1. 主页 > 知识大全 >

《平行四边形的面积》教学设计优秀13篇8-12-42

作为一位兢兢业业的人民教师,就不得不需要编写教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。你知道什么样的教学设计才能切实有效地帮助到我们吗?奇文共欣赏,疑义相如析,以下是细心的小编老李帮大伙儿找到的《平行四边形的面积》教学设计优秀13篇,仅供参考,希望对大家有一些参考价值。

五年级《平行四边形面积》教学设计 篇一

教学目标:

1、通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。

2、能正确地应用公式计算平行四边形的面积。

教学重点:

探索并掌握平行四边形面积计算公式。

教学难点:

理解平行四边形面积计算公式的推导过程,体会转化思想。

教学准备:

课件,一个框架式可以活动的平行四边形教具,剪刀,为学生准备一张底为6cm、高为4cm的平行四边形纸张和方格纸。

教学过程:

一、激趣引入

1、创设情景

师:九一小学学校内有两个花坛,同学们看看它们各是什么形状?(生:长方形和平行四边形)

师:这两个花坛哪个大,我们要知道什么呢?(生:它们的面积)

师:哪个花坛的面积你能解决?为什么?(生:长方形花坛,我们学过长方形的面积)

师:回忆一下,以前我们是用什么方法得出长方形的面积的。

2、稳固复习

师:我这里将两个花坛的图形按照相同的比例缩小成这两个图形纸片(出示长方形和平行四边形纸张),还有一张透明的方格塑料片(每一小格代表1平方米)和一把尺子(每厘米代表1米),你能用这些工具得出这个长方形的面积吗?说说你的想法。

生:用数方格的方法:把长方形纸放到方格纸上,用计算的方法:用尺子量出长和宽计算。

师:用了数方格和计算的方法,那你观察下面这个图形的面积是多少呢?

生:把右边那块割下来不到左边空白处,就变成了一个长方形,面积不变。是6平方米。

师:比较下面这个两个图形的面积?你是怎么想的?(生:也是割补法,面积一样。)

师:那这个平行四边形你准备用什么方法得出它的面积呢?(生:数方格、计算、割补法)

师:下面我们就用这些方法来研究一下平行四边形的面积。(板书课题)

二、新知探究

1、数方格

师:课本上已经把缩略后的图形画到了书上,先读:在方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。),需要注意什么?

生:一格代表1m2,不到一格按半个计算。

师:自己数一数两个面积一样大吗?各是多少?(生展示数格子的方法,得出两个面积都是24m2)

2、推导公式

师:上面我用了数格子得出了平行四边形的面积,如果不数格子,你能直接计算出来吗?猜猜平行四边形的面积计算方法。(由长方形引导)

生:相邻两边相乘,或者底乘高。

师:(展示由长方形变拉伸为平行四边形)你觉得图形变化中面积怎么了?什么没有变?

生:面积变小了,但四条边都没有发生变化。

师:那说明平行四边形面积能用相邻两边相乘来计算吗?(生:不能)

师:好,到底是不是用底乘高来计算呢?刚才我们已经数出了两个图形的面积都是24m2,请你完成这个表格到课本上,让后两个人讨论,你发现了什么?

生:长方形的长和宽分别和平行四边形的底和高相等,长方形的面积是长乘宽,所以平行四边形的面积是底乘高。

师:通过刚才的探究我们初步了解到了平行四边形的面积计算公式,到底是不是呢?是巧合还是必然呢?接下来我们用割补法验证一下。你准备把平行四边形转化什么图形来验证呢?

生:长方形。

师:请同学们根据前面的经验,两人一组,借助你们手中的平行四边形纸,可以画一画,剪一剪,拼一拼,看看能不能找到转化前后图形间的联系,并把你找到的联系在纸上写一写,让别人一眼就能看出你是如何推导出平行四边形面积计算方法的。联系下面几个问题进行探讨。

(1)面积还相等吗?

(2)转化后的长方形与原来的平行四边形有什么关系?

(3)长方形的长、宽与平行四边形的底、高有什么关系?

(4)怎么计算平行四边形的面积?

