作为一位兢兢业业的人民教师,往往需要进行教案编写工作,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。我们该怎么去写教案呢?本文是编辑给家人们收集整理的15篇比的基本性质的相关内容,欢迎借鉴。
《比的基本性质》 篇一
一、创设情境,导入新课
1、提问
师:除法、分数和比之间有什么联系?
2.做复习题,师:第一题你这样做根据的是什么?(商不变的性质)它的内容是什么?第二题呢?
3.导入课题:
我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。下面,我们就一起研究研究。(板书课题:比的基本性质)
二、学习新课
1.教学例3比的基本性质。
(1)学生填表(2)提问:联系商不变的性质和分数的基本性质这两个性质想一想:在比中又有什么规律可循?
(3)师生共同总结比的基本性质演示课件“比的基本性质”比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
(4)师:你觉得哪些词语比较重要? 0除外你怎样理解得?
2.教学例4应用比的基本性质化简比。
我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。
出示:把下面各比化成最简单的整数比
(1)12:18 (2) (3)1.8:0.09
(1)让学生试做第(1)题
师:你是怎么做的?6和12、18有着怎样的关系?
引导学生小结出整数比化简的方法:用比的前后项分别除以它们的公约数,使比的前后项是互质数。
(2)化简 (2)
师:这个比的前、后项是什么数?(分数)我们已经会化简整数比了,那么你能不能利用比的基本性质把分数比先化成整数比呢?
(3)引导学生小结出分数比化简的方法:(演示课件出示)比的前、后项同时乘以它们的分母的最小公倍数,就可以把分数比转化成整数比,进而化简成最简单的整数比。
(4)化简(3)1.8:0.09
师:想一想如何化简小数比呢?
让学生独立在书上化简,指名板演
师:那么应用比的基本性质把整数比、小数比、分数比化成最简单的整数比的方法是什么?
三、巩固练习
1.练一练,填完整
2.做练习十三第5-8题。
3.补充练习
选择
1.1千米∶20千米=( )
(1)1∶20 (2)1000∶20 (3)5∶1
2.做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是( )
(1)20∶21 (2)21∶20 (3)7∶10
四、课堂小结
师:通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?
《比的基本性质》 篇二
课题:比的基本性质
教学目标:
1、 使学生理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。
2、通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。
教学重点:理解比的基本性质。
教学难点: 正确应用比的基本性质化简比。
对策:
引导学生观察、比较、归纳出比的基本性质。
教学预案:
一、复习
1、36÷4=( )÷8=( )÷2
24÷12=48÷( )=12÷( )=6÷( )
师:填写时,你是怎样想的?
引导学生回忆商不变规律:被除数与除数同时乘或除相同的数(0除外),商不变。
2、
师:填写时,你是怎样想的?
引导学生回忆分数的基本性质:分数的分子与分母同时乘或除以相同的数(0除外),分数的大小不变。
二、 新授
(一)认识比的基本性质
1、出示例题3
师:先说出质量与体积的比是几,再求出质量与体积的比值。
2、 观察表格中的数据,你发现了什么?
我们可以发现有三个比的比值相同,说明了它们质量与体积的比也相等,用连等号来表示。
板书:4:5=16:20=40:50
3、 师:观察这个等式,什么在发生变化?是怎样变化的?什么没变?(让学生结合等式中的数据进行说明)
4、 谁来说说你们发现的规律?
生:比的前项和后项同时乘或除以同一个数,比值不变。(教师板书)
5、比的前项与后项可不可以同时乘以0,为什么?可不可以同时除以0?
板书中补充:(0除外)
说明:这就是比的基本性质。
(板书:比的基本性质)
5、 你觉得商不变规律、分数的基本性质与比的基本性质有什么联系?
6、 运用:出示第71页上练一练第1题
让学生独立填写,组织交流。说明填写理由。
7、我们看一下这三组比,前后两个比的比值虽然相同,但是哪个比看上去更简单一点?
师:我们把像这样的比(8:5、3:5)叫做最简单整数比。想一下,最简单整数比有什么特征?
生:比的前项和后项都是整数,且只有公因数1
(二)化简比
利用比的基本性质,我们可以把一些比化成最简单的整数比。
1、 出示例题4
提问:这三个比分别是怎样的比?
整数比怎样化成最简单的整数比呢?先自己独立尝试
组织交流。教师板书。追问:为什么要除以6?体会到要同时除以前项和后项的最大公因数。
2、巩固:化简比: 21:35 24:36 85:68
独立完成,指名板演,组织评析,体会方法。
3、出示第二个比,提问:怎样将分数比化成最简单的整数比呢?你们是否在想:如果是整数比我们就也可以化简了,对吗?那怎样将它们变成整数比呢?
组织学生讨论,交流:
5/6:3/4=(5/6╳12):(3/4╳12)=10:9
师:这里为什么要同时乘以12
引导学生要将前项和后项同时乘分母的最小公倍数。
如果不乘最小公倍数会出现什么情况?
现在谁来说说怎样将分数比化成最简单的整数比?
4、巩固:化简比: 1/2:1/3 3/5:4/7
独立完成,指名板演,组织评析,体会方法。
5、出示1.8:0.09
师:这是一个什么比?那应该怎样化简呢?
组织学生讨论,交流:1.8:0.09=(1.8╳100):(0.09╳100)=180:9=20:1
师:为什么要乘以100呢?
师:那我乘以10可不可以?为什么?那为什么不乘1000?那看什么来确定乘的数是10还是100、1000-------?(小数位数多的哪个数是几位小数)
6、巩固:0.32:0.24 1.5:45 3:0.6
7、谁来说说化简比的方法?学生交流,教师总结:在化简比时,如果是整数比我们只要将比的前项和后项同时除以它们的最大公因数;如果是分数比,要把这个比的前项和后项同时乘分母的最小公倍数;如果是小数比,先要把小数比根据小数的位数(以一小数位数多的为标准),乘以10、100或1000……化为整数比,如果还不是最简单的整数比,则要化简为最简单的整数比。
三、 巩固提高
练一练第2题:独立完成,指名板演,组织评析
四、布置作业:第73页第6题:独立完成在课堂作业本上,组织交流。
课前思考:
高教导设计的这一课时的教学预案思路非常清晰,我会认真学习并内化。
在复习部分,我想是否可增加分数的通分和约分,让学生能以此来回忆分数的基本性质。
例3教学比的基本性质,用表格呈现了4瓶液体的质量和体积。教学活动从写出各瓶液体质量和体积的比,并求出比值开始。先把比值相等的3个比写成等式,再得出比的基本性质。由于有分数的基本性质和除法商不变规律的经验,尤其是提示了“联系分数的基本性质想一想”,学生理解比的性质应该是顺利的。教材编写放得很开,正是出于上面的考虑。教学中教师要组织学生联系旧知来验证、领悟比的基本性质。
结合比较4∶5、16∶20和40∶50,看出4∶5比另两个比简单,体会它的前项与后项都是整数,而且只有公约数1,不能再化简了。学生由此能理解“最简单的整数比”的含义,更能自然地过渡到化简比的教学中去。
例4教学化简比,三小题分别是化简整数比、分数比和小数比。在教学这三小题化简比的过程中要及时组织学生小结不同的方法,尤其要让学生加深对最简比这一概念的理解。高教导的教案中已体现了这一点,在实际教学中我要特别注意。
