1. 主页 > 知识大全 >

小学数学圆的面积的教案精选10篇(小学圆的面积教学设计)

作为一位无私奉献的人民教师,常常要根据教学需要编写教学设计,借助教学设计可以提高教学效率和教学质量。教学设计要怎么写呢?下面的10篇小学数学圆的面积的教案是由快回答精心整理的圆的面积计算公式范文模板,欢迎阅读参考。

六年级数学上册教案圆的面积 篇一

【图解教材】

利用光盘帮助学生理解求圆环的面积是利用外圆的面积减去内圆面积。

【课时目标】

1、学会已知圆的周长求圆的面积的解题思路与方法,理解并学会环形面积。

2、培养学生灵活、综合运用知识的能力,运用所学的知识解决简单的实际问题。

3、培养学生的逻辑思维能力。

【教学重点】求圆环的面积的方法。

【教学难点】运用所学知识解决实际问题。

【教学过程】

一、复习

1、口算:

32 42 52 82 92 202

2π 3π 6π 10π 7π 5π

2、思考:

(1)圆的周长和面积分别怎样计算?二者有何区别?

(2)求圆的面积需要知道什么条件?

(3)知道圆的周长能够求它的面积吗?

二、新课

1、教学练习十六第3题

小刚量得一棵树干的周长是125.6cm,这棵树干的横截面积是多少?

已知:c=125.6厘米 s=πr2

r:125.6÷(2×3.14) 3.14×202

=125.6÷6.28 =3.14×400

=20(厘米) =1256(平方厘米)

答: 这棵树干的横截面积1256平方厘米。

3、教学环形面积。

(1)例2 光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?

已知:R=6厘米 r=2厘米 求: s=?

3.14×62 3.14×22

=3.14×36 =3.14×4

=113.04(平方厘米) =12.56(平方厘米)

113.04-12.56=100.48 (平方厘米)

第二种解法:3.14×(62-22)=100.48(平方厘米)

(2)小结:环形的面积计算公式:

S=πR2-πr2 或 S=π×(R2-r2)

(3)完成做一做: 一个圆形环岛的'直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

三、课堂小结;

四、板书设计:

【评价方案】

一、达标测评

●学校有个圆形花坛,周长是18.84米,花坛的面积是多少?

选择正确算式

A、(18.84÷3.14÷2)2×3.14

B、(18.84÷3.14)2×3.14

C、18.842×3.14

●环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?

●课堂小结。

(1)这节课的学习内容是什么?

(2)求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?

已知半径求面积 S=πr2

已知直径求面积 S=π()2

已知周长求面积 S=π()2

(3)环形面积: S=π(R2-r2)

二、效度评价

参评人数( )

题号

1

2

3

答对人数

正确率

三、教学反思

学生参与程度

教学目标达成度

经验积累

问题分析

改进措施

《圆面积的计算》评课稿 篇二

圆面积公式的推导分析论文

教学圆面积公式的推导,我曾听过三种不同的教法,现分别简介过程及稍作评点。

〔第一种教法〕

(1)复习长方形面积计算公式。

(2)让学生自学课本中推导圆面积计算公式的过程。

(3)教师边用教具演示,边要求学生回答:

①拼成的图形近似于什么图形?想一想,如果等分的份数越多,拼成的图形会怎么样?

②拼成的图形与原来圆的面积相等吗?

③这个近似长方形的长相当于圆的什么?它的宽相当于圆的什么?

(4)教师要求学生说出由长方形面积计算公式,推导出圆面积计算公式的方法(可按课本说)。

(5)揭示圆的面积公式。

〔评:这种教法,看起来是引导学生自学,并结合演示让学生回答问题,似乎学生学得较主动,实际上学生未有实践、思考的过程,只是“依样画葫芦”,对其中的道理不能弄懂、弄通,这属于机械的学习。〕

〔第二种教法〕

1、导入新课。

教师让学生回忆一下,以前学习习近平行四边形、三角形、梯形的面积计算时,是用什么方法推导它们的计算公式的。(用割、拼法拼成长方形或平行四边形进行计算,教师出示割、拼教具分别作简单的演示。)接着,出示一张圆形硬纸片,问:“怎样计算它的面积呢?”(揭示课题)教师指出:我们仍可用以前学过的割、拼法,把圆转化为已学过的图形,运用此图形的面积计算方法,推导出圆面积的计算方法。

2、实际操作。

要求学生拿出圆面积的割拼图形学具,在教师的指导下,边操作,边回答以下问题:

①把一个圆平分成两半,每一个半圆形的哪一部分长度相当于圆周长的1/2?再把每一个半圆形平均分成8等份(如课本的切割图),那么哪一段的长度相当于圆的半径?

