识解决问题的乐趣,建立学好数学的信心,渗透品德教育。

教学重点:

理解平均数的意义和求平均数的方法。

教学难点:

理解平均数的意义。

教学设计思路:

根据学生耳鸣目染的生活现状创设不同层次的问题情景,学生在答题过程中逐步感受求平均数是解决一些实际问题的需要,并通过动手移、合与分的操作和思考交流体会平均数的意义,学会计算简单数据的平均数,从中渗透安全教育。

教学过程

一、创设情境,探究新知。

同学们,现在全区开展“美丽广西。清洁乡村”的活动,作为市民,我们也要为此付出一份力量。你看,阳光学校三(2)班的同学为了响应党的号召,利用课余时间进行捡别人丢弃的矿泉水瓶比赛,他们班共有37人,每 3人为一组,可以分几组还剩几人?37÷3=12(组)……1(人)

【设计意图】:用学生耳鸣目染的生活情景创设问题,即复习了平均分,又为下一个环节做好铺垫。

(一)两队人数相同,比总个数。

他们班每天从2个组中评出一组“美丽之星”,你觉得他们哪一组获星?

出示:

A 组

B 组

生:B组获星。

师:你是怎么比的?

生:当他们人数相等时,比较捡的总个数就能比出哪一组获星。

(二)两组人数不同,比平均数,发现求平均数的方法。

我们再来看看下面两组,看看哪一组获得这天的“美丽之星”出示:

C组

D组

生:我的建议也是比较他们的总数?

生:我有不同意见,人数不同比总数不公平。

师:你很会观察统计表,而且说得很有道理,你们看人数不同比总数不公平。

师:那怎么比才公平呢?

生:减少1个人

生:我认为不好,他们班每3人一组,剩下1个人,这个人不管放在哪个组,都会有一个组是四个人的。我们不能忽视别人的劳动成果。

师:说得多好!你不但会分析问题而且很会做人!

师:人数不同,我们怎么比才公平呢?以四人小组讨论,看看哪一组能想出好办法。

【设计意图】:利用这班分组后多一人的人数冲突,产生人数不同如何比的问题,提升探究问题的兴趣。

(学生小组活动,教师巡视,学生汇报)

生:我们讨论的结果是“平均分”,也就是求C组平均每个人捡得多少个和D组平均每个人捡得多少个。

师:那我们怎样平均分呢?

学生诉说小结:也就是使每组中的每个人捡得同样多。

学生用学具摆一摆也可以在纸上画一画,算一算来探究同样多的方法。

(学生用学具探究方法)

师:谁能把自己的想法和大家分享一下?(师结合学生的汇报,利用课件呈现移多补少的过程,)

师:数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程就叫“移多补少”。【板书】

师:谁来汇报 D组的呢。

师:你是用什么方法找出D组同样多的?

(生讲师再次呈现移多补少过程)

探讨不同的方法引出列式计算。

板书:C组 :(6+9+3)÷3 D组:(2+6+8+4)÷4

=18÷3 =20÷4

=6(个) =5(个)

学生指着板书说说先合后分的方法。

师:你为什么C组除以3, D组除以4呢?

生:因为C组有3人而D组有4人。

归纳得出:总数量÷总份数

谈话:你给我们带来了求平均数的计算方法,同学们都给你掌声了呢,谢谢你!小结:无论是移多补少,还是先合后分,目的只有一个,就是把原来几个不同的数变得一样多。数学上我们把同样多的这个数叫做原来这几个数的平均数。(板书课题:平均数)

完善板书:总数量÷总份数=平均数

【设计意图】:由统计图显示出人数相同,收集个数不同;人数不相同,收集个数不相同两种情况,这样出现更为自然、合理、减缓了求平均数的坡度,强化了学生对平均数的意义和理解,体验到了实际问题的感受。问题的设计为学生的探究活动提供了导引,学生不仅学会了平均数的知识,更重要的是掌握了一种分析和解决问题的方法和策略,培养一种质疑反思的意识和习惯。

二、深入理解平均数的定义(意义)

师:C组的总数量是多少?总份数呢?平均数是?

师指着板书学生汇报,明确6是6、9、3这三个数的平均数,5是2、6、8、4这四个数的平均数。

仔细观察两条平均数的虚线,超于虚线的瓶子和不到虚线的瓶子,你发现了什么? (同桌交流)

生:超出平均数的部分和不到平均数的部分相同。

生:平均数比这里最大的数小一些,比最小的数大一些。

生:平均数是在这组数据的最大数和最小数之间。

师:还有发现吗?