课前思考:
对于比的基本性质,不仅要求学生理解其内容,更重要的是会应用,即化简比。例题的3道小题的教学使学生掌握各种情况化成最简整数比的方法:(1)是整数比,一般要把比的前项和后项都除以它们的最大公约数;(2)是分数比,一般先把比的前项和后项都乘以两个分数的分母的最小公倍数,转化成两个整数比再化简;(3)是小数比,第一步应用小数点向右移动相同位数的方法化成整数,再化简。练习时要求学生说一说怎么想,使学生能够灵活地运用学过的知识。
课后反思:
本课时的教学重点是让学生理解比的基本性质和学会运用比的基本性质进行化简比,教学难点是如何灵活运用比的基本性质化简比。
反思今天的课堂教学,在化简比这一环节上教学时有点粗糙,没有充分利用例题4向学生讲清化简比的基本思路。例题呈现的三个比是比较典型的,分别是由两个整数组成的比、由两个分数组成的比、由两个小数组成的比。在进行化简比的过程中,遇到第一种情况是寻找这两个整数的最大公因数,然后用比的前、后项同时除以这个最大公因数进行化简;第二种情况是找到这两个分数分母的最小公倍数,然后用比的前、后项同时乘这个最小公倍数,得到两个整数组成的比,再用第一种情况的方法进行化简;第三种情况先将这两个小数扩大相同倍数变成两个整数,再化简。大部分学生能理解和运用学到的方法来进行化简比,但实际练习中还遇到更复杂一些的情况或是需要选择最佳方法,由于刚学习这一新知识,还不能达到这一水平,需在下节练习课中进行这方面的练习。
课后反思:
比的基本性质是在学生已经学习了比、分数和除法的关系,商不变的性质和分数的基本性质的基础上进行教学的。由于比、分数、除法有着密切的联系,根据商不变的性质、分数的基本性质自己完全可以推导出比的基本性质,所以这节课利用知识迁移,让学生猜测、验证推导出比的基本性质。
上课时先复习整数除法中“商不变的性质”和分数中“分数的基本性质”,根据比与分数、除法的联系,让学生猜一猜比有这样的性质吗?学生猜测出比的基本性质,让学生举例验证这一猜测是正确的。学生出现以下几种验证的方法:
1、用分数的基本性质来验证:
2、用商不变性质来验证:
3、通过计算比值来验证
我认为小组活动非常有必要,安排足够的时间让学生充分猜想、举出充分的例子来说明他们猜想的正确性。因为有“商不变的性质”和“分数的基本性质”作基础,所以学生的猜测较容易,验证的方法各有不同,这里完全放手,让学生大胆去猜,但并非单纯的模仿,自己举例验证猜测的正确性,使学生养成严谨的思考问题的方式。
大部分学生通过学习能理解和运用学到的方法来进行化简比。对于化简1.25:2这题时大部分学生只能想到同时乘100,全班只有一个学生想到同时乘4更简便。
《比的基本性质》 篇三
第十三课时:比的基本性质
教学内容:课本第57页的内容及例1,完成“做一做”题和练习十四的第5~9题。
教学目的:使学生理解比的基本性质,掌握化简比的方法。
教学过程:
一、复习。
1.除法中的商不变规律是什么?
2.分数的基本性质是什么?
3.比与除法有什么关系?
4.比与分数有什么关系?
二、新授。
1.教学比的基本性质。
我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。
问:在比中有什么样的规律?
引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。
问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)
2.教学化简比。
利用比的基本性质,我们可以把比化成最简单的整数比。
出示例1:把下面各比化成最简单的整数比。
(1)
问:这道题的前项和后项都是什么数?怎样才能使它化成最简整数比?(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)
(2)
问:这是一道分数比,怎样才能使它转化成整数比?(引
导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)
化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。
(3)
问:这道是小数比,怎样化成整数比?(启发学生说出:可根据比的基本性质,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)
或
3.小结:
问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?
三、巩固练习。
1.完成“做一做”的题目。
让学生说一说化简的方法。
2.练习十四第5、7、8题。
3.练习十四第9题。
提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)
四、作业。
1.练习十四第6、10题
2.一列火车15小时行驶1200千米。
(1) 写出行驶的路程和时间的比,并化成最简单的整数比。
(2) 求出这个比的比值,再说出这个比值的含义是什么?
《比的基本性质》 说课稿(人教版六年级上册 篇四
P45《比的基本性质》
一、学情分析
新课标中指出“小学数学教学必须从学生的生活实际出发,设计富有情趣和意义的活动,使他们从周围熟悉的事物中学习数学,运用数学。”其实就是让学生带着已有的生活经验、认知经验进入课堂,参与学习。在认知经验中,学生已经理解了除法的意义与基本性质、分数的意义与基本性质,以及分数与除法的关系等知识,掌握了分数乘、除法的计算方法,会解答分数乘、除法实际问题且理解了比的意义。有了这些知识的储备,学生只要进行知识的迁移、类比就可以自主探究出比的基本性质。学生理解并掌握比的基本性质,不但能加深对商不变性质、分数的基本性质、比的意义、比和分数、比和除法等知识的理解与掌握,而且也为以后学习比的应用,比例知识,正、反比例打好基础。
二、教材处理
根据教材的编排和学生已有的知识经验,我对本段教材的教学作出以下两点处理:
1、比的基本性质的探究
原教材联系比和除法、分数关系,通过“想一想”启发学生找出比中有什么样的规律?然后概括比的基本性质。我认为这样的编排是一种纯数理之间的推理,是符号之间的运算,欠缺生活气息,难以激发学生的探究热情。为此,我创设了一个生活情境,让学生在解决生活问题的过程中激发探究欲望,不着痕迹地完成了“比的基本性质”的探究过程。
2、例1的教学
例题由两道题组成。第(1)题采用“神州五号”的题材。此素材有利于渗透情感价值观的教育,且蕴含了相似变换的数学思想,是非常好的编排。第(2)题给出的两个比,我认为过于单调,且没能涵盖比的各种呈现形式,为体现课堂的动态生成,教学资源的丰富性,我采用了开放性的教学内容,让学生在学习第(1)题的基础上自主举例练习化简整数与分数、分数与分数、整数与小数、小数与小数、分数与小数等各种比。
以上两点处理均基于数学教育的生活化、数学资源的多元化的现代数学教育教学理念进行个性处理的,并以此提升学生在课堂教学中的主体地位,体现课堂教学的动态生成。
三、教学目标
①知识目标:使学生领悟并理解比的基本性质。
②能力目标:运用比的基本性质,让学生通过尝试来化简并探讨出不同类型比的多种化简方法,从而培养学生的应用能力和创新能力。
③情感目标:感受生活中处处有数学,数学就在我们身边。培养学生积极、自主的学习探究兴趣,使每个学生都尝到成功的喜悦。
四、教学策略
1、坚持“发展为本”,促进学生个性发展,并在时间和空间诸方面为学生提供发展的充分条件,以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,注意引导学生怎样有序观察、怎样概括结论,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、抽象概括能力逐步提高,教会学生学习。使学生通过自己的努力有所感受,有所感悟,有所发现,有所创新。