生:沿着一条高切下来,不到另一边就变成了长方形。

师:试着说说上面的四个问题。

生:面积不变,长方形的面积等于平行四边形的面积,长方形的。长=平行四边形的底,长方形的宽=平行四边形的高,长方形的面积是长乘宽,所以平行四边形的面积是底乘高。

(生边说师边演示,并进行适当的引导)

师:这个在哪呢?是另一个底上的高吗?(生:不是,是这个底上的高,底和高要对应。)

师:还有其他的方法吗?

生:演示方法。(课件演示两种方法)

师:平行四边形的面积=底×高,如果用a表示底,h表示高,你能用字母表示出平行四边形的面积吗?(生:s=ah板书)

师:平行四边形的面积大小是由()和()决定的。共同决定的。

3、回顾总结

回顾刚才的学习过程,谁能说说我们是怎样学平行四边形的面积的计算方法的?

三、练习巩固

(一)基础练习

1、平行四边形花坛的底是6m,高是4m,它的面积是多少?

2、下面哪个平行四边形的面积是2×3=6c㎡?(图见课件)

3判断:

①平行四边形的底是7米,高是4米,面积是28米。()

②a=5分米,h=2米,s=100平方分米。()

③平行四边形的底越长,面积就越大。()

④平行四边形的高越长,面积就越大。()

4、把一个用木条钉成的的长方形拉成一个平行四边形,它的()。

a、周长和面积都不变b、周长不变,面积变大c、周长不变,面积变小

5、一个平行四边形的高是5cm,底是高的1。4倍,这个平行四边形的面积是()cm。

(二)拓展提升

1、计算下面每个平行四边形的面积。

2、下面图中两个平行四边形的面积相等吗?它们的面积各是多少?

四、总结提示

师:回忆一下,今天这节课有什么收获?

总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。

五年级《平行四边形面积》教学设计 篇二

教学内容:

小学数学五年级上册第87——88页

教学目标:

知识与技能目标:

理解并掌握平行四边形面积计算公式。

过程与方法目标:

能够运用公式解决实际问题。

情感态度与价值观:

通过公式的推导,向学生渗透事物之间的普遍联系;通过解决实际问题,提高学生对生活中处处有数学的认识。

教学重难点:

(1)教学重点:平行四边形面积计算公式的推导和运用。

(2)教学难点:如何让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形之间的底和高的关系。

教学用具:

1、课件

2、每位同学准备两个完全一样的平行四边形,并在上面做任意一条高。小剪刀一把,尺子一把。

学情分析:

这节课是学生在掌握了长方形面积的基础上学习的。学生已经有了用数方格的方法来推导长方形的面积的计算公式的经验,那么这节课学生肯定也会想到同样的方法。在此基础上让学生明确怎样数方格最好最快,由此联想到隔补转化成一个面积相等的长方形。进而动手操作,找到转化后的长方形和原来平行四边形的联系,得出平行四边形的面积计算公式。

教学过程:

一、激情导课

(大屏幕出示校园情景图)

同学们,这是育才小学校门口场景图,请同学们看看图上有哪些我们认识的图形?(有长方形、正方形、平行四边形)再请大家把目光聚焦到校门口的这两块草坪,一块是(长方形),一块是(平行四边形)那么这两块草坪哪一块大呢?(猜一猜)需要知道这两块草坪的(面积)。对,谁来说说长方形的面积怎样求?那么平行四边形的面积怎样求呢?这节课我们就来一起学习一下平行四边形的面积。(板书课题:平行四边形的面积)

看了课题,你觉得这节课我们应该达到哪些学习目标呢?(出示学习目标)

1、探究平行四边形面积计算公式。

2、运用公式解决生活中的实际问题。

师随着学生的回答在课题前板书:探究和运用

师:好,老师相信只要同学们善于观察,积极动手,勤于思考,就能获得新知识,达到我们的学习目标,你们有信心吗?(有)

二、民主导学

任务一:自主探究平行四边形的面积计算方法。

同学们,长方形的面积是用什么方法推导出来的?(数方格)那你这节课能不能也用同样的方法推导出平行四边形的面积计算方法?(能)除了数方格的方法,还有别的方法吗?(剪拼的方法)

任务呈现:请同学们动动手动动脑,想办法探求平行四边形的面积,并在小组内交流自己的方法。

提示:如果采用数方格的方法,同学们可以参照课本87页的表格完成。如果采用的是剪拼的方法,可以利用课前准备的学具,并参照课本88页内容进行学习探究。(现在各小组开始自己的探究活动吧!)