生:C组的数据还有和平均数恰好一样的。

师:C组捡的平均数是6,这个6是谁捡得的个数?是洋洋捡得的个数吗?是花花捡的个数吗?还是晶晶捡的个数?

生:都不是。这6是C组平均每人捡得的个数,是3个数的平均数。

师:你分析得很有道理。

师:我们比较这两组的平均数,哪个组获星了?

生:A组获星了,

师:同学们,课下我们也可以加入他们班的活动,为了美丽广西实行“弯腰行动”吧

【设计意图】:要提升学生发现问题、分析问题、解决问题的能力,教师的问题设计很重要,在此,我组织学生从对统计图红色虚线观察比较,直观地看出超出平均数的部分和不到平均数的部分相同,进而加深理解移多补少来求平均数,感悟平均数的特点。

三、用一用,怎样理解生活中的平均数。

师:我们在分析刚才这些活动结果的时候用到了平均数,在日常的学习和生活中,大家还在哪里见到过平均数呢?(学生自由交流)

师:同学们都谈论得非常热烈,有平均成绩,平均速度,平均水深,平均年龄……

师:老师也带来一些素材:(课件出示)

小结:从这两个国家男女的平均身高可以看出哪个国家的人身高一些,因为平均数能代表一组数据的总体水平。下节课我们再进一步来研究这方面的知识。

过渡:平均数在我们的生活中有着广泛的应用,接下来我们就分析下面几个有关生活中的平均数吧!

【设计意图】:感受生活中平均数的意义,激发学生解决问题的兴趣。

(一)平均成绩

下表记录了三(2)班同学在大课间进行一分钟垫球比赛冠亚军成绩表,请你算一算谁是冠军

(学生独立填写表格,有的很快就算出了结果,有的还在笔算)

师:你为什么算得这么快?能把你的小窍门告诉大家吗?

生:我利用移多补少的方法从小明第二次移1给第三次,就得平均数99。

师: 你真是个机灵的孩子,我们用“移多补少”的方法看小亮的,是多少?(93)。

用列式计算的同学说说做这道题的体会从而总结出:数量少的容易看出平均数的就用“移多补少”的方法。数量比较多不容易看出的,再用先合后分的方法。

【设计意图】:此环节的练习帮助学生巩固本节课的知识,从中发现优化平均数的方法,提高思维敏捷性。

(二)歌咏比赛平均分

出示

要求算出1号选手的实得分

师:打分最高的是多少分?最低分呢?不计算,你能估计一下1号选手平均得分在什么范围之内吗?猜猜1号选手平均得分是多少?

学生的答案在82到97之间

猜完列式验证自己的答案。

(出示评分规则:去掉一个最高分和一个最低分来确定最后实得分。学生再算最后得分)

小结:平均数在具体的应用过程中还要根据具体的游戏规则,联系实际去思考来发挥它的作用的。我们学到众数,中位数时会进一步比较。

【设计意图】:此环节的练习让学生体会到平均数在实际应用过程中受到最大数和最小数的影响,为了公平起见,还要根据具体的游戏规则来算。从中也为日后学众数和中位数埋下伏笔。

(三)平均水深

老师这里有一道有趣的问题

一条河平均水深是100厘米,小明身高是140厘米,他想:在这条河里学游泳不会有危险。你同意他的观点吗?

生:小河平均水深是100厘米,如果深的地方超过140厘米,小明到河里游泳就会有危险。

(课件出示河的截面图)如果要在河边立一块警示牌,你会怎么写才能让人一眼看出危险性呢?(出示:最深处约250厘米)

出示最近溺水事故案例,希望同学们不要到河里去游泳,注意人生安全!

【设计意图】:平均水深这道题,用学生日常生活常识,知道一般河流水下深浅不一,利用出示截面图和建立警示牌起到警示作用,进而渗透安全教育。用典型的问题将学生的思维引向深处,在解决问题的过程中收获一种思维方式。

四、总结评价,感受成功。

提问:通过这节课的学习,你有哪些收获呢?