②想一想:能不能把这些等分出的图形,拼成近似于我们以前学过的图形?怎样拼?(要求学生动手实践,并指名演示拼出的几种不同的图形。如:长方形、平行四边形、梯形等。)

③所拼出的图形面积与原来圆面积相等吗?

3.推导公式。

先以拼出的近似长方形的图形为例,教师引导学生弄清,若平分的份数越多,拼成的图形越接近长方形。进而,教师要求学生据图回答:割拼后的长方形的长相当于圆的哪一部分的长度?宽相当于圆的哪一部分的长度?从而

由长方形的面积=长×宽

↓↓

得圆的面积=πr×r=πr[2]。

然后,出示拼出的近似的平行四边形或梯形,再次推导看能否得出上面的圆面积公式(略)。这样就得到了证实,使学生确信无疑。

〔评:这种教法比第一种教法有很大的改进,教师首先通过复习旧知,提出解决问题的。办法,把新旧知识有机结合起来,明确了本课中心内容,然后让学生亲手操作割拼成几种已学过的图形,引导学生观察、思考、比较、推导,其间不囿于课本中的推导方法,让学生思维得以发散,从而强化了转化思想,多渠道地推得圆面积计算公式。学生在学习过程中,始终处于积极主动的状态,这种学习是有意义的学习,不仅使他们“学会”,而且使他们“会学”,且有助于发展学生的智能。〕

〔第三种教法〕

1、引入新课。

教师开导:圆在日常生活、生产实践及科学实验中,有着广泛的应用。上节课我们学习了圆的周长计算,但仍不够,还要学会计算圆的面积。如计算一个雷达圆形屏幕的面积,一个圆形花圃的面积等。怎样才能算出它的面积呢?(揭示、板书课题)。

2、创设情境。

教师用几张相等的圆纸片,运用折纸、剪纸的方法,分别折剪成正四边形、正八边形、正十六边形,然后再分别与原来的图纸片叠在一起,见下图:

(附图{图})

折四等份剪成折八等份剪成折十六等份剪成

正四边形正八边形正十六边形

引导学生观察、对比三个内接正多边形与圆的面积差(阴影部分)谁大谁小,并启发学生归结出:折成的等份数越多,剪成的正多边形边数越多,它就越接近圆。其中正多边形的每等份(三角形)就越接近圆的每等份。

3、推导公式。

师:同学们现在要计算圆的面积,选用哪种正多边形为好?为什么?

生[,1]:选正十六边形为好,因为它较接近圆。

生[,2]:选边数越多的正多边形更好,因为它更接近圆。

师:回答得很好,根据现有的右图,怎样计算圆的面积呢?请大家思考以下问题:

(1)圆的面积相当于多少个三角形面积之和?

(2)这些三角形的底边之和相当于圆的什么?

(3)每个三角形的高相当于圆的什么?

学生边回答,教师边板书:

正十六边形的面积=S[,三角形]×16

=底边×高÷2×16

=底边×16×高÷2

↓↓

圆的面积=2πr×r÷2

=πr[2]

最后让学生自学课本中的推导方法,质疑解难。进而教师小结:推导圆的面积公式与以前推导有关图形面积公式一样,把圆转化为已学过的图形进行计算,同学们课后如有兴趣,还可将圆割拼为平行四边形、梯形,看是否仍能推出S[,圆]=πr[2]。

〔评:这种教法具有以下几个特点:

1、导入新课开门见山,使学生感到学习圆的面积是实际中的需要,从而激发了学生的求知欲望。

2、在推导圆面积公式前,教师创设情境,让学生领悟隐含于直观演示中的初步“极限”思想,有助于发展学生空间想象力和空间观念,从而为推导公式作好铺垫。这是前两种教法所不及的。

