1. 主页 > 知识大全 >

《三角形的内角和》教学反思【优秀8篇】5-9-77

身为一名刚到岗的教师,我们的工作之一就是教学,借助教学反思我们可以学习到很多讲课技巧,那么你有了解过教学反思吗?为了让大家更好的写作三角形内角和教学反思相关内容,高考家长帮精心整理了8篇《三角形的内角和》教学反思,欢迎查阅与参考。

《三角形的内角和》教学反思 篇一

三角形内角和等于180,对于大多数同学来说并不是新知识。因为在此之前同学们已经运用过这一知识。因此,我觉得这一堂课的重点不是让学生记住这一知识点,也不是怎样运用它去解决问题,而是让学生证明这一结论,即要让学生亲历探索过程并在探索中验证。

1、以疑激思

古人云:学起于思,思源于疑。因此,要激发学生的思维,让学生主动探索。学生的积极思维往往是由问题开始的,在解决问题中得到发展。因此,在课一开始,我便通过拟人化的对话情境:大三角形说我的内角和比你大!小三角形很不服气的说我的内角和比你大!接着抛出一个问题:到底哪个三角形的内角和大呢?为什么?你能证明吗?引起了学生的积极思考,并探索解决问题的方法。

2、以动启思

在教学中,通过丰富的材料让学生动手操作,通过量、撕拼、折拼等实验活动,让学生得到的不仅仅是三角形内角和的知识,更重要的是学到了怎样由已知知识探索未知的思维方式与方法,激发了他们主动探索知识的欲望。通过多种实验进行操作验证也让学生明白了只要善于思考,善于动手就能找到解决问题的方法。

虽然,在教学中也还有一些不顺利的地方,比如一些动手能力差的学生未能及时跟进,对于方法不对的学生未能及时指导和帮助等。但是本堂可采用这样的方式展开教学是学生喜欢的也是有成效的。

《三角形的内角和》教学反思 篇二

本节课的重点是引导学生探究三角形的内角和, 同时还要使学生学会用三角形的内角和是180°来解决有关计算问题。

课程开始前,我让学生计算三角尺的3个内角的和,很自然地引出了“其它三角形的内角和是否也是180°吗? ”的猜想。当时有同学说不是,又有同学说是的。我告诉学生:任何一项科学研究或发明创造都要经历从猜想到验证的过程。那么这个猜想可以用什么方法来证明呢?大部分同学首先想到先任意画一个三角形,再用量角器量一量的方法,我让学生去画去量了,结果有些学生量出的内角和的度数要高于180°或低于180°,我让学生讨论一下有哪些因素会影响到研究结果的准确性。过后,我引导学生:180度是什么角?我们能否把三个内角转化一下呢?经过这么一提示学生想到把三个角剪下来拼成一个平角,还有学生想到折的方法。学生在操作过程中受到了启发,最后学生得出:任意三角形的内角和都是180°。学生在动手操作中享受到了学习数学的乐趣。后面通过一系列的练习活动,学生进一步明确三角形的内角和与三角形的大小无关,并体会到求直角三角形的一个锐角可以直接用90°减另一个锐角的度数来计算,培养了学生思维的灵活性,对三角形的内角和也有了更清晰的认识了。

第二次课我从学生常用的一副三角板出发,让学生说说每个角的度数,以及三个内角的度数和,有学生说出三角形的内角和是180度,我就接着问:为什么三角形的内角和是180度?是不是所有的三角形的内角和都是180度呢?学生无语。接下来,我就让学生将课前准备好的三角形拿出来进行研究,可以增强学生的主体意识与参与意识。当学生通过折一折、拼一拼、撕一撕、画一画之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。在此过程中,我关注的重点除了学生最后论证的结果,更重要的是关注了学生思维的过程。

《三角形的内角和》教学反思 篇三

学生在学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。根据教学目标和学生掌握知识的情况,课堂上我围绕以下几点去完成教学目标:

一、创设情境,营造研究氛围

怎样提供一个良好的研究平台,使学生有兴趣去研究三角形内角的和呢?为此我抛出大、小两个三角形争吵的情境,让学生评判谁说的对?为什么争吵?导入课引出研究问题。“三角形的内角指的是什么?”“三角形的内角和是多少?”激发学生求知的欲望,引起探究活动。我在研究三角形内角和时,没有按教材设计的量角求和环节进行,而是从学生熟悉的正方形纸的内角和是360°入手,再把正方形纸沿着对角线剪开后会怎样呢?猜想一下其中的1个三角形的内角和是几度?学生很快得出一个直角三角形内角和是180°。猜测以下是不是各种形状、大小不同的三角形内角和都是180°呢?再组织学生去探究,动手验证,并得出结论。生在不断的发现中很自然地得到“三角形内角和是180°”的猜想。这样既使学生在这个探究过程中得到快乐的情感体验,又使学生有高度的热情去继续深入地研究“是否任何三角形内角和都是180°”。

二、小组合作,自主探究

任何一项科学研究活动或发明创造都要经历从猜想到验证的过程。“是否任何三角形内角和都是180°”,这个猜想如何验证,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、拼一拼、折一折,让学生在小组内完成从特殊到一般的研究过程。然后再小组汇报研究结果以及存在问题。教师根据学生实际情况充分把握好生成性资源,让学生认识到有些客观原因会影响到研究的结果的准确性。例如,有些小组的学生量出内角和的度数要高于180°或低于180°,先让学生讨论一下有哪些因素会影响到研究结果的准确性。

三、练习设计,由易到难

研究是为了应用,在应用“三角形内角和是180°”这一结论时,第一层练习是已知三角形中两个内角的度数,求另一个角。第二层练习是已知等腰三角形中顶角或底角的度数,让学生应用结论求另外的内角度数。第三层练习是让学生用学过的知识解决四边形、五边形、六边形的内角和。练习设计提问体现开放性,“你还知道了什么”,让学生根据计算结果运用已有经验去判断思索。

四、教学中存在不足

在教学中,由于我对学生了解的不够充分,让学生自己想其它的验证方法,难度较大,浪费了大量时间,使教学任务不能完成,练习较少,新知没有得到充分巩固,以后应引起重视。在设计教案时要了解学生,深入教材,精心设计。

《三角形的内角和》教学反思 篇四

这节课我让学生经历观察、猜想、实验、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。在学生猜测三角形的内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。

新课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程中进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。我在实施探究学习时采用了以下的教学策略:

(1)创设问题情境,引导学生发现问题,思考问题。

本节课我在教学上先通过大小三角形争论故事引入,让学生产生疑问,继而借助特殊三角形(三角尺)初步感知这些三角形的内角和是180度,让学生猜测是否所有的三角形的内角和都一样呢?学生初步建立一个表象,学生运用已有的知识经验能否解决这样的问题呢?这个问题为后面的猜测和验证做了铺垫,引发思考,激发学习兴趣。引导学生从特殊三角形过渡到一般三角形的验证规律。

(2)创造解决问题的环境,给充分的机会和时间让学生解决问题。 学生在问题面前是退缩还是前进呢?这就看老师如何有效地引导。我预先要求每位学生准备了一些各式各样、大小各异的三角形,还有剪刀,量角器,白纸,直尺等,让他们经历观察、猜想、实验、证明等数学活动过程。同时提出两个问题,第一:你选用什么三角形, 采用什么方法来验证?第二:经过操作得到什么结论?使学生在操作上有更强的目的性和指向性。学生分小组对大小不一的三角形进行验证,经历量一量、算一算;撕一撕,拼一拼;折一折,量一量等一系列操作活动,从而得出“三角形的内角和是180°”这一结论。整个探究过程学生是自主的、积极的。学生通过操作,思考,反馈等过程真正经历了有效的探究活动。