自主学习:先独立动手操作,再在小组内交流自己的发现。师巡视指导。

展示交流:

1、先请数方格的小组上台展示。

预设:我们小组是这样数方格的,先数整格的'(手指大屏幕),然后数半格的。(不满一格的都按半格算)这样可以数出来平行四边形一共是24格,也就是24平方米。同样长方形的面积也是24平方米。

我们还发现了平行四边形的底是6米,高是4米,把这两个数相乘正好是24平方米。

(对小组进行评价)

师:是不是所有的平行四边形都能用数方格的方法来计算呢?如果是一个很大的平行四边形还能这样吗?(有局限性)他们组发现了底和高相乘的积正好就是平行四边形的面积,这是巧合还是必然呢?这就需要大家进一步的验证。那么,我们接下来请用不同方法的小组上台展示。

2、请用割补法的小组上台展示自己的研究成果。

预设:(1)、沿着平行四边形的高剪开,分成了一个直角三角形和一个直角梯形,然后把直角三角形平移到右边,就把平行四边形转化成了一个长方形。长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为长方形的面积是长×宽,所以平行四边形的面积就是底×高。

(师随着生的表述板书)

长方形的面积=长×宽

平行四边形的面积=底×高

(对小组进行评价)

预设:(2)、沿着平行四边形中间的任意一条高剪开,变成了两个直角梯形,然后把其中一个梯形平移到另一个的一边,也拼成了一个长方形。同样这个长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为。所以。

(对小组进行评价)

预设:(3)、师演示。

师:计算公式我们通常都可以用字母来表示。面积用S,底用a,高用h来表示,那么平行四边形的面积可以表示为:S=ah。

师小结:刚才我们用割补平移的方法把一个平行四边形转化成了长方形,找到了它们之间的内在联系,从而得出平行四边形的面积计算公式。接下来老师告诉你刚才平行四边形花坛的底和高,你能列式求出它的面积吗?(能)

任务二:解决问题

出示例题:平行四边形花坛的底是6m,高是4m,它的面积是多少?

自主学习:独立在练习本上解答,完成后与小组内同学交流。

展示交流:注意指导学生的书写格式。

三、检测导结

1、计算下面每个平行四边形的面积。

2、已知下面图形的面积和底,怎样求出它的高?

以上三题,做对一道得一颗星,全部做对得三颗星。

集体订正,组内互批。

反思总结:请同学们谈谈这节课的收获吧!

平行四边形的面积教学设计 篇三

教学内容:小学数学(人教新课标实验版)五年级上册第79~81页。

教学目的:

1. 使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2. 通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

教学重点:平行四边形的面积的计算

教学难点:平行四边形的面积公式的推导过程

教具准备:课件、方格纸、平行四边形若干个

学具准备:平行四边形四个,三角板,直尺,剪刀。

教学过程:

一、课件出示单元主题图(1),引入课题

师:(1)从图中你发现了哪些图形?

(2)你们会计算它们的面积吗?

(3)从今天开始我们就来学习第5单元多边形的面积的计算,(板第5单元多边形的面积)在这个单元中包括平行四边形,三角形,梯形,及组合图形面积的计算,这节课我们先来学习平行四边形的面积的计算。(板平行四边形的面积)

师:下面我们就以这两个花坛为例。课件出示(2)

二:通过数方格图,初步感知

(1)你觉得这两个花坛哪个更大一些?

生1:

(2)怎样比较两个花坛的大小?

(3)你会计算的平行四边形面积吗?

(4)用什么样的方法能计算出它的面积?

(5)下面就用数方格的方法在小组内来试一试。课件出示(3)

(6)最后你发现了什么?

通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形的面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

(7)根据你的发现你还能想到什么?