从学生回答小结出:平均数介于最大数和最小数之间,还学会了灵活应用两种求平均数的方法。

布置作业:利用今天所学的知识来解决课本P44练习十一的第1、第2题。

课堂赠语:只要同学们善于观察生活,就会发现生活中处处都有数学存在。

五、板书设计

平均数

①移多补少

②先合后分 总数量÷总份数=平均数

C组 :(6+9+3)÷3 D组:(2+6+8+4)÷4

=18÷3 =20÷4

=6(个) =5(个)

平均数教学设计 篇七

教学内容:

P92~94

教学目标:

1、在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果使整数)。

2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

3、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,树立学习数学的信心。

教学重点:

理解平均数的意义,学会求简单数据的平均数。

教学过程:

一、创设情境,提出问题

1、谈话:同学们,昨天中午我们代伙的同学在教室里举行了一次套圈比赛,他们每人套10了次,想不想知道他们套中了几个?

2、指名汇报,回答问题

陈璇:5个;戴之淳:3个。问:陈璇套得准一些还是戴之淳套得准一些?

孟子又:3个;陆庭臻4个。问:是这两位女生套得准一些还是这两位男生套得准一些?你是怎么知道的?

3、谈话:(出示主题图)。看,图上的同学们也在套圈,他们每人套了15个。

4、指导学生看图,读图(纵、横轴表示的含义;每一格表示的数量)

5、问:你能从图上看出每人套中了多少个吗?(根据学生回答在图中标出数量,并根据回答要求学生说说自己是怎么看出数量的多少的)。

6、问:除了能从图中看每人套中的个数外,你还看出了什么?

二、自主探索,解决问题

1、问:你能不能从图中一眼看出是男生套得准一些还是女生套得准一些呢?

2、指名汇报,说明理由。

3、说明:有道理。他们两队的人数不同,所以我们不能一个人一个人地比较,只有分别求出“男生平均每人套多少个”和“女生平均每人套多少个”,用这样的数来体现他们套圈成绩的整体水平。

4、男生套圈成绩的平均数。

⑴观察男生成绩统计图,想一想,怎样使他们每人套中的个数相等?(根据学生回答归纳出“移多补少”并板书。)

⑵列式计算。理解算式含义。(归纳“先合再分”并板书。)

⑶说明:这里的“7”就是男生套圈成绩的平均数。(板书课题)它表示将原先几个大小不等的数,通过移多补少或者先合再分的方法,得到的一个相等的数。

5、女生套圈成绩的平均数。

⑴你会求女生套中的平均数吗?

⑵学生尝试练习并指名学生板演。

⑶评析:*算式每步的含义。

*这里为什么是用女生套中的总数除以5而不是除以4?

*得到的“6”在这里是什么数?表示什么?

*现在你知道是男生套得准一些还是女生套得准一些吗?

6、观察统计图,男生平均每人套中7个,这里的平均数“7”比哪个数大?比哪个数小?

再观察女生成绩统计图,平均数“6”是不是也有这样的特点呢?

7、小结:平均数的大小应该在一组数据中的最大数与最小数之间。平均数是我们计算出的结果,它表示的是一组数据的平均水平,并不一定这一组数据都等于这个平均数,有些可能比平均数大,有些可能比平均数小,有些可能和平均数相等。

三、巩固练习,拓展应用

1、P94.2

出示题目,问:这三条彩带中最长的有多长?最短的呢?这道题要求什么?

想一想,你能不能估计出这三条丝带的平均长度在()cm——()cm之间?

学生尝试练习后评讲。

2、刚才我们一起认识了平均数,也知道如何求平均数,接下来我们要遇到生活中有关平均数的问题。一起来看一看。

出示下列辨析题。

⑴小强身高30厘米,一条小河平均水深100厘米,他下河玩耍肯定安全。

⑵在“书香校园”活动中,我校同学平均每人捐书3本。那么,全校每个同学一定都捐了3本书。⑶学校篮球队队员的平均身高是160cm。

①李强是学校篮球队队员,他的身高不可能是155m。

②学校篮球队中可能有身高超过160cm的队员。

3、出示本班级第一小组学生身高情况统计表。(如下)

⑴老师请一位同学帮着算了一下这个组同学的平均身高,得出的结果是“这个小组同学的平均身高是146m”。不用计算,你能不能知道他算得对不对呢?(后出示正确的计算结果)

⑵由此,你能不能猜测一下,三(3)班全班同学的平均身高大约是多少厘米吗?

⑶老师也在网上查找了一些资料:我国三年级小学生的平均身高大约是135cm。看到这个数据,结合你自己的身高,你有什么想法?