对于这堂课的困惑,我觉得在有效教学当中,应该如何更好地处理“预设”与“生成”之间的关系,如何巧妙地抓住课堂中的生成,适时调整教学环节。教学设计在准备阶段,我已预设了相关的教学环节。但真正在课堂实施时,可能会出现一些不可预知的因素。如在这节课上的练习环节中,有这样一道题目:已知直角三角形的一个角是40度,求第三个角的度数。在全班交流的时候,有一个学生很快就说出90度-40度=50度。其实在预设教案时,这种方法是最后才提到的,此时我就没有能好好去把握这个有价值的生成资源,把学生聚焦在如何利用简算来解决问题。我完全可以让这些学生说说自己的思考过程,这样做既让学生在解题方法上得到扩充,同时又符合学生的认知规律。要把握在课堂上出现的一些“生成”的资源,如何加以好好的利用。

不足之处:

1.验证猜想环节中,学生的方法虽然各有不同,但方法较单一,语言表达能力欠佳,思维比较定势,不敢大胆尝试不同的方法去验证自己的猜想。

2.评价语言和方法都太单一,激励性评价没有层次。发言的学生面比较窄。

3.教师语言不简练,老重复,总怕学生听不清楚,听不明白,语言罗嗦是我一直以来的大毛病,以后要克制自己学生会说的自己不代替,尽量不重复。

4.因为学生在以前的学习活动中,对剪拼和拼折的方法接触的太少,考虑到课堂教学时间的关系,所以教师引得太多,给学生的自主发现机会太少。

《三角形的内角和》教学反思 篇五

一、设计思路:

这节课是上“三角形内角和”,因为学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出一块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°,再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

二、教学反思

这篇教学设计通过施教,符合新课程理念,转变学生的学习方式,能让学生以小组合作的形式进行问题的探索与研究,学生在整节课中学得轻松。整节课的教学设计,条理清晰,层次清楚,教学一开始从学生熟悉的三角板抽象出特殊的三角形探讨三角形的内角和是180°,接下来很自然地引导学生探讨所有的三角形的内角和是不是也是180,过渡自然且有吸引力。

但在学习活动的过程中,首先我觉得语言不够生动、连贯,声音也很小。其次,学生在进行操作活动前,我也没有明确说明操作方法,使学生不理解操作的用意,也没有让学生在操作中真正证实“三角形的内角和是180°”的结论。最后,对三角形内角和的归纳也没有完整,等等

总之,在这节课中存在着很多不足,今后我将花更多的时间在课堂教学方法、策略的研究上,使自己不断进步。

《三角形的内角和》教学反思 篇六

我执教的《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《多边形的内角和》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习和掌握三角形的内角和是180°这一规律具有重要意义。

一、创设情境,营造探究氛围。

怎样提供一个良好的探究平台,使学生有兴趣去研究三角形内角的和呢?爱因斯坦说过:“问题的提出往往比解答问题更重要”,因此这节课在复习旧知“三角形的特征”后,我引出了研究问题“三角形的内角指的是什么?”“三角形的内角和是多少?”“你猜三角形的内角和是多少度?你是怎么猜的?这个问题一抛出去马上激发学生的学习热情。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。

二、操作验证,突破重难点,积累数学活动经验。

《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是“知其然而不知其所以然”,所以我觉得本课的重点就是要让他们知道“知其所以然”,因此接着就让学生分组讨论:有什么办法可以验证得出这样的结论。学生会提出度量、折一折的方法,然后让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形以小组为单位有选择的用度量的方法或者用折一折的方法,通过小组合作交流,让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,从中获益,增加了学生的合作探究精神,有意识地培养学生逻辑推理能力,增强了语言表达能力,并潜移默化中渗透了一个重要数学思想―――转化思想。

在猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。

三、练习设计,由易到难

研究是为了应用,在应用“三角形内角和是180°”这一结论时,第一层练习是基础练习题:已知三角形中两个内角的度数,求另一个角;已知一个角的度数(等腰三角形中顶角或底角的度数),让学生应用结论求另外的一个内角的度数;一个角的度数都不交代,给出三角形的特征(等边三角形),求这个三角形每个角的度数。第二层练习是让学生用学过的知识解决生活中实际问题的内角度数。第三层练习是拓展深化练习,让学生运用已有经验去判断思索,如:“大三角形的内角和比小三角的内角和大”对吗?“你能画出两个直角三角形吗?为什么?等问题。体现习题设计的坡度性与层次性,让不同的学生都各有所收获,关注了学生差异问题。