三、学生动手操作,自主探究

用数方格的方法可以得到平行四边形的面积。如果要我们计算我们学校的占地面积,这样就比较麻烦。下面我们不用数方格的方法还有没有更简便的方法呢?课件出示(4)

自主探究,推导公式

(组内学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。)

请三个小组的学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?生:因为长方形是特殊的平行四边形,它的面积等于长乘宽)

教师用课件(5)(6)演示剪——平移——拼的过程。

我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

小组讨论。出示讨论题。(7)

(1)拼出的长方形和原来的平行四边形比,面积变了没有?

(2)拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

(3)能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?

小组汇报,

课件演示(8)

学生讨论板书出平行四边形面积公式:

长 方 形 面 积 === 长 × 宽

‖ ‖ ‖

平行四边形面积 === 底 × 高

一般用s表示图形的面积,a表示图形的底,h表示高,请同学们把平行四边形的面积计算公式用字母表示出来。

板书:s==a×h==a·h===ah

师:刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边

四:巩固新知,反馈练习。

1、课件出示例1(9),读题理解题意。学生试做,交流作法和结果。

2、实践应用(10)

3、思维拓展

(1)出示课件 (11),引导学生思考

(2)组织学生讨论

(3)课件演示等底等高的两个平行四边形的面积相等

五:课堂总结:通过今天的学习,你有那些收获?还有那些遗憾的地方?

评析:

王彬老师这一节课的教学是在64名学生的大班中实施的,可后,听课老师的一致评价是学生学得扎实,理解的透彻,教师多媒体课件展示效果好。也曾看过上海潘晓明老师执教此课的案例,比较之后,有下列思考:

一:大班教学中的放与收的问题

新课程的数学教学提出国成型目标这一概念,即让学生体验知识产生、形成的过程,强调学生自主的思考与实践。在潘晓明老师的课例中,学生直接拿出纸上印好的平行四边形,然后自己动脑筋、想办法计算出纸上平行四边形的面积,教师参与学生活动,并适时启发、引导。很显然,这样的课堂是开放的,对于每一个学生也确实是一种挑战,但潘晓明老师执教的班级只有30名学生,对于64人的大班,这样开放的问题会导致一些学生无从下手,教师的指导也必然照顾不全,再加一节课的时间有限,所以,“放”到怎样的程度,如何能照顾到全体,王彬老师的课堂设计给我们做了一个很好的示范:从生活情境中一比大小引入,在学生已有的数方格的经验中先让学生感知平行四边形的面积与底河搞有关系,为下一步的学习进行铺垫,在进一步的探索中,学生指向明显,很快通过剪拼的方法将平行四边形转化成长方形。在此过程中,有教师的引导,也有学生的独立探索与思考,很好的把握了大班教学中放与收的关系。

二、多媒体课件演示的时效性问题

本课的多媒体课件使用避免了当先许多老师课件使用走形式,无时效的弊病,体现了以下特点:

1、现实情境的真实感让学生体会到数学学习的价值;

2、生动形象的过程演示,使学生充分理解算理;

3、丰富多彩的课后练习,拓展了学生的思路,开阔了学生的思维。

一节好课的标准很多,如何在一节课中既落实双基,又培养能力、发展智力,同时情感、态度、价值观也得到提升,这是我们每一位教师追求的目标,可在一节课的教学中,我们很难将这些目标全部落实,但我们可以以某一方面为着眼点。王彬老师的这节课或许能给与大家更多的启发。

平行四边形的面积教学设计 篇四

教学内容:

人教版义务教育课程标准实验教科书数学五年级上册第五单元《平行四边形的面积》p86-88

教学目标:

1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

2、通过操作、观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

3、通过数学活动,让学生感受数学学习的乐趣,体会平行四边形面积计算在生活中的作用。

教学重点:

掌握平行四边的面积计算公式,并能正确运用。

教学难点:

把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

教具准备:

课件、平行四边形纸片、剪刀、直尺、三角板等。

学具准备:

2块平行四边形彩色纸片、三角板、直尺、剪刀

教学过程:

师:出示平行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在平行四边形图片上画一画,并标出底和高。)

一、情境创设,揭示课题

1、创设故事情境

同学们,喜欢喜羊羊的动画片吗?据说羊村的牧草越来越少,村长决定把草地分给各个羊自已管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,它们认为自已的草地更少,争了起来。同学们想帮它们解决这个问题吗?你们准备怎样解决呢?