3、运用“整体-部分-整体”,分割求和的方法推导圆面积公式,新颖独特,学生易于接受,又以课本中的方法及其他方法作验证,使学生加深理解,记忆牢固。

4、小结中能促使新知与原有认知结构中有关观念建立起联系,学生的学习是“有意义”的学习。

总评:教学圆面积公式的推导,要充分运用直观手段,引发学生积极思考,不仅使学生知其然,还要知其所以然,要把教材本身的内在联系揭示出来,促使学生运用已学知识主动地去获取新知;既使学生“学会”,又使学生“会学”,让他们在学习中同时学到科学的方法,提高学习能力,这样才能取得较好的教学效果。由此可见,后两种教法是可取的,且教法三更佳。

圆的面积教案 篇三

【教学目标】

1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。

2.能够利用公式进行简单的面积计算。

3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

【教、学具准备】

1.CAI课件;

2.把圆8等分、16等分和32等分的硬纸板若干个;

3.剪刀若干把。

【教学过程】

一、尝试转化,推导公式

1.确定“转化”的策略。

师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

预设:

引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。

师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?

师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。

2.尝试“转化”。

师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)

请大家看屏幕(利用课件演示),老师先给大家一点提示。

数学圆的面积教案 篇四

教学内容:课本第94、95页例3 、例4。

教学目的:

1、理解圆面积计算公式的推导过程,掌握圆面积的计算公式;

2、能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

3、培养学生动手操作能力和逻辑推理能力。

教学重点:圆面积计算公式。

教学难点:圆面积计算公式的推导。

教具、学具:圆的面积演示教具,课件,每人两个大小相等的圆,分别平均分为16等份、32等份。

教学过程:

一、复习。

1.圆的有关概念

2.什么叫长方形的面积?

3.说出平行四边形的面积公式是怎样推导出来的?

我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。(板书课题:圆的面积)

二、新授。

1.圆的面积的含义。

问:面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)

以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

2.圆的面积公式的推导。

怎样求圆的面积呢?如果用面积单位直接去度量显然是行不通的。但我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形——长方形。怎样分割呢?教师拿出圆的面积教具进行演示:

先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)

再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

向学生说明:如果分的等份越多所拼的图形就越接近长方形。

教师边提问边完成圆面积公式的推导:

①拼成的图形近似于什么图形?

②原来圆的面积与这个长方形的面积是否相等?

③长方形的长相当于圆的哪部分的长?

④长方形的宽是圆的哪部分?

长方形的面积=长*宽

圆的面积=c÷2*r

=2∏r÷*r

=∏r*r

=∏r2

用S表示圆的面积,那么圆的'面积可以写成:S=∏r2

3.圆面积公式的应用。

出示例1:一个圆的半径是10厘米。它的面积是多少平方厘米?

学生读题,问:要求圆的面积的条件是否具备?怎样列式?学生回答,教师板书:

=3.14*102

=3.14*100

=314(平方厘米)

答:它的面积是314平方厘米。

例题2:一个圆的直径是40米,它的面积是多少平方米?

40÷2=20(米)

3.14*202

=3.14 *400

= 1256(平方米)

答:这个圆的面积是1256平方米。

三、巩固练习。

1.半径2分米,求圆的面积。

2、圆的周长是6.28分米,圆的面积是多少平方分米?(先提问:题目只告诉圆的周长,你能求出圆的面积吗?怎样算?)

3、绳长10米,问小狗的活动面积有多大?

四。发散思维:如下图:S正方形=3平方厘米,S圆=?

总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=∏r2计算。

五、作业。

六、课后反思:

圆的面积教案 篇五

1、教学目标

1.理解和掌握圆面积的计算公式,沟通圆与其它图形之间的联系,增强观察、操作、分析、概括的能力以及逻辑推理能力。

2.学会利用已有的知识,运用数学思想方法,推导出圆面积计算公式;感受极限、转化、以直代曲等数学思想方法。

3.认真观察、深入思考,面对困难勇于克服、弃而不舍。

2、学情分析

《圆的面积》一课是小学数学第十一册第五单元第四小节的起始课。本课的教学要求主要是帮助学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括等能力。以往主要教学方法是:教师先带领学生将圆沿半径剪开,将若干个小扇形拼成长方形,借助长方形面积公式来推导圆面积的公式。然后在教师的引导下部分学生再将圆转化成平行四边形,甚至梯形、三角形,借助已知图形的面积公式推导圆面积的公式。一节课至少展现三、四种转化方法,教学容量较大、内容较难。