2、小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。
3、“学以致用”是学习的出发点和归宿点,也是学习数学的终结所在。让学生感到数学的有趣和可学,我们还应注重将数学知识提升应用到生活中,提高学生处理问题的实际能力,让数学课堂真正成为学生活动的、创造的课堂。
五、教学程序设计
(一)创设生活情境,以激发学生的探索欲望
上课开始,我询问学生:“同学们喜欢喝果珍吗?”大部分同学会说愿意并会表示他们愿意喝更甜一些的。这时我会适时的向学生说明其实小明同学和大家一样也喜欢喝甜的果珍,这不小明的妈妈给小明准备了三杯果珍,但只能选择其中的一杯,哪杯甜呢?这下难坏了小明,聪明的同学们,你们愿意帮助他吗?多媒体课件演示:第一杯100毫升的水,10克果珍;第二杯200毫升的水,20克果珍;第三杯400毫升的水,40克果珍。同时我也以此在讲台上做了这个实验,同学们会兴致盎然,想尽各种办法帮助小明。
(设计意图是:因为每一个学生都是热情的,都是乐于助人的,尤其是愿意帮助同学解决问题,因此一听说帮助同学,学生会产生极大的兴趣,兴趣就是学生思维的原动力,只要有兴趣,就会产生创造性的源泉。另外小明的困难又是学生熟悉的生活情境,这有利于学生凭借生活经验主动探索,实现生活经验数学化,同时又感受到“数学源于生活”。)
(二)引导学生发现规律,总结比的基本性质
同学们帮助小明解决问题,有的利用商不变性质,有的利用分数的基本性质。学生在师生互动中说出商不变性质,分数的基本性质的内容。(屏幕出示文字内容。)我接着询问在分数的基本性质里,有哪些关键词?在商不变的性质里,有哪些关键词?缺少他们行吗?为什么?通过类比让学生想到比的基本性质,从而引出课题。
(设计意图是:先通过学生回忆已学旧知,进而猜想比的基本性质从而引出课题,放飞了学生思维,让他们自主地依据已有知识经验,在观察、合作、猜想、交流中展开合理的想象与多角度思考。)
接下来,让学生观察商不变性质与分数的基本性质,猜一猜,想一想,比的基本性质应该是怎样的呢?小组讨论,学生根据讨论结果发表意见,师生共同总结比的基本性质的内容。最后强调学习了比的基本性质,哪些词语是很重要,提醒同学们注意“同时、相同、0除外”这些关键词。
(设计意图是:让学生体会到充分利用已有知识自学新知的学习方法,进一步弄清了比、除法、分数之间的联系与区别。然后通过引导学生用语言描述,共同完善比的基本性质,使学生在这一过程中,领悟了利用旧知学习新知的学习方法,沟通了知识间的联系,又培养了学生初步的类比推理能力。)
(三)理解最简整数比
通过类比让学生明白利用商不变性质,我们可以进行除法的简算;根据分数的基本性质,我们可以把分数约分成最简分数。同样应用比的基本性质,可以把比化成最简单的整数比。小组讨论怎么理解“最简单的整数比”这个概念?然后达成共识:(1)是一个比;(2)前项、后项必须是整数,不能是分数或小数;(3)前项与后项互质。
(设计意图是“最简单的整数比”是本节课教学的难点,所以先类比然后让学生讨论最后对这个概念产生共识的方法,让学生在独立思考、互动交流中自发地尝试利用已有的知识来解读新概念。)
(四)教学例1
1、教学第(1)题
(1)出示例1的第(1)题。
(2)让学生阅读例题,说说图片中的事件,并按要求列出两个比,然后尝试运用比的基本性质把两个比化成两个最简单的整数比。
(3)师生点评,小结。
(4)提出问题:两面旗的长、宽不一样,但化成最简单整数比后是一样的,你发现了什么?
2、谈话:以上我们学习了利用比的基本性质化简比的知识,但比的呈现形式有很多,你能不能自己举例出不同的比,并进行化简呢?
(1)要求:分小组进行探究活动,每小组分别举出整数与分数、分数与分数、整数与小数、小数与小数、分数与小数的一个例,并在小组内完成探究练习。
(2)小组汇报探究成果。
(3)简单小结各种比的化简办法。
(这样的设计充分体现了学生的主体地位,把课堂交给学生,让课堂教学资源多元化,让学生在提出问题、解决问题中提升学习能力,在探究活动中体会到学习数学的乐趣)
(五)应用与拓展
1、完成教材46页的“做一做”。
2、判断。
(1)比的前项和后项都乘5,比值不变。
(2)比的前项扩大2倍,要使比值不变,后项应除以2。( )
(3):12化成最简整数比是3:48。( )
3、完成教材48页第6题。
(设计意图:层次性训练中,提高学生知识技能,发展学生个性。第1题是基础性练习,让学生巩固比的基本性质的应用。第2题是判断题,设计目的是加深学生对比的基本性质的理解。第3题使用讨论形式,通过全班的辩论,提高了学生解决问题的能力。)
《比的基本性质》 篇五
教学目标
1.理解。
2.正确应用化简比。
3.培养学生的抽象概括能力,渗透转化的数学思想。
教学重点
理解。
教学难点
正确应用化简比。
教学过程
一、复习引入
(一)复习商不变的性质
1.谁能直接说出60÷25的商?
2.你是怎么想的?
3.根据是什么?内容是什么?
(二)复习分数的基本性质
约分:
通分:
根据是什么?内容是什么?
(三)求比值
3∶2 8∶4 7∶21 27∶9
5∶25 16∶4 24∶5 2∶1
二、讲授新课
我们以前学过商不变的性质和分数的基本性质,联想这两个性质,想一想:在比中又有什么样的规律?
(一)
1.把练习3中8∶4和2∶1这两个比找出来
2.教师提问
这两个比有什么共同点吗?(比值都相等)
这两个比有什么不同点吗?(前项和后项都不同)
我们可以说8∶4和2∶1相等吗?
你是怎么想的?
(1)根据比与除法的关系(商不变的性质)
8∶4=8÷4=(8÷4)÷(4÷4)=2÷1=2∶1
(2)根据比与分数的关系(分数基本性质)
8∶4= = = =2∶1
3.学生尝试概括(演示课件)
(1)教师板书:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
板书课题:
(2)教师强调:“同时”“相同”“0除外”几个关键词
(二)化简比
1.练习引入
学校有8个篮球,12个排球,篮球和排球个数的比是多少?
(1)篮球和排球的个数比是8∶12
(2)篮球和排球的个数比是2∶3
讨论:篮球和排球的个数比是写成8∶12好,还是写成2∶3好?
2.最简单的整数比
最简单的整数比就是比的前项和后项是互质数,如2∶3就是最简单的整数比。
3.化简比
例1.把下面各比化成最简单的整数比。
(1)14∶21=(14÷7)∶(21÷7)=2∶3
讨论:化简整数比的方法是什么?
(2) ∶ =( ×18)∶( ×18)=3∶4
讨论:分数比怎么化简?为什么要乘上18?乘上9可以吗?
(3)1.25∶2=(1.25×100)∶(2×100)=125∶200=5∶8
1.25∶2=(1.25×4)∶(2×4)=5∶8(更好)
讨论:怎样把小数比化成最简单的整数比?
4.小结化简比的方法
(1)都化成整数比
(2)利用把比的前、后项同时除以它们的最大公约数,直到前、后项互质为止。
(三)区别化简比和求比值
1.练习
比
最简单的整数比
比值
25∶100
∶
4.2∶1.4
1∶
2.讨论:化简比和求比值的区别是什么?
区别:化简比的结果还是一个比,是一个最简单的整数比;求比值的结果是一个数。
例如:25∶100化简比的结果是 ,读作1比4,求比值的结果是 ,读作四分之一。
第 1 2 页
《比的基本性质》 篇六
教学内容:课本第48-51页的内容及例1,完成“做一做”题和练习十二的第5~15题。
教学目的:使学生理解比的基本性质,掌握化简比的方法。
教学重、难点:化简比的方法。
教学过程:
一、复习。
1.除法中的商不变规律是什么?分数的基本性质是什么?
2、比与除法、分数有什么关系?