2、复习旧知,揭示课题

(1)复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长×宽)

(2)师:你能帮它们求出这块平行四边形草地的面积吗?这节课,我们一起来研究平行四边形面积的计算方法。

(板书课题:平行四边形的面积)

二、自主探究,操作交流

1、大胆猜想

师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?

师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?

(两个图形的面积相等,都是18平方米……)(知识点)

师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,平行四边形的面积可能与它的什么有关?

(师出示一个平行四边形纸板,生看图猜测。)

生汇报猜测结果,师随机板书。

师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?

2、操作验证

提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。

学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的、

(师参与到小组活动中,巡视指导。)

3、汇报交流

师:你是怎样做的呢?谁愿意上来演示并说一说呢?

(学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形……)

师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。

师:请同学们观察一下,哪种图形的面积我们懂得计算呢?

生:长方形。

师:怎样剪才能拼成长方形呢?

师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!

生再次操作。

4、发现方法

师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动脑筋想一想这些问题。小组讨论交流。

(电脑显示思考题)

小组讨论交流。

(1)平行四边形转化成长方形,面积变了吗?

(2)方形后的长和宽分别与平行四边形的底和高有什么关系?

(3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?

实物图片展示拼剪过程同时回答上面的讨论题。

学生一边说教师一边板书:长方形面积=长×宽

平行四边形面积=底×高(知识点)(能力点)

5、回顾公式推导过程

(1)结合课件演示各部分间的相等关系。

(2)指名说说平行四边形面积公式是怎么样推导出来的?

6、学习用字母表示公式。

师:如果平行四边形式形面积用字母s表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?(指名说说,师板书:s=ah)

7、记忆公式

闭上眼睛记记公式。

如果要求平行四边形的面积,必需要知道哪些条件呢?

8、尝试运用

师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?请同学们用面积公式帮喜羊羊算一算平行四边形草地的面积,看计算结果与数方格方法求得的面积结果是不是一样?

(出示喜羊羊的草地图)(说明格式要求)学生独立完成。

三、深化运用,加深理解

通过计算,它们两人的草地面积相等吗?(相等)它们终于消除了误会,破涕为笑,齐声说:“计算平行四边形面积原来这么简单,我们也会了。”

1、算出下列平行四边形的面积(考查点)

课件出示图形

(羊村长看到小羊们的进步很高兴,说:“再出几个选择题考考你们吧。”)

2、选一选。(题目见课件)(考查点、能力点)

(强调:平行四边形的面积=底×底边对应的高)

你有什么结论?(等底等高的两个平行四边形面积相等。)

3、(羊村长说:我老了,你们能帮我算需要多少棵白菜秧苗吗?)

(考查点、能力点)

有一块地近似平行四边形,底是15米,高是10米。这块地的面积约是多少平方米?如果每平方米种8棵白菜,这块地能种多少棵白菜?

四、解决问题,应用拓展

1、小小设计师:

羊村小学教学楼前要建造一个面积是24平方米的平行四边形花坛,请你帮它们设计一下(要求它的底和高均为整米数),可以有几种方案?

2、喜羊羊准备在草地的四周围上篱笆,你能帮它算算篱笆长多少米吗?

五、总结全课,提高认识

这节课我们学习了什么知识?是怎么来学会这些知识的?