看到这样的教学过程我产生了一些困惑:

1.学生能想到这样的转化的方法吗?——这使我想到了学生学习平面图形的历程。学生第一次学习最基本的图形的面积:长、正方形。可以看出使用面积单位拼摆的方法得到的图形面积其实是最为直接的方式。学生学习的所有直线段图形,可以看出它们之间有着非常直观地联系,易于转化。作为第一个曲边图形“圆”,面对以上学习的转化发过程,学生怎么就能想到把圆等分成小扇形并拼出学过的图形呢?这无疑需要一个思维的飞跃,如果这个飞跃的过程是属于学生自己的,那样才是真正有价值的。

2.在老师的讲授下又有多少学生能理解多种转化方法呢?

我先在自己班进行了多种转化方法的试验,发现还真有孩子的思维水平让我刮目相看,可我也发现有80%的孩子这节课没有参与真正的实验研究,只是跟着别人看、听,下课时有一半的孩子还不认可圆面积转化的过程。

一节课是只为20%的孩子服务,还是应尽可能让每一个孩子都有不同层次的体验与收获呢?

3、重点难点

教学重点:运用转化思想探索圆面积的解决办法。

教学难点:如何将曲线图型转化成直线型图形以及对极限思想的渗透。

4、教学过程

活动1【导入】引入课题

同学们圆是我们在小学阶段接触的。第一个曲边图形,它在生活中也有广泛的应用,我们来欣赏一下生活中的圆吧!(ppt到泳池)

今天我们一起要来研究的是圆的面积。(板书课题:圆的面积)

活动2【导入】交流困难

我看到有同学已经有了自己的想法,但是,面对“圆”这么特殊的图形也有了一些问题,我们先暂停手中试验,一起来分享一下!

(1)有同学在圆里画出了一个正方形,请这样的同学来介绍一下?教师操作

ppt提问:我们学过了这么多种平面图形,可你们怎么就想到在圆里画正方形了。

生1:因为他和圆最接近,

师:你能想一想,为什么说正方形和圆最接近吗?

生2:正方形正正方方的,四边都一样长,

生3:在圆中画正方形会让剩下的部分最少,而且剩下的部分都是一样的。

生4:正方形和圆最像了,正方形的对称轴最多,圆有无数条对称轴。

师:看看同学们多么善于思考呀,通过你们的发言让我感受到,和其他学过的图形相比正方形和圆真的非常接近,你们的数学直觉真敏锐,太了不起了。

(2)在圆里画出了很多的小方格,请这样的同学来介绍一下?。

提问:看看同学们的想法多有创意呀,但是你们是怎样想到用小方格来解决问题的呢?

生1:我们最开始学习长方形、正方形的面积时就是用面积单位拼摆的方法研究。

生2:我们以前学习的很多图形的面积,比如平行四边形、三角形、梯形其实都可以用方格来计算,可以数有多少1平方厘米的小方格,就可知道图形的面积了。

师:你们真是了不起,我们最初学习的面积单位,它是一个最基本的研究图形面积的方法,后来我们又学习了不同的研究图形面积的方法,比如像拼摆、割补等方法,运用面积单位寻找图形面积就不太常用了,今天同学们面对圆面积的时候又想到了它,你们的好方法让我想起了我的一位老师说过的话:退回到原始,不失其本质!

(3)还有一种想法也来和大家分享。

他发现原来学习的图形之间都是有关系的,可以相互转化。想到了我们在研究图形面积时最常用的方法“转化”,你们认为转化不精确是吗?

活动3【讲授】小结

同学们你们开动脑筋,用你们的智慧已经能够解决圆面积中绝大部分的问题,同时也遇到了想要更精确地得到圆的面积,需要解决剩余面积的问题。对于这些不可知的地方,我们是否可以继续去研究它,让这些不可知的地方越来越小,是否就越来越接近圆的面积了呢?困难就摆在这里,但研究的智慧与方法在你们的头脑中。选择你感兴趣的研究方案,赶快动手试试吧!回到Iteach,可以继续研究,也可以删除重画。完成之后拍照提交到讨论二!学生操作

活动4【活动】全班交流

师:我想同学们一定像数学家一样非常投入地在研究圆的面积,老师从心里钦佩你们。有句话说:倾听是分享成功的最好方法,那么我们就一起来看看同学们是如何来解决圆面积的问题。教师操作

(1)刚才在圆中画正方形的同学先让我们看看他们后续的研究吧!