四、评价总结

1、刚才同学们都参与得很热烈,你们觉得田老师这节课上得怎么样?如果请你给这节课打个分,你会打多少分呢?每个小组商量一下得分情况,然后给出一个分数(10分制)。

问:这么多分数,以谁的分数为准呢?(计算平均分)

2、学了这节课,你有什么收获?

平均数教学设计 篇八

【教学内容】

苏教版《义务教育课程标准实验教科书数学》三年级(下册)第92~94页。

【教学目标】

1.在具体问题情境中,感受求平均数是解决一些实际问题的需要,通过操作和思考体会平均数的意义,学会并能灵活运用方法求简单数据的平均数(结果是整数)。

2.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。

3.进一步发展学生的思维能力,增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。

【教具、学具准备】

教具:课件、男女生套圈成绩图。

学具:每四位学生一副男女生套圈成绩学具板。

【教学过程】

一、创设情境,激趣导入。

谈话:很多同学都知道套圈游戏,一起来看。(媒体出示:三年级一班的男女生进行套圈比赛,每人套15个圈。下面的统计图表示他们套中的个数。)想请大家来当裁判,愿意吗?可要比比哪个裁判最公正哦!

二、合作探索,解决问题。

(一)两队人数相同,每人套中的个数不同。

屏幕出示第一小组男、女生套圈成绩统计图。提问:要知道男生套得准一些还是女生套得准一些,你认为可以比什么呢?

学生回答后教师相机引导并小结。

(二)两队人数不同,每队中每人套中的个数相同。

屏幕出示第二小组男、女生套圈情况统计图。请学生一起回答是哪个队套得准一些。提问:有同学认为可以比比他们套中的总个数,你们觉得公平吗?

结合媒体演示小结。

(三)两队人数不同,每人套中的个数也不完全相同。

1.提出问题,自主探究。

出示第三小组的套圈成绩图(例题),引导比较,得出与第二小组套圈成绩图的异同。

小小组四位同学利用学具板探索解决问题的方法,教师巡视。全班交流比的结果。

指出:其实,象这样移了以后再比,是分别求出了男、女生平均每人套中的个数再去比的。结合电脑演示教师讲解揭示平均数的含义。

2.提问:你还能用其他方法求出男生平均每人套中了几个吗?女生呢?

指名列式并说说想法。

3.理解平均数的意义。

谈话引导学生观察、比较,加深对平均数意义的理解。

4.小结。

三、巩固深化,拓展应用

1.辨一辨、说一说。

2.移一移、估一估、算一算。

(1)“想想做做”第1题。

(2)“想想做做”第2题。

(三条丝带的长度分别改成6厘米、44厘米、13厘米。)

想一想,选一选。

平均数教学设计 篇九

教学内容:

《数学》三年级下册第58、59页

教学目标:

1.通过丰富的实例,经历进一步了解“平均数”意义的过程。

2.能够根据具体情境,利用“平均数”解决生活中的实际问题。

3.在解决实际问题的过程中,感受“平均数”在现实生活中的广泛应用。

教学准备:

CAI课件。

教学预设

一、情境创设:

同学们,你们在电视里看过歌手大赛吗?你知道比赛的评分规则吗?

去年暑假,中中央电视台举办了全国少儿艺术大赛,瞧,这是红星小学的王璇参赛的照片,那她当时得了多少分呢?你们想知道吗?(课件出示参赛照片

二、探究与体验;

1.瞧,这是7个评委给她亮出的分数牌,(课件出示评分牌)

95分

95分

96分

85分

98分

93分

你能帮她算算她最后得了多少分吗?在练习本上试试吧。看谁算得又对又快。算完后和同桌说说你的想法。

2.全班交流:

刚才,同学们计算得的很认真,讨论的很热烈,下面谁来告诉大家你的答案,并说说你是怎样想的。

指名回答。

生评价谁算得对。

3.师小结过渡:

是的,在好多电视比寒中,为了体现公平公正的原则,往往采用去掉一个最高分,去掉一个最低分,求剩下的几个评委的平均分的规则评分。但是在体育比赛中还能用这样的评分规则吗?