3、求比值 5:154/5:8/15 0.8:0.12
二、新授。
1、教学比的基本性质。
我们刚才复习了除法中商不变规律和分数的基本性质,又知道
和除法、分数有着密切的联系,比的前项相当于被除数,比的
项相当于除数;比的前项也相当于分数的分子,比的后项相当
分母。
那么在比中有什么样的规律?让学生自己讨论初步说出结论
比的前项和后项同时乘以或者同时除以相同的数(零除外)
比值不变。这就是比的基本性质。也可以阅读书上内容说出答案。
注意:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)
2. 教学化简比。
利用比的基本性质,我们可以把比化成最简单的整数比。
出示例1:把下面各比化成最简单的整数比。
(1)14:21(2)1/6:2/9(3)1.25:2
(1)问:这道题的前项和后项都是什么数?怎样才能使它化成最简的整数比呢?(先让学生自己讨论解答,然后引导得出:要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)
(2)问:这是一道分数比,怎样才能使它转化成整数比?(让学生自己动手做,后对照课本上的例题做法,对或者错,共同完成后引导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比)化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。
(3)问:这道是小数比,怎样化成整数比?(让学生说说并自己解答。指导根据比的基本性质,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比)
(4)还有其它解法吗?可根据学生所答具体分析,特别是分数比实际上可用是分数除法来计算化简。
小结:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?特别提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)
三、巩固练习。
1. 完成“做一做”的题目。
让学生说一说化简比的方法。
2. 练习十二第5、7、8题。
3. 练习十二第9题。
四、作业。练习十二第6、10题
《比的基本性质》 篇七
六 年级 数学 科目集体备课教案
课题:比的基本性质(1)
本课初备
课时
共 7课时,本课第 2课时
个人复备栏
教学目标: 1、 使学生理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。 2、通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。重点难点: 理解比的基本性质。 正确应用比的基本性质化简比。课前准备: 小黑板教学过程: 一、复习 1、36÷4=( )÷8=( )÷2 24÷12=48÷( )=12÷( )=6÷( ) 师:填写时,你是怎样想的? 引导学生回忆商不变规律:被除数与除数同时乘或除相同的数(0除外),商不变。 2、师:填写时,你是怎样想的? 引导学生回忆分数的基本性质:分数的分子与分母同时乘或除以相同的数(0除外),分数的大小不变。 二、 新授 (一)认识比的基本性质 1、出示例题3 师:先说出质量与体积的比是几,再求出质量与体积的比值。 2、观察表格中的数据,你发现了什么? 我们可以发现有三个比的比值相同,说明了它们质量与体积的比也相等,用连等号来表示。 板书:4:5=16:20=40:50 3、师:观察这个等式,什么在发生变化?是怎样变化的?什么没变?(让学生结合等式中的数据进行说明) 4、谁来说说你们发现的规律?生:比的前项和后项同时乘或除以同一个数,比值不变。(教师板书) 5、比的前项与后项可不可以同时乘以0,为什么?可不可以同时除以0? 板书中补充:(0除外) 说明:这就是比的基本性质。 (板书:比的基本性质) 5、你觉得商不变规律、分数的基本性质与比的基本性质有什么联系? 6、运用:出示第71页上练一练第1题 让学生独立填写,组织交流。说明填写理由。 7、我们看一下这三组比,前后两个比的比值虽然相同,但是哪个比看上去更简单一点? 师:我们把像这样的比(8:5、3:5)叫做最简单整数比。想一下,最简单整数比有什么特征? 生:比的前项和后项都是整数,且只有公因数1 (二)化简比 利用比的基本性质,我们可以把一些比化成最简单的整数比。 1、出示例题4 提问:这三个比分别是怎样的比? 整数比怎样化成最简单的整数比呢?先自己独立尝试 组织交流。教师板书。追问:为什么要除以6?体会到要同时除以前项和后项的最大公因数。 2、巩固:化简比: 21:35 24:36 85:68 独立完成,指名板演,组织评析,体会方法。 3、出示第二个比,提问:怎样将分数比化成最简单的整数比呢?你们是否在想:如果是整数比我们就也可以化简了,对吗?那怎样将它们变成整数比呢? 组织学生讨论,交流: 5/6:3/4=(5/6╳12):(3/4╳12)=10:9 师:这里为什么要同时乘以12 引导学生要将前项和后项同时乘分母的最小公倍数。 如果不乘最小公倍数会出现什么情况? 现在谁来说说怎样将分数比化成最简单的整数比? 4、巩固:化简比: 1/2:1/3 3/5:4/7 独立完成,指名板演,组织评析,体会方法。 5、出示1.8:0.09 师:这是一个什么比?那应该怎样化简呢? 组织学生讨论,交流:1.8:0.09=(1.8╳100):(0.09╳100)=180:9=20:1 师:为什么要乘以100呢? 师:那我乘以10可不可以?为什么?那为什么不乘1000?那看什么来确定乘的数是10还是100、1000-------?(小数位数多的哪个数是几位小数) 6、巩固:0.32:0.24 1.5:45 3:0.6 7、谁来说说化简比的方法?学生交流,教师总结:在化简比时,如果是整数比我们只要将比的前项和后项同时除以它们的最大公因数;如果是分数比,要把这个比的前项和后项同时乘分母的最小公倍数;如果是小数比,先要把小数比根据小数的位数(以一小数位数多的为标准),乘以10、100或1000……化为整数比,如果还不是最简单的整数比,则要化简为最简单的整数比。 三、 巩固提高 练一练第2题:独立完成,指名板演,组织评析 四、布置作业:第73页第6题:独立完成在课堂作业本上,组织交流。板书设计: 练习设计: 《教案与作业设计》155页教后记:
参加备课人员
六 年级 数学 科目集体备课教案
课题:比的基本性质(2)
本课初备
课时
共 7课时,本课第3课时
个人复备栏
教学目标: 1、使学生进一步理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。 2、运用比的基本性质解决一些实际问题。重点难点: 进一步理解比的基本性质。 正确应用比的基本性质化简比。教学过程: 一、复习 1、比的基本性质是怎样的? 2、化简下面各比。 57:81 3/4:7/8 0.12:2.4 学生独立完成,指名板演,组织评析,巩固化简比的方法。 二、教学化简比的另一种方法 1、谈话:化简比还有另一种方法,想学吗?想一想,比和什么有关? 1、那么57:81可以看作57/81,分数约分成最简分数,或者求比值,结果用分数来表示,你会吗?试一试。 2、组织学生交流。 57/81=19/27 想一想,怎样读?为什么读成19比27?能读成分数吗?为什么? 3/4:7/8=3/4乘8/7=6/7 3、那0.12:2.4还可以怎样化简? 引导学生先将小数化成分数,再当成分数除法计算: 12/100÷ 24/10 =12/100乘10/24=1/20 4、小结:在化简比时,除了应用比的基本性质之外,还可以直接用除法来做。但是化简比的结果可以用比的形式表示,也可用分数的形式的表示,但它是一个比。 三、复习求比值: 1、求下面各比的比值。 6/7:35/24 0.9:1.2 3.6:9/4 怎样求比值? 学生独立完成,指名板演。 小结:求比值的结果可以是一个整数或分数或小数,是一个数。 2、练习:第73页上第5题 (1)读题,说说怎样解决这个问题?(1、求出各个比值,再将比值相等的比连起来; 2、化简比,再将相同的最简比连起来) (2)你觉得那种方法更快些? (3)选择自己喜欢的方法解决。 (4)组织交流。 二、巩固提高 1、第73页上第7题 (1)读题,理解要求 (2)独立完成,组织交流,发现长与宽的比都是3:2。 2、第73页上第8、9题 (1)独立完成在书上。 (2)组织交流,注意引导学生区别比与比值的异同。 3、第73页上第10题 先让学生进行估计,再通过测量调整或验证自己的估计。 4、第74页上第11题 让学生独立完成。 5、第74页上第12题 先帮助学生理解“盐水”的含义,弄清盐、水和盐水的关系。 再独立完成,组织交流。 6、第74页上第13题 学生独立完成。使学生明确:橙汁与水体积的比值越大,浓度越高;比值相等,说明它们的浓度相同。 7、第74页上第14题 独立写出两个比,并化简。通过比较和交流使学生体会到:斜面最高点的高度与木板长度比的比值越小,斜面与地面的角度就越小,斜面就显得平缓;斜面最高点的高度与木板长度比的比值越大,斜面与地面的角度就越大,斜面就显得陡。练习设计: 《教案与作业设计》157页教后记:
参加备课人员
比的基本性质 篇八
我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。
问:在比中有什么样的规律?