生1:我在空余部分补了补了三角形。

还有同学发现空余的部分还可以继续在上面补三角形会更接近圆。

师:看来他真的有了属于自己的研究成果。对于这位同学的研究过程,同学们有什么疑问或是感想吗?

生1:总是这样补三角形真的可以越来越接近圆的面积,就是有点麻烦。

生2:如果只看图形最外面一圈,我发现是一个正多边形。

师:同学们仔细观察一下,最外面一圈是一个什么样的图形?这个图形有什么特点吗?你还有其他的发现吗?

生:的确是正多边形,如果正多边形的边数更多一些,几乎就是一个圆了。

师:这位同学用了“几乎”,你们能想象到了吗?请看投影,看到这样的变化过程能谈谈谈你们有什么感受吗?

同学们一定发现了多边形边数越多越接近圆。

ppt有这样一句名言:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣。这句话是什么意思呢?这里“割”就是分割的意思;“失”指误差。这就是说,圆内接正多边形的边数无限增加的时候,它的周长会越来越接近直到等于圆周长,它的面积也会越来越接近直到等于圆面积。这句话出自我国魏晋时期的数学家刘徽,曾用圆内接正多边形计算出π的近似值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。短暂的时间你们都和大数学家有了相同的发现,多了不起呀!(贴)

(2)我们再来看看刚才画小方格的同学们后面的研究吧!

生:可以把剩下的地方画更小的方格就可以算出准确的面积了。

师:这位同学也有了自己的研究成果,可以非常准确的解决圆面积的问题了。对于这位同学的研究过程,你有什么疑问或是感想吗?

生:有同学会问:这样就真准确了吗?是不是永远都会有曲边存在呢?

小结:同学们想一想,既然可以画更小的格,曲边小了方格可以画的更小,是不是可以这样无限的画下去呢?

生:这样画下去倒是可以,但是算起来太麻烦了。

师:的确会让我们感觉计算起来比较麻烦,但其实只是我们缺少一些更好的计算方法而已,等你们以后学了更多的知识,计算就不再是问题了。同学们用了最为普遍的方法,虽然看似简单,却能解决这个很难的曲边图形的面积,如果以后再遇到更特殊的图形面积,你们有没有信心解决呢?我想一定是没问题的。

(3)我们再来看看第三位同学又有了什么新的发现吧!

生1:将圆等分成16分,拼成一个近似的平行四边形,平行四边形的底边长度其实就是圆周长的一半,而平行四边形的高就是圆的半径,所以,平行四边形的面积是底乘高,那么圆的面积就可以用圆周长的一半乘半径得到。

师:对于他们的方法你有什么疑问或是受到什么启发吗?

生:圆看似很特殊,其实和其他图形也是有联系的,

生:这是真正的平行四边形吗?他的上下两条底边都是弯弯曲曲的。教师操作

的确现在看来还是有点曲边的,但要是细分下去,16份,32份、64份,你觉得会怎样?

Ppt:那样就会越来越行四边形,曲边越来越直。但是无论分多少份其实道理是一样的,平行四边形的底是圆周长的一半,平行四边形的高是圆的半径。

师:让我们再来看一看圆面积的转化过程,将圆沿半径剪开,拼成平行四边形,圆的面积等于平行四边形的面积。平行四边形的底是圆周长的一半,平行四边形的高是圆的半径,圆周长的一半可以表示为c/2=2

活动5【讲授】总结

看看你们是多么的了不起呀,对于圆这么特殊的图形,同样能够找到它与学过图形之间的联系,从而寻找到圆面积的计算公式,可以帮助我们方便快捷的得到圆的面积。面对这样的方法对你有什么启发吗?你还有其他的想法吗?

前几节课我们已经认识了圆并学习圆的周长,那么对于圆你能说说你的感受吗?