四、教学中存在不足

在教学中,由于我对学生了解的不够充分,让学生自己想其它的验证方法,难度较大,浪费了大量时间,拖课了。因此在设计教案时要深入了解学生,反复研究切合实际的教学设计,这是我在以后的备课中要注重的地方。

《三角形的内角和》教学反思 篇七

在学校教学示范课上,讲了《三角形的内角和》一课。整节课还算比较顺利,在课堂是完成了教学目标,并且体现了小组合作学习的探究的过程。现在总结一下课堂上的几点不足:

1、学生小组合作学习的能力还有待于进一步培养

在课堂教学的重点过程中,我设计的是小组合作探究,“先讨论有几种验证方法,再分别选择不同的方法验证,验证后在小组内交流”这样的目的是为了在尽量短的时间内使学生通过不同的验证方法得出共同的的结论,在交流的过程中学生能够清晰的观察到不同的验证方法,这样一个人的验证过程就成了几个人人学习成果。既节省了时间,又能让学生接受到尽量多的信息。但是学生们的表现却不令人满意,也许是公开课学生放不开的原因,他们只是各自验证完了和同桌交流一下,完全没有以往在班级里那种热烈讨论的气氛。虽然我在后面的学习汇报过程中使用了投影仪展示,但还是不如学生小组内交流更直接。因此,我这一设计的目的效果不理想。

2、我本身驾驭课堂的能力还有待于提高

由于在试讲的过程中我设计的最后一个练习题没有完成,而这一道题又是这堂课教学内容一个升华,因此我想尽量完成。在课堂教学的过程中我尽量控制时间,由于过于注意时间,导致了在学生用投影仪演示完后,为了更清晰的演示折、拼的过程的动画忘了播放,影响了又一个给学生直观展示的机会。这一问题的出现我觉得是我自身驾驭课堂的能力还不够,有待于进一步提高。

《三角形的内角和》教学反思 篇八

新课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。

这节课我设计了以“观察—猜想—验证—应用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。

这节课我创设了学生喜欢的情境:“三个三角形的争吵”入手,让学生自己动手探索三角形的内角和。让学生“量一量”“剪—拼”贴近了学生的生活,降低了学习难度,注重学生们的动手实践,亲生去体验去感悟。在操作反馈的过程中我提出了两个问题:第一,你选用什么三角形,采用什么方法来验证;第二,经过操作得到什么结论。学生分小组对大小不一的三角形进行验证,经历量、剪、拼一系列操作活动,从而得出“三角形内角和是180°”这一结论。

本节课不足之处:

1学生在还没学习三角形的特性和三角形三边的关系及三角形的 内角和的基础上进行学习三角形内角和。就无法复习三角形的有关知识。

2、在解决三角形内角和是什么这个问题,说的不够透彻,课后我 改成这样,先让两个学生说,说完让一个学生指出来,指完并让他用黑色水笔画出来。为验证三角形内是180度做铺垫。

3、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如 何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。而且由于内角和这个概念没有讲清楚,学生在这一环节花了一定的时间。

4、在学生汇报方法时,还应该用尺子比一下拼后的三个角是在一 条直线上,更直观的说明三个角形成一个平角,三角形的内角和是180°。

5、练习设计是有分层次,但是学生说的较少,我比较急地去分析, 留给学生的时间不足这是我今后要特别注意的一个方面。

本节课我引导学生用测量或剪拼的方法探究三角形的内角和。并会运用三角形的内角和解决实际问题,但整堂课引导的比较急躁,今后我要朝着更加完美的方向努力,我愿意锻炼和改变自己。

学而不思则罔,思而不学则殆。以上8篇《三角形的内角和》教学反思就是高考家长帮小编为您分享的三角形内角和教学反思的范文模板,感谢您的查阅。