引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。
问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)
2.教学化简比。
利用比的基本性质,我们可以把比化成最简单的整数比。
出示例1:把下面各比化成最简单的整数比。
(1)
问:这道题的前项和后项都是什么数?怎样才能使它化成最简整数比?(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)
(2)
问:这是一道分数比,怎样才能使它转化成整数比?(引
导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)
化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。
(3)
问:这道是小数比,怎样化成整数比?(启发学生说出:可根据比的基本性质,把它的'前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)
或
3.小结:
问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?
三、巩固练习。
1.完成“做一做”的题目。
让学生说一说化简的方法。
2.练习十四第5、7、8题。
3.练习十四第9题。
提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)
四、作业 。
1.练习十四第6、10题
2.一列火车15小时行驶1200千米。
(1) 写出行驶的路程和时间的比,并化成最简单的整数比。
(2) 求出这个比的比值,再说出这个比值的含义是什么?
比的基本性质教学反思反思 篇九
学生在学习新知识时,总是要利用他己有的知识、技能、经验。抓住新旧知识的联系,设计好复习题,能使学生己有的知识、技能、经验得到进一步巩固和充实,又能激励学生应用迁移类推规律主动探索新知。本课中,我抓住了新旧知识的生长点,设计了铺垫练习,为实现知识的正迁移作好准备。我先是用填空题的训练,给学生复习了商不变的性质和分数的基本性质,然后引导学生联系比与除法、分数的关系要求学生把填空题两小题改成比的形式。这样设计复习题,有助于学生通过寻求比与除法、分数的关系建构比的基本性质这一概念,符合学生认识事物的规律和迁移规律。
从具体到抽象,从感性认识上升到理性认识,这是人类认识发展的基本规律。小学数学学习作为一种特殊的认识过程更是离不开感知,感知对小学生获取数学知识具有特别重要的作用。学生要建构概念必须依赖于具体的感性材料,使学生在具体的。图形或数字间寻找内在的规律。学生通过对感性材料的操作或观察获得感性认识,形成概念的表象。本课中,抓住比与除法、分数的关系把一组除法等式和一组分数等式改成二组比的等式,引导学生观察
①5:4=15:12=30:24 ②2:3=4:6=8:12这两组等式,通过寻求等式的内在规律,使学生初步形成概念的表象。
数学建构主义学习的实质是:主体通过对客体的思维构造,在心理上建构客体的意义。所谓“思维构造”是指主体在多方位地把新知识与多方面的各种因素建立联系的过程中,获得新知识意义。学生通过观察具体的感性材料,己初步形成概念的表象,再进一步引导学生对比、思考,将新知识与已有的适当知识建立联系,又要将新知识与原有的认知结构相互结合,通过纳入、重组和改造,构成新的认知结构,建构出新的概念。本课中,引导学生观察了两组比的特征后,进一步启发学生联系起商不变的性质和分数的基本性质,通过对比、思考、重组等思维活动,概括归纳出比的基本性质。
学习概念的最终目的是为了运用概念来解决实际问题。心理学原理告诉我们,概念一旦获得,如不及时巩固,就会被遗忘。应用概念解决问题其实就是进一步巩固概念知识。只有把学到的知识运用到实践中去,学习才是有意义的。本课中,应用比的基本性质化简比,方法不只一种,不管采用的是哪一种方法,只要合符规律,都给予了充分的肯定。尊重了学生的情感、态度、价值观,使学生从中体会到成功的喜悦,提高自己的学习兴趣,进而培养了学生的创新意识。随后还安排了综合性练习,这些练习不仅能起到巩固、深化概念的作用,还可以培养学生分析和解决问题的能力。
比的基本性质教学反思反思 篇十
《比的基本性质》这一课,我充分利用学生的已有知识,从把握新旧知识的相互联系开始,从分析它们的相似之处入手,通过让学生联想、猜测、观察、类比、对比、类推、验证等方法探讨“比的基本性质”这一规律。
由于在推导比的基本性质时要用到比与除法、分数的联系,除法的商不变性质,分数的基本性质等知识,因此教学新课时对这些知识做了一些复习,引导学生回忆并运用这两条性质,为下一步的猜想和类推做好了知识上的准备。事实也证明,成功的铺垫有利于新课的开展。学生通过比与除法、分数的联系,通过类比,很快地类推出比的基本性质。这样一来节省了很多的时间,二来也让学生初步感知了新知识。整节课无处不体现了学生是学习的主人,无时不渗透着学生主动探索的过程,不论是学生对比的基本性质的语言描述,还是对化简比的方法的总结,都留下了学生成功的脚印。同时采用讲练结合、说议感悟、对比总结、质疑探索、概括归纳的方法,掌握知识、应用知识、深化知识,形成清晰的知识体系,培养学生的创新能力和探索精神。学生学的轻松,教师教的愉快!
在学生大胆猜想得出比的基本性质是比的前项和后项同时乘或除以相同的数(0除外),比值不变时,我给予学生充分的肯定,让学生在发现中学习、在比较中学习、在尝试中学习、在练习中学习、在评价中学习。
练习题的设计,使学生积极主动的学习。练习题的设计应强调数学教学中培养学生学习数学的能力。在教学中我能抓住学生的心理特点,设计一些学生容易进入陷阱的题目,在这些小陷阱中,让学生愉快地掌握知识,突破重点和难点。
例如:当学生得出“比的基本性质”这一规律时,我马上出示:
尝试:(1)、4:5的前项扩大2倍,要使比值不变,比的后项应该( ).
(2)、如果3:2的后项变成10,要使比值不变,比的前项应该为( )这两题,如果学生会完成了,这个基本性质也理解了。再如:我出示的例1中的`3道例题,把学生在化简过程中将会出现的错误全部呈现了出来,学生第一印象的掌握,有助于今后的练习。
俗话说:“兴趣是最好的老师。”小学生对数学的迷恋往往是从兴趣开始的,由兴趣到探索,由探索到成功,在成功的愉快中产生新的兴趣,推动数学学习不断取得成功。但是数学的抽象性、严密性和应用的广泛性又常使学生难以理解,甚至望而却步。因此本节课教师从激发学生的学习兴趣入手,引导学生用一系列的猜想来提高兴趣,增强数学的趣味性,从而引发学生探求新知的欲望。有了兴趣做支撑,后面的新课学习就积极主动。
总之,教学中我着力体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人,力求使学生在创新精神、实践能力及情感态度方面得到均衡发展,但课中也存在遗憾,在以后教学中力求让学生在知识点更精准一些。
比和比例2(人教版六年级教案设计 篇十一
教学目标
1.理解比和比例的意义及性质.
2.理解比例尺的含义.
教学重点
整理比和比例、求比值及比例尺.
教学难点
正、反比例概念和判断及应用.
教学步骤
一、基本训练.
43-27
5.65+0.5 4.8÷0.4 1.25÷ 100×1%
0.25×40 2-
二、归纳整理.
(一)比和比例的意义及性质.
1.回忆所学知识,填写表格【演示课件“比和比例”】
2.分组讨论:
比和分数、除法有什么联系?
比的基本性质有什么作用?比例的基本性质呢?
3.总结几种比的化简方法.【继续演示课件“比和比例”】
比 前项 ∶(比号) 后项 比值
除法
分数
(1)整数比化简,比的前项和后项同时除以它们的最大公约数.
(2)小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简.
(3)分数比化简,一般先把比的前项、后项同时乘上分母的最小公倍数,使它成为整数比,再用第一种方法化简.
(4)用求比值的方法化简,求出比值后再写成比的形式.
解比例:12 :x=8 :2
4.巩固练习.
(1)李师傅昨天6小时做了72个零件,今天8小时做了96个零件.写出李师傅昨天和今天所做零件个数的比和所用时间的比.这两个比能组成比例吗?为什么?
(2)甲数除以乙数的商是1.4,甲数和乙数的比是多少?