4.议一议:

师:同学们,你们参加立定跳远比赛吗?老师是怎么给你计分的?下面是王平同学五次试跳的成绩:

第一次

第二次

第三次

第四次

第五次

167厘米

167厘米

167厘米

167厘米

167厘米

那么裁判员最后给出的成绩是多少呢?是怎么算的呢?告诉你吧,他的成绩是169厘米,而不是他的平均成绩:这是怎么回事呢?请同学们四人小组讨论讨论。

全班交流。

5.师小结:同学们说得都很有道理,是的在体育比赛中,为了给每个人更多的机会,鼓励大家超越自我,追求更快、更高、更强的奥运精神,往往用队员的最好成绩作为他的最后成绩,而不是用他几次试跳的平均成绩。

6.通过以上的学习你了解到了哪些知识?

三、实践与应用;

师过渡:是的,在日常生活中,我们经常要用到求平均数的情况,下面就请同学们开动你的小脑筋认真想一想,下面的问题你能自己解决吗?

1. 出示练一练第1小题。学生独立完成前两步,然后集体订正。

第(3)个问题请同学们同桌交流自己的看法,然后集体交流。

2.出示第2小题,生独立完成,然后集体订正。

3.出示第三小题,生独立完成第一步,然后集体订正。

第二步,首先让学生说说:第四组这几个同学,谁跑得最快,谁跑得最慢?搞清什么是达标。那么50米的达标成绩是10秒,比这个成绩慢的同学就没有达标。想一想是哪个同学呢?和同学说说你和想法。全班交流。

四、拓展与延伸:

出示“问题讨论”让学生读题弄清题意:小明不会游泳,如果水深超过他的身高,就可能有危险,那么这个游泳池的平均水深是1米20厘米,说明了什么?小明会不会有危险?

请同学认真思考,然后和同桌说说你的想法。

从学生生活入手,调动学习的积极性,激发学习兴趣。使学生一开始就进入兴奋的学习状态。

让学生经历观察、思考、计算、交流的过程,培养学生严谨的学习态度及善于与同学交流的好习惯,从而使解题思路更加清晰。

培养学生敢干发表自己不同见解的好品质以及耐心听取别人说话的好习惯。

让学生在讨论中充分发表自己的见解,在交流中增长知识,在交流中培养表达能力,对本节课新知识进行整合,使学生对新知识通过回顾能牢固地掌握。

在本环节中学生能独立完成的尽量让学生独立完成,师行间巡视,对有困难的学生个别辅导。

对学生普遍感到有困难的题,稍作点拨,让学生通过独立思考、同桌或前后桌交流找到解决问题的方法。

让学生运用刚学过的平均数知识,对在日常生活中遇到的实际问题进行推理、判断,从而使数学知识与学生生活实际相结合。让学生感受到数学的的重要性。

在本环节中如果有同学能完整说出比赛的评分规则,就应该给予鼓励“×××,你懂得可真多。”如果学生回答不出,就由老师向学生详细说明比赛的评分规则:

为了体现公平公正的原则,在实际比赛中,选手的最后得分是这样计算的;在所有评委所打的分数中,去掉一个最高分,去掉一个最低分,求剩下的几个评委的平均分。

学生可能有以下几种答案

1.(96+95+95+96+85

+98+93)÷7=94(分)

想:我先把7个评委所的评分加起来,然后再除以他们的人数,也就是求出平均分。就是她的最后得分。

(96+95+95+96+93)÷5=95(分)

想:我先去掉一个最高分,去掉一个最低分,再计算剩下5个评委的平均分。

还有可能出现计算错误的现象,让学生找出错误原因。

学生可能出现的回答有;

1.王平最远能跳169厘米,说明他有这样的潜力,应该把这个成绩算做他的最后成绩。

2.因为如果最后算王平的平均成绩的话,就不能反映出一个人的最好水平,所以用平均成绩做为他的最后成绩不公平。

第三个问题让学生说出自己的想法,如可以准备28×7=196(箱),这样可以保证货源充足,其他同学可以提出不同意见,但这样容易造成货物积压,过期饮料就卖不了了。

答案应该是下周应准备和本周售出总数同样多的饮料最合适。

什么叫“达标”;国家颁布了少年儿童各年龄段的体育锻炼标准,达到这个标准的就叫达标了,没有达到这个标准的当然就没有达标了。

“平均水深1米20厘米”,说明这个游泳池有的地方深,有的地方浅,浅的地方可能还不到1米20厘米,深的地方可能会超过1米40厘米,”所以小军在这个池中是有危险的。

他山之石,可以攻玉。上面就是高考家长帮给大家整理的9篇平均数教学设计,希望可以加深您对于写作平均数教学设计的相关认知。