我们曾经感受到了圆的圆润和完美,在今天这个探究的过程中,我们不仅再一次体会到圆的完美和神奇,而且还发现了圆和正方形、正多边形,以及学过的很多图形之间有着千丝万缕的联系。其实在圆中还有许多的美妙与神奇,有待我们今后继续探索。

圆的面积教案 篇六

教材分析

本节课的内容是在学生初步认识了圆,学习了圆的周长以及学过几种常见直线几何面积的基础上进行学习的。学生从学习平面图形的面积到学习曲线图形的面积,这是一次质的飞跃。学生学习掌握了圆的面积的'计算方法,不仅能解决简单的实际问题,也为后面学习圆柱、圆锥的知识打下基础。

学情分析

学生已经有了一些平面图形面积计算的经验,知道运用转化的思想可以研究新的图形的面积。在教学中要鼓励学生大胆想象、勇于实践,充分利用直观教学具,结合多媒体课件,在观察、操作中将圆转化成已经学过的平面图形,从中发现圆的面积与半径、直径有关,从而推导出圆的面积计算公式。由于刚刚学习了圆的周长,学生容易把圆的面积和圆的周长混淆,所以教学中要让学生注意区分周长和面积,正确进行计算,解决实际问题。

教学目标

知识与技能:

1.理解圆的面积的概念。

2.理解圆的面积公式的推导过程,掌握圆的面积的计算方法,能正确解决实际问题。

过程与方法:

经历圆的面积的推导过程,通过动手操作,培养学生运用转化思想解决问题的能力。

情感态度价值观:

感悟数学知识的内在联系,体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

教学重点和难点

教学重点:

掌握圆的面积的计算公式,能够正确地计算圆的面积,解决生活中的实际问题。

教学难点:

理解圆的面积公式的推导过程。

教学准备:

圆片、课件。

数学圆的面积课件 篇七

一、教学目标

1、知识与技能:通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、过程与方法:激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

3、情感态度与价值观:渗透转化的数学思想和极限思想。

二、教学重点

正确计算圆的面积

三、教学难点

圆面积公式的推导

四、教具准备

多媒体课件,圆片

五、教学设计:

(一)、复习旧知,导入新课

1、前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?(2πr)周长的一半怎样表示?(πr)

2、课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)

3、课件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积)谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。

3、提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)

这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)

(二)、动手操作,探索新知

1、回忆平行四边形、三角形、梯形面积计算公式推导过程。

(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示。)

(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)

(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?

那么同学们想一想,圆可能转化为什么平面图形来计算呢?

2、推导圆面积的计算公式。

(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

(2)学生小组讨论。

看拼成的长方形与圆有什么联系?

学生汇报讨论结果。

(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。

生边答师边演示课件。

生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

因为长方形的面积=长×宽

所以圆的面积=周长的一半×半径

S=πr×r

S=πr2

师小结公式S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

(5)读公式并理解记忆。

(6)要求圆的面积必须知道什么?(半径)

3、利用公式计算。

(1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)

(2)出示例3,学生尝试练习,反馈评价。

提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

(3)完成第95页做一做的第1题。

(4)看书质疑。

(三)、运用新知,解决问题

1、求下面各圆的面积,只列式不计算。(CAI课件出示)

2、测量一个圆形实物的直径,计算它的周长及面积。

3、课件演示:用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)

(四)、全课小结

这节课你自己运用了什么方法,学到了哪些知识?

(五)、布置作业

1、第97页的第3题和第4题。

2、找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

测量物直径(厘米)半径(厘米)面积(平方厘米)

六、板书设计:

圆的面积

长方形的面积=长×宽

圆的面积=周长的一半×半径

S=πr×r

S=πr2

圆面积教学反思 篇八

教材分析:

教材首先设计了估算飞标板面积的活动。呈现了两种估算方法:一是先估算每个小三角形的面积,再估算飞标板的面积;二是把飞标板剪开,拼成近似的长方形,然后利用长方形的面积公式计算出飞标板的面积。接着是,小组合作探索圆面积的计算公式,在试一试中,让学生用刚推导出的面积公式计算飞标板的面积。教学中要给学生充分的观察、动手操作和讨论交流的空间,使学生学会转化的数学方法,体会极限的思想。

学情分析:

在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形面积时,已学会了用割、补、移等方法,把把新知识转化为旧知识,探究推导直线平面图形的面积。因此教学本课时,可引导学生用以前学的“转化”的数学思想来推导圆的面积公式,在推导学习中不仅扩大了学生的知识,提高学生分析、解决问题的策略,空间观念也得到进一步的发展,为以后学习圆柱、圆锥等知识打好良好基础。

教学目标:

知识与技能目标:

1、理解圆的面积计算公式的推导,让学生利用已有的知识,运用转化的思考方法,推导出圆面积的`计算公式。

2、初步运用圆面积计算公式进行圆面积的计算。

过程与方法目标:

通过教师设置问题情境————学生猜想————小组合作————表达交流————归纳总结,引导学生通过多次不同的实验,运用转化方法,通过多媒体课件演示,把曲线平面图形转化为直线平面图形,推导圆的。面积计算公式。

情感态度和价值观:

通过圆面的剪拼,境况学生操作、观察、分析的能力,渗透极限思想。

教学重难点:

教学重点:圆面积公式的推导。

教学难点:极限思想的渗透与公式的推导。

教学方法和手段:

教学方法:通过直观教具演示和课件展示,学生通过猜想然后再用合作学习法动手操作验证猜想,得出结论。

教学手段:利用游戏、媒体等手段激发学生思维,让学生亲自动手操作,感受学习的乐趣。

教具准备:多媒体课件一套、圆形纸片。

学具准备:两个完全一样的圆片、透明胶带、刻度尺、量角器、剪刀、小刀。

一、复习引入

1、幻灯片出示复习题目。

2、激趣导入

同学们,今天我请你们欣赏一幅图。请看!(课件出示)在欣赏图的同时,思考右面的问题。学生猜想牛最多吃多少草是什么的图形?(课件出示)是一个圆形,要求牛吃多少草也就是求圆的面积,引出圆的面积(板书课题)

【设计意图:兴趣是最好的老师。在教学过程的伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。】

二、合作探究,推导公式

1、圆面积定义

2、圆面积公式推导

那么怎样计算圆的面积呢?我们知道圆有大有小,如果用面积单位直接

去度量,显然是行不通的。请同学们回忆一下:平行四边形、三角形、梯形的面积分别是怎样计算的?

教师根据学生说的过程,通过课件演示出转化的过程。

【设计意图:平行四边形、三角形和梯形的公式推导过程是学生迁移的基础。这一环节的设计既为了勾起学生对已有知识的回忆,更是为了让后进生能够掌握新知打下良好的基础。】

想一想:这些图形面积公式的推导过程有什么共同点?(学生回答)

下面请同学们小组合作,动手剪一剪、拼一拼,看可以把圆转化成什么图形?

(小组合作,探究交流。)

谁能告诉老师你们小组把圆转化成了什么图形?(小组汇报并展示所拼图形)

小组1:我们平均分成了8份,拼成的图形非常像平行四边形。

小组2:我们把圆平均分成了16份,拼成的图形也像个平行四边形。

小组3:我们把圆平均分成了16份,拼成的图形很像一个三角形。

小组4:我们拼的图形像个梯形。

小组5:我们平均分成了4份,拼成的图形像平行四边形

大家真了不起!把圆转化成了这么多近似的图形,观察所拼平行四边形的三种情况,请看课件(展示课件),同时请同学们思考,如果把圆平均分的份数越多,拼成的图形会怎样呢?

学生回答:分的份数越多越接近长方形。

下面请同学们仔细观察、分析拼成的长方形与圆的关系,小组讨论并思考以下几个问题:

(1)圆的面积与这个长方形的面积有什么关系?

(2)这个长方形的长与圆的周长有什么关系?

(3)这个长方形的宽与圆的半径有什么关系?

(4)如果圆的半径是r,这个长方形的长和宽各是多少?

(小组合作,探究交流,推导出面积公式)

小组内说一说圆面积计算公式推导过程,师板演。

小组合作推导三角形和梯形的面积公式,并汇报交流,师演示课件。

【设计意图:这节课的重点是圆的面积公式的推导,为了让学生在大脑中烙下深深的印痕,这一环节的设计让学生在课上多动手,去剪、去拼、去贴,多动脑,去思考圆的转化方法,这样学生在课上手脑并用,个个精神十足,根本不可能再出现课上走神的现象。】

小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!那么,求圆的面积需要什么条件呢?(半径)

三、实践运用,体验生活

那么圆的面积公式到底有什么用呢?

现在我们会求牛最多吃多少草吗?

四、课堂小结

这节课你有什么收获,学到了哪些知识?

五、课外思考。(幻灯片出示)

已知一个圆的周长,你能计算这个圆的面积吗?