(3)解比例: ∶ =8∶2
(二)求比值和化简比.【继续演示课件“比和比例”】
1.求比值:4∶
化简比:4∶
2.比较求比值和化简比的区别.
一般方法 结果
求比值 根据比值的意义,用前项除以后项 是一个商,可以是整数、小数或分数
化简比 根据比的基本性质,把比的前项和后项都乘以或者除以相同的数(零除外) 是一个比,它的前项和后项都是整数
3.巩固练习.
(1)求比值.
45∶72 ∶3
(2)化简比.
∶ 0.7∶0.25
(三)比例尺.【继续演示课件“比和比例”】
1.出示中国地图.
教师提问:
(1)这幅地图的比例尺是多少?(比例尺是 )
(2)什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)
(3)比例尺除了写成 ,以外,还可以怎样表示?
2.巩固练习.
在一幅地图上,用3厘米长的线段表示实际距离900千米.这幅地图的比例尺是多少?
在这幅图上量得A、B两地的距离是2.5厘米,A、B两地的实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?
(四)正比例和反比例.【继续演示课件“比和比例”】
1.回忆正、反比例意义.
2.巩固练习.
(1)判断下面各题中的两种量是不是成比例.如果成比例,成什么比例.
①收入一定,支出和结余
②出米率一定,稻谷的重量和大米的重量.
③圆柱的侧面积一定,它的底面周长和高.
(2)木料总量、每件家具的用料和制成家具的件数这三种量
当( )一定时,( )和( )成正比例;
当( )一定时,( )和( )成正比例;
当( )一定时,( )和( )成反比例.
(3)如果 =8 , 和 成( )比例.
如果 = , 和 成( )比例.
(4)在一幅地图上,比例尺一定,图上距离和实际距离是不是成比例?成什么比例?
三、全课小结.
这节课我们复习了什么?通过这节课的复习你有什么收获?还有哪些不清楚的
比例的意义和基本性质(一)(人教版六年级教案设计 篇十二
教学目标
1.使学生理解并掌握比例的意义和基本性质.
2.认识比例的各部分的名称.
教学重点
比例的意义和基本性质.
教学难点
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.
教学过程
一、复习准备.
(一)教师提问复习.
1.什么叫做比?
2.什么叫做比值?
(二)求下面各比的比值.
12∶16 4.5∶2.7 10∶6
教师提问:上面哪些比的比值相等?
(三)教师小结
4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以
用等号连接.
教师板书:4.5∶2.7=10∶6
二、新授教学.
(一)比例的意义(课件演示:比例的意义)
例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:
时间(时) 2 5
路程(千米) 80 200
1.教师提问:从上表中可以看到,这辆汽车,
第一次所行驶的路程和时间的比是几比几?
第二次所行驶的路程和时间的比是几比几?
这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)
2.教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式
80∶2=200∶5或 .
3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)
教师提问:什么叫做比例?组成比例的关键是什么?
板书:表示两个比相等的式子叫做比例.
关键:两个比相等
4.练习
下面哪组中的两个比可以组成比例?把组成的比例写出来.
(1)6∶10和9∶15 (2)20∶5和1∶4
(3) 和 (4)0.6∶0.2和
5.填空
(1)如果两个比的比值相等,那么这两个比就( )比例.
(2)一个比例,等号左边的比和等号右边的比一定是( )的.
(二)比例的基本性质(课件演示:比例的基本性质)
1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)
2.练习:指出下面比例的外项和内项.
4.5∶2.7=10∶6 6∶10=9∶15
3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?
以80∶2=200∶5为例,指名来说明.
外项积是:80×5=400
内项积是:2×200=400
80×5=2×200
4.学生自己任选两三个比例,计算出它的外项积和内项积.
5.教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质
板书课题:加上“和基本性质”,使课题完整.
6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?
教师板书:
7.练习
应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.
6∶3和8∶5 0.2∶2.5和4∶50
三、课堂小结.
这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.
四、巩固练习.
(一)说一说比和比例有什么区别.
(二)填空.
在6∶5=30∶25这个比例中,外项是( )和( ),内项是( )和( ).
根据比例的基本性质可以写成( )×( )=( )×( ).
(三)根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.
1.6∶9和9∶12 2.1.4∶2和7∶10
3.0.5∶0.2和 4. 和7.5∶1
(四)下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)
《比的基本性质》 篇十三
教学目标
1.理解。
2.正确应用化简比。
3.培养学生的抽象概括能力,渗透转化的数学思想。
教学重点
理解。
教学难点
正确应用化简比。
教学过程
一、复习引入
(一)复习商不变的性质
1.谁能直接说出60÷25的商?
2.你是怎么想的?
3.根据是什么?内容是什么?
(二)复习分数的基本性质
约分:
通分:
根据是什么?内容是什么?
(三)求比值
3∶2 8∶4 7∶21 27∶9
5∶25 16∶4 24∶5 2∶1
二、讲授新课
我们以前学过商不变的性质和分数的基本性质,联想这两个性质,想一想:在比中又有什么样的规律?
(一)
1.把练习3中8∶4和2∶1这两个比找出来
2.教师提问
这两个比有什么共同点吗?(比值都相等)
这两个比有什么不同点吗?(前项和后项都不同)
我们可以说8∶4和2∶1相等吗?
你是怎么想的?
(1)根据比与除法的关系(商不变的性质)
8∶4=8÷4=(8÷4)÷(4÷4)=2÷1=2∶1
(2)根据比与分数的关系(分数基本性质)
8∶4= = = =2∶1
3.学生尝试概括(演示课件)
(1)教师板书:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
板书课题:
(2)教师强调:“同时”“相同”“0除外”几个关键词
(二)化简比
1.练习引入
学校有8个篮球,12个排球,篮球和排球个数的比是多少?
(1)篮球和排球的个数比是8∶12
(2)篮球和排球的个数比是2∶3
讨论:篮球和排球的个数比是写成8∶12好,还是写成2∶3好?
2.最简单的整数比
最简单的整数比就是比的前项和后项是互质数,如2∶3就是最简单的整数比。
3.化简比
例1.把下面各比化成最简单的整数比。
(1)14∶21=(14÷7)∶(21÷7)=2∶3
讨论:化简整数比的方法是什么?
(2) ∶ =( ×18)∶( ×18)=3∶4
讨论:分数比怎么化简?为什么要乘上18?乘上9可以吗?
(3)1.25∶2=(1.25×100)∶(2×100)=125∶200=5∶8
1.25∶2=(1.25×4)∶(2×4)=5∶8(更好)
讨论:怎样把小数比化成最简单的整数比?
4.小结化简比的方法
(1)都化成整数比
(2)利用把比的前、后项同时除以它们的最大公约数,直到前、后项互质为止。
(三)区别化简比和求比值
1.练习
比
最简单的整数比
比值
25∶100
∶
4.2∶1.4
1∶
2.讨论:化简比和求比值的区别是什么?
区别:化简比的结果还是一个比,是一个最简单的整数比;求比值的结果是一个数。
例如:25∶100化简比的结果是 ,读作1比4,求比值的结果是 ,读作四分之一。
三、巩固练习
(一)化简比
6∶10 ∶ 0.3∶0.4
12∶21 ∶2 0.25∶1
(二)选择
1.1千米∶20千米=( )
(1)1∶20 (2)1000∶20 (3)5∶1
2.做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是( )
(1)20∶21 (2)21∶20 (3)7∶10
(三)思考题
六一班男生人数是女生的1.2倍,男、女生人数的比是( ),男生和全班人数的比是( ),女生和全班人数的比是( ).
四、课堂小结
通过今天的学习,你学到了哪些新知识?什么是?怎样化简比?
五、课后作业
(一)化简下面各比。
16∶20 2∶ 4.5∶6 5∶0.35
(二)鞋厂生产的皮鞋,十月份生产双数与九月份生产双数的比是5∶4.十月份生产了2000双,九月份生产了多少双?