板书设计:

圆的面积

-快回答§www.kuaihuida.com

圆所占平面的大小叫做圆的面积

圆的面积=近似长方形的面积

圆的面积圆周长的一半圆的半径

长方形的面积长宽

S=c/2×r

=2πr/2×r

=πr×r

=πr2

圆的面积教案 篇九

教材分析:

初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。

学情分析:

学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。

教学目标:

1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。

2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。

3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。

4、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察曲与直的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。

教学重点:

通过观察操作,推导出圆面积公式及其应用。

教学难点:

极限思想的渗透与圆面积公式的推导过程。

教学过程:

活动一:创设情景,提出问题

1、课件出示羊吃草的动画:一个放羊娃将一只小山羊用一根绳子把它拴在木桩上。请问小山羊最多能吃到多大范围的草呢?

2、圆的面积--含义:圆所占平面的大小叫做圆的面积。

3、如果将绳子加长一点,又会出现什么情况?产生这种变化的原因是什么?这说明了什么?

活动二:猜想比较:

出示图

师:看了这两幅图形,你发现了什么?右图小正方形的面积是多少?左图大正方形的面积是多少?你能猜一猜圆的面积和大正方形面积有什么联系吗?

活动三:自主探究,验证猜想

1、引导转化:

师:回忆以前学过的平面图形,它们的面积公式是什么?分别怎么推导出来的?

以上这些图形都是通过剪拼,转化成已学过的图形,再进行推导。那么圆是否也可以把它剪拼转化成为熟悉的平面图形呢?

2、动手操作:

(1)分小组动手操作,把圆剪拼转化成其他图形,看谁拼得好,拼出的图形多。

操作引导:

A、剪--怎样剪?剪成几份?

B、拼--怎样拼?拼成什么?

(2)展示交流并介绍,选出最合理的剪法。

(3)拼成后的近似长方形和标准长方形比较,你发现了什么?能不能把边再变得直一点?

想象一下,平均分成64份、128份、256份。会是什么情形?(课件演示)

(4)小结:平均分的份数越多,边越直,拼成的图形越接近于长方形。

3、自主推导

(1)小组合作,选择喜欢的1~2个图形,尝试推导公式。

(2)学生展示、介绍自己的推导过程

(3)教师板演圆面积的推导过程

4、情景延续:

(1)如果绳长为5米,计算圆的面积和周长。

(2)将绳子加长为原来的2倍,那么羊能吃到草的面积也是原来的2倍。对吗?

5、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,你们真了不起!那么,求圆的面积需要什么条件呢?(是否只有知道半径才能求圆的面积?)

活动四:实践运用,体验生活

1、量出自己带来的圆形物体的直径,并计算出面积。

2、社区公园有一个圆形水池(中有假山),请想办算出水面面积。

活动五:全课小结

通过本节课的学习你有哪些收获?

《圆面积》小学数学评课稿 篇十

《圆面积的计算》评课稿

一、目标定位正确:

1、课内充分培养学生动手操作、观察、分析、概括推理等能力。

2、理解圆面积计算公式的推导过程。掌握圆面积的计算公式。

3、让学生能利用圆面积公式进行计算,解决实际问题。

二、引入自然。

1、复习巩固了圆的周长计算公式,同一圆内半径与直径关系。

2、复习巩固了什么叫面积,让学回忆,平行四边形、三角形、梯形、面积计算的推导过程。从而自然引入圆面积计算的推导过程。

三、注重学生的动手操作。

在教学过程中,充分体现让学生自己动手画圆,把圆平均分成若干份,再让学生拼成近似的长方形或平行四边形。让他们仔细观察,研究长方形的长(或平行四边形的底)是什么,长方形的宽(或平行四边形的高)是什么,从而推导圆面积的计算公式。与此同时,更重要的是培养了学生的空间想象能力。

探讨的地方

在学生动手操作的`过程中,为了照顾中差学生,教师应充分了;利用教具或课件展示,让学生有充分的观察和思考,真正感悟圆面积公式推导的整个过程。其次是在计算公式中对半径的平方还需要指导和练习,以便学生在解决问题的实际过程中很好的运用。

阅读是学习,摘抄是整理,写作时创造。以上就是快回答给大家分享的10篇小学数学圆的面积的教案,希望能够让您对于圆的面积计算公式的写作更加的得心应手。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。