六、板书设计
比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
8∶4=8÷4=(8÷4)÷(4÷4)=2÷1=2∶1
8∶4= = = =2∶1
例1.把下面各比化成最简单的整数比。
(1)14∶21=(14÷7)∶(21÷7)=2∶3
(2) ∶ =( ×18)∶( ×18)=3∶4
(3)1.25∶2=(1.25×100)∶(2×100)=125∶200=5∶8
1.25∶2=(1.25×4)∶(2×4)=5∶8
探究活动
球的体积比
活动目的
通过实验,提高学生应用比的知识解决实际问题的能力。
活动用具
一个装满水的容器,3个小烧杯,大、中、小3个球。
活动题目
一个容器内已装满水,有大、中、小三个球。第一次把小球沉入水中;第二次把小球取出,把中球沉入水中;第三次取出中球,把小球和大球一起沉入水中。现在知道每次从容器中溢出的水量是:第一次是第二次的 ,第三次是第一次的2.5倍。试问三个球的体积之比。
活动过程
1.按照题目的叙述顺序,依次进行实验。
2.重点分析:“第一次是第二次的 ”和“第三次是第一次的2.5倍”的含义。
3.集体订正。
参考答案
设小球体积是1,根据题意,中球的体积是3+1=4,大球体积是6.5-1=5.5.大、中、小三个球的体积之比是11∶8∶2.
《比的基本性质》 篇十四
课题二:比的基本性质(a)
教学内容
教科书第48页例1及相应的“做一做”,练习十二的第5~9题。
教学目的
使学生理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。
教具准备
投影仪。
教学过程
一、复习
1.什么叫做比和比值?
2.比和除法、分数有什么联系和区别?引导学生归纳总结出下表:
比
前项
∶(比号)
后项
比值
除法
被除数
÷(除号)
除数
商
分数
分子
──(分数线)
分母
分数值
3.商不变性质是什么?分数的基本性质呢?
引导学生回忆商不变性质和分数的基本性质。教师将这两个性质板书在黑板上:
商不变性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
分数的基本性质:分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。
二、新课
1.引入新课。
先在黑板上写出三个分数:、.
教师:这三个分数相等吗?为什么?
引导学生想分数值,因为这三个分数的值都是0.75,所以这三个分数相等。
教师:还有其他方法说明它们相等吗?
(根据分数的基本性质,和都可以化简成,所以这三个分数都相等。)
教师指出:在除法中有商不变的性质,在分数中有分数的基本性质,那么比有没有类似的性质呢?这就是这节课我们要学习的内容。
板书课题:比的基本性质
2.教学比的基本性质。
在黑板上把三个分数、分别改写成比的形式3∶4、6∶8、9∶12.
提问:这三个比相等吗?为什么?
学生:这三个比相等,因为它们的比值都是(0.75).
教师用等号连结三个比(3∶4=6∶8=9∶12),提问:在这个式子中的三个比,同学们看到什么变了?什么没有变?
教师引导学生观察后指出:为什么这几个比的前项、后项都变了,而它们的比值却不变呢?前项和后项的变化有没有规律呢?下面我们一起来探讨这个问题。
引导学生对等式(3∶4=6∶8=9∶12)进行分析,寻找规律。
先引导学生根据商不变性质从左往右进行观察。
教师板演:3∶4=(3×2)∶(4×2)=6∶8
3∶4=(3×3)∶(4×3)=9∶12
6∶8=(6×1.5)∶(8×1.5)=9∶12
提问:请认真观察这些式子,谁能用一句话把其中的规律表达出来?
引导学生得出:比的前项和后项都乘相同的数,比值不变。
再引导学生从右往左进行观察,归纳分数的基本性质。
板书:
6∶8=(6÷2)∶(8÷2)=3∶4
9∶12=(9÷3)∶(12÷3)=3∶4
9∶12=(9÷1.5)∶(12÷1.5)=6∶8
提问:谁能用一句话把其中的规律表达出来?
引导学生答出:比的前项和后项都除以相同的数,比值不变。
由此要求学生把上面两句话概括成一句话。初步归纳出:比的前项和后项都乘或者除以相同的数,比值不变。
然后提问:比的前项和后项都乘或者除以相同的数,这里说的是不是什么数都行?乘0或者除以0可以吗?为什么?
组织学生讨论,使他们明确:因为除以0本身没有意义,乘0使比的后项没有意义。
最后让学生完整地归纳总结出比的基本性质。
指导学生看书,齐读性质后,问:在比的基本性质中,你认为哪些字词是关键字词?(要求学生说出“同时”、“相同的数”、“零除外”,教师用红笔圈上。)
3.化简比。
教师:请大家想一想,应该怎样约分?
指名学生回答后,板书:==.
请大家再看一道题:一年级有学生45人,二年级有学生40人,一年级和二年级学生人数的比是多少?
让学生集体回答,可以得到的比是45∶40.
指出:为了使数量间的关系更加简明,并使计算简便,我们经常要应用比的基本性质,把比化成最简单的整数比。
然后引导学生联系最简分数的概念,使学生明确化成最简单的整数比就是把比的前后项化成互质的整数比。
4.教学例1.
出示题目。
(1)化简14∶21.
提问:这道题应用比的基本性质,应该怎样化简?
学生比较容易想到前后项同时除以7,教师板书化简过程:14∶21=(14÷7)∶(21÷7)=2∶3,然后提问:7与14、21是什么关系呢?(7是14和21的最大公约数。)
从而引导学生小结出整数比化简的方法:用比的前后项分别除以它们的最大公约数,使比的前后项是互质数。
(2)化简∶.
提问:这个比的前、后项是什么数?(分数。)“根据比的基本性质,怎样才能把这两个分数转化成整数比?
引导学生联系通分,想到只要比的前、后项同时乘它们分母的最小公倍数18,就可以把分数比转化成整数比,进而化简成最简单的整数比。
师生共同叙述化简过程,教师板书:∶=(×)∶(×)=3∶4
进一步引导学生小结出分数比化简的方法:比的前、后项同时乘它们的分母的最小公倍数,就化简成最简单的整数比。
(3)化简1.25∶2.
提问:怎样才能把这个小数比转化成整数比?
让学生思考后回答,引导学生想到应用小数点向右移动相同位数的方法,可以将小数比化成整数比,然后再化简成最简单的整数比。
方法介绍后,让学生打开教科书,将有关步骤填写在书上。完成后,再指名学生说说小数比化简的方法。
最后,由师生共同小结一下把比化成最简单的整数比的方法,使学生明确,第一步先要利用比的基本性质,把不是整数比的化成整数比,再把比的前、后项同时除以它们的最大公约数,就得到最简单的整数比。
5.做教科书第63页“做一做”的题目。
让学生独立完成,教师注意巡视察看学生求最简整数比的方法。如果有的学生在化简时用的是求比值的方法,也是可以的。教师应给予鼓励。例如:∶=÷=×=.但是要提醒学生注意,最后结果必须写成最简单的整数比的形式。例如:化简∶=÷=×=,而不能将最后结果写成6.如果没有学生用这种办法,可在做完练习十七的第9题之后,再将此法介绍给学生。
三、巩固练习
1.做练习十二的第5题。
先让学生独立化简第(1)题的3个比,完成后集体订正。然后做第(2)题,集体订正后再做第(3)题。
在学生做题时,教师注意巡视,察看学生化简的方法是否正确。
2.做练习十二的第6~8题。
先让学生独立完成,然后集体订正。
对于第7题中出现的不同类量的比,教师可以适当引导学生联系已学过的数量关系,说说所求的比和比值的具体含义。(〔www.kaoyantv.com〕所求的比和比值实际上是平均每只羊的重量。)
3.做练习十二的第9题。
由于化简比的方法与求比值的方法可以通用,再加上两种计算的结果在形式上有时是一致的,学生容易混淆。这里可以先让学生独立完成第9题,将结果填写在书上,教师注意察看学生的完成情况。集体订正时,教师要着重说明求比值和化简比的区别,即:求比值也就是求“商”,得到的是一个数,可以写成分数、小数,有时能写成整数;而化简比则是为了得到一个最简单的整数比,可以写成真分数或假分数的形式,但不能写成带分数、小数或整数的形式。
《比的基本性质》导学案 篇十五
教学内容:
本节课将教授人教版小学六年级上册第50至51页的内容和相关练习。
教学目标:
1.掌握比的基本性质,并能运用这些性质来化简比,初步掌握化简比的方法。
2.培养学生的数学能力,促进观察、比较、推理、概括、合作和交流等方面的发展,促进比、除法和分数之间联系的探究。
3.培养学生渗透转化的数学思维,并加深对知识内在联系的认识。
教学重点:
理解比的基本性质。
教学难点:
正确运用比的基本性质来化简表达式。
教学准备:
课件,答题纸,实物投影。
教学过程:
一、复习引入
1.老师:让我们一起回忆一下关于比的知识,我们已经学过哪些内容?
包括但不限于比的意义、比的各部分名称、比与分数、除法之间的关系等。
2.请问700÷25的商是多少?
通过思考、分析和计算,学生回答出正确答案。在此过程中,老师引导学生思考,加深对商不变性质的理解。
3.请问学生,你还记得分数的基本性质吗?请举例说明。
学生回忆并举例说明,让他们理解分数的基本性质。本环节旨在让学生回顾比、除法和分数之间的联系,重申商不变性质和分数的基本性质,为理解比的基本性质做铺垫。同时,渗透了转化的数学思想,提醒学生认识知识之间的内在联系。
二、新知探究
(一)猜想比的基本性质
1.老师:我们都知道,比与除法、分数之间存在着密切的关系。我们知道,除法具有商不变性质,而分数有分数的基本性质。那么,请思考,比中是否还存在某些规律或性质呢?
老师预设:比的基本性质。
2.学生开始猜测比的基本性质。
老师预设:如果两个比的前项和后项同时乘或除以相同的数(但不是0),那么它们的比值不变。
3.根据学生的猜想,老师在黑板上写下以下内容:“当比的前项和后项同时乘或除以相同的数(0除外)时,比值不会改变。”
【设计目的】比的基本性质非常适合培养学生的“类比推理能力”,学生在熟练掌握商不变性质和分数的基本性质后,可以自然而然地将其应用到比的基本性质上,这不仅可以激发学生的学习兴趣,还可以加强学生的语言表达能力。
(二)验证比的基本性质
老师:正如大家所想,比与除法和分数一样,也具有自己的规律性质。现在,我们需要通过研究验证之前的猜想是否正确。接下来,我请大家分成四人小组,共同合作研究并验证之前的猜想。
1.老师说明合作要求:
(1)独立完成:每位同学需要独立完成一个比例,并运用自己喜欢的方法验证其是否符合比的基本性质。
(2)小组讨论学习:
①每名同学向小组内的其他成员展示自己的研究成果,并相互交流学习(他人需要表达自己是否赞同此同学的结论)。
②若小组内存在不同的观点,需通过具体举例进行讨论研究。
③小组选派一名同学代表小组进行发言。
2.集体交流(需要由小组发言代表结合具体例子在展台上做出讲解):
预设:根据比与除法、分数的关系进行验证;根据比值验证。
3.全班验证:
16:20=(16●△):(20●△)。
4.完善归纳,总结出比的基本性质:
在上面这道题中,△应该填什么?●内可以随意填数字吗?为什么?
(1)学生需要发表自己的看法并说明理由,老师随后完善板书内容。
(2)学生翻开教材阅读比的。基本性质,老师在黑板上书写课题内容(比的基本性质)。
5.质疑辨析,深化认识。
【设计目的】基于猜想的学习必须要有学生的自主探究,而合作探究则是一种非常有效的学习方式。但是需要注意,合作学习不仅仅是形式上的合作,还需要让每个学生进行独立思考,产生自己的想法,进而进行交流,在这个过程中,学生可以增强推理和概括能力,同时真正理解“比的基本性质”,这将有效提高合作学习的实效性。
三、比的基本性质的应用
导师:同学们,你们还记得学习分数的基本性质有什么用吗?什么是最简分数?
今天我们要介绍比的基本性质,并且它有一个非常重要的用处——可以化简比,得到最简整数比。
一、理解最简整数比的含义
1.辅助学生自学有关最简整数比的知识。
假设:前项和后项互质的整数比被称为最简整数比。
2.从以下比例中找出最简整数比,并简要说明原因。
3:4; 18:12; 19:10; 0.75:2。
二、初步应用
1.化简前项和后项都为整数的比例。(介绍教材第50页例1)
学生独立试着操作,化简后进行交流。
(1) 15:10 = (15÷5):(10÷5) = 3:2;
(2) 180:120 = (180÷ 60):(120÷ 60)= 3:2。
假设:有两种方法,即使用公因数分解以及进一步分解公因数,但侧重于使用公因数分解方法。
2.化简前项和后项包含分数和小数的比例。(介绍)
导师:当前项和后项是整数时,我们只要除以它们的公因数,但是对于比例的要求和0.75:2,这两个比例不是最简整数比,你们能找到化简的方法吗?四人小组讨论研究,并找到化简的方法。
学生研究、写下具体步骤,总结方法,选择代表展示报告。导师比较不同方法,引导学生掌握常规方法。
假设:将含有分数和小数的比例化为最简整数比前,需先将它们转化为整数比例,然后进行化简。有分数的要先乘上最小公倍数的分母;有小数的要先转化为整数,然后再进行化简。
3. 小结探讨:同学们通过自我探索取得了各种比例的最简整数比之法。化简时,若比例的前项和后项都是整数,则可以同时除以它们的公因数;遇小数时先转化为整数,然后进行化简;在遇到分数时可以同时乘以分母的最小公倍数。
4.补充方法,区分化简比例和求比例的值。
还可以用什么方式来化简比例?(求比数)
化简比例和求比值有什么不同吗?
假设:化简比例得到的最终结果为所得到的比例,而求比值得到的最终结果为数。
5.尝试练习。
将下列比例转化为最简整数比例(请参考教材第51页“做一做”):
32:16; 48:40; 0.15:0.3;
【设计理念】新课程标准提出,教学应充分体现“以学生为本”的教学思想,发挥学生的主体作用,让学生成为学习的主导者。因此,在本课的比的基本性质化简比例的教学过程中,通过自学、独立探究、小组合作等方法,为学生创造积极的数学活动机会,鼓励学生自主发现比例化简的方法。
四、巩固练习
(1)基础练习
1.请完成教材第53页第4题。
将下列比例化为后项为100的比例。
(1)树苗种植的成活数和总数比为49:50;
(2)药品的质量与药水总质量的比为0.12:1;
(3)某企业去年实际产值与计划产值的比为275万:250万。
2.请完成教材第53页第6题。
(2)拓展练习(采用PPT呈现)
学生口算回答。
(1)若将2:3的比例的前项增加12,则后项应增加( )。
(2)六(1)班男生人数为女生人数的1.2倍,则男生和女生人数的比例为( ),男生和全班人数的比例为( ),女生和全班人数的比例为( )。
【设计理念】练习的设计应紧紧围绕教学的重点和难点,编排应该体现由简到难的层次性。第1题基于比例的基本性质,是基础练习,同时也为百分之的学习埋下了伏笔。第2题旨在训练学生怎样化简不同单位的量和比例,培养学生审题能力。拓展练习不仅发展了学生的思维灵活性、培养了学生的创造能力,还很好地巩固了本课的知识点,同时这类问题也为将来分数应用题和比例应用题的学习奠定了坚实的基础。
五、课堂总结
你在这节课中有什么收获?还有什么疑问吗?