平行四边形的面积教学设计 篇五

教学目的:1.通过剪拼摆等活动,让学生主动解决实际问题。

2.掌握平行四边形面积的计算公式解决问题。

3.培养学生的初步的空间观念

4.培养学生积极参与,团结合作,主动探索的精神。

教学重点:平行四边形面积的计算

教学难点:公式推导的过程

教学准备:1.学具:平行四边形纸板

活动的平行四边形框架

透明的方格纸和剪刀

教学过程:

1. 引入课题:t:为了美化环境,公园准备在一块平行四边形的空地上铺草皮,知道这块 学们用以前学过的知识来帮帮工人师傅,铺设这块地需要买多少 平米的草皮呢?地的底是4米,高是3米(如图)工人师傅想知道要将这块空地铺设上草皮需要多少面积的草皮呢?现在请同

s:数方格的方法。(教师揭示并演示)

t:那这样的数方格的方法你有什么想说的吗?

s1:麻烦。s2:不够精确······

t:其实在现实的生活中不可能在一片空地上铺设出许多的方格来,那在没有方格的时候,这个图形的面积应该怎么求呢?

s:······

t:那么我们今天就来研究一下平行四边形的面积(出示课题)

2. 动手操作推倒公式

t:那出你准备好的平行四边形,看看能不能将它们转化成我们以前学过的图形?

(先独立思考有了想法小组交流)

s:······

汇报:t:你是怎么样做的呢?哪个小组愿意来给大家展示一下

s:拼成三角形,梯形,长方形······

t:通过同学们的亲身探索操作,将平行四边形转化成了许多我们学过的图形 。

知识转化: t:大家观察一下,哪种图形的面积我们会计算呢?

s:长方形

t:请大家拿出来一张平形四边形纸片,将它转化成为长方形吧!智慧老人现在有几个问题留给大家思考,便于同学发现其中的规律。

请看小黑板:

1. 你们是怎么样转化的?

2. 与原来的平行四边形的关系是怎么样的?(面积 对应的高与底)

3. 怎么样计算平行四边形面积?

s1:由顶点引入垂线沿垂线剪开,形成了一个三角形与一个梯形,三角形与梯形再组合就形成了一个长方形

s2:面积是一样的。(学生板书)

s3:长方形的面积是长乘宽 长方形的面积=长乘宽(学生板书)

长方形的长与平行四边形的底是相等的

长方形的宽与平行四边形的高是相等的

所以平行四边形的面积就是底乘高(学生板书)

t::哪个小组与他们的观点一致,有需要补充的吗?

s:我们是沿着另一条高折的也拼成了长方形

t:同学们,听出来这两组同学的方法,虽然有不同的地方,但有一个共同点就是沿着高剪。

t:为什么要沿着高剪开的呢?

s:长方形有四个直角,所以我们必须沿着高来剪这样才能形成直角。

t:为了简便起见,如果用s来表示平行四边形的面积,a表示平行四边形的底h 表示的是平行四边形的高,利用上学期我们学的字母表示数来表示平行四边形的字母公式吗?

s:(学生板书:s=ah)

小结: t:通过图形的转化,我们推出了平行四边形的面积计算公式,那我们以后再求平行四边形的面积的时候只要知道平行四边形的哪些条件(底和高)我们知道了平行四边形的底和高,我们就可以求平行四边形的(面积).

练习:t:咱现在讨论了平行四边形面积公式的推导谁来帮帮工人师傅算算这块地的面积到底是多少呢?

s:3×4=12(平方米)答:得买12平方米的草皮。

1.a.b.c三个图形中,哪一个面积是3×2=6(平方厘米)用手势判断并说明理由

2 3

3 3

t:这道题告诉我们一个怎么样的问题?

s:对应边与对应高之间的乘积。

2.课本24页试一试说说自己的方法。

3.练一练

4.等底等高的平行四边形的面积会是怎么样的呢?

总结:这节课你都学会了什么?有怎样的收获呢?

你对自己的表现满意吗?给自己来打一下分数满分是10分的话。

板书: 平行四边形的面积

五年级《平行四边形面积》教学设计 篇六

教学内容:

人教版义务教育课程标准实验教科书《数学》五年级上册P80—81《平行四边形的面积》。

教学目标:

1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。

2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。

3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。

教学重点:

探索并掌握平行四边形的面积计算公式。教学难点:理解平行四边形的面积计算公式的推导过程。

教具学具:

自制平行四边形框架、方格纸、多媒体课件、平行四边形卡片、剪刀、三角板、直尺等。

教法学法:

本节课主要引导学生采用自主探索、动手操作、猜想验证、合作交流的学习方法。教师在教学过程中引导探究,组织讨论,指导点拨,启发帮助。使教法和学法和谐地统一。

我力求体现以学生自主学习贯穿教学始终,在师生共同创造的问题情境下进行探究活动,使学生掌握平行四边形面积的计算方法。在此过程中巧妙地利用学生计算长方形面积的经验设置悬念,整个过程引导学生经历了类推(负迁移)→试误→验证→寻求正确的解决问题的方法→推广应用→拓展等过程,充分体现了“学生是数学学习的主人”的全新教学理念。同时也培养了学生基本的动手操作能力,使其获得基本的活动体验,最终为学生形成良好的数学素养打下基础。

教学过程:

一、巧设情境,铺垫导入

师:一天,阿凡提正在卖毛毯,地主巴依走过来。一眼就看中了阿凡提的花毛毯,聪明的阿凡提拿出两块毛毯,说:“亲爱的巴依老爷,如果你能从这两块毛毯中挑出一块大的来,我就不收你的钱,可是如果您选错了,你就得答应我把欠长工的工钱都给付清,怎么样?”巴依一听不收钱,马上两眼放光,一把抓起这块长方形的毛毯,说:“这块大,我要这块!”

同学们,巴依老爷认为长方形的毛毯大,你们也来猜一猜?

生1:长方形的毛毯大。生2:平行四边形的毛毯大。生3:两个毛毯一样大。

师:想一想,我们说的毛毯的大小指的是毛毯的什么?学生讨论,得出结论:毛毯的大小指的是毛毯的面积。

师:以前我们学过哪些图形的面积?它们的计算公式又是什么呢?生:长方形的面积=长×宽

正方形的面积=边长×边长

(这一环节中部分同学会把长方形和正方形面积与周长计算公式弄混淆,我不对其进行评价,而是由学生互评)

生:用字母表示长方形面积计算公式:S=ab

用字母表示正方形面积计算公式:S=a2

(根据学生的回答进行板书)

师:要想知道阿凡提手中的毛毯到底哪一块大,就要靠大家来算一算这两个图形的面积了,你会计算哪个毛毯的面积呢?

学生讨论,小组交流,汇报结果:都会计算长方形毛毯的面积,只需要量出它的长和宽就可以了。

师:那么这个平行四边形毛毯的面积怎样求呢?要想求平行四边形的面积需要知道哪些条件呢?今天我们就来共同学习平行四边形的面积。板书课题:平行四边形面积(大家齐读课题)

二、动手操作,合作探究

(一)利用方格,初步探究

师:根据自学提示自学课本第80页,思考下列问题:

1、图中分别是什么图形?

2、图中是用什么方法来计算图形面积的?

3、用这种方法来计算图形的面积时应注意什么?

4、完成表格,说一说你有什么发现?

5、通过运用这种方法来计算图形的面积,你有什么体会?

(小组内交流,然后派代表汇报结果)

生1:图中运用了数方格的方法来计算长方形和平行四边形的面积。

生2:运用数方格的方法计算图形面积时,应注意每一小格表示1平方米,不满一格的按半格计算。

生3:图中两个图形的面积相等。

生4:图中的长方形的长和平行四边形的底相等,宽和平行四边形的高相等。生5:长×宽正好得到的是长方形的面积,底×高得到的结果正好和平行四边形的面积相等。

生5:运用数方格的方法计算图形的面积太麻烦。

师:想一想如果我想计算出学校平行四边形花坛的面积还能用数方格的`方法吗?(学生都一致认为用数方格的方法来计算较大的图形的面积很不切实际)生提出疑问:如果计算平行四边形的面积能像计算长方形、正方形面积那样有一个固定的计算公式就好了。

(二)小组合作,初步设疑

师:如果想计算平行四边形的面积,你认为需要知道哪些条件?想一想是否可以把平行四边形变成一个熟悉的图形来计算出它的面积?小组内互相交流自己的看法。(根据学生的交流和回答,结果归为两大类)

小组1:平行四边形具有不稳定性,我们可以把平行四边形拉成我们学过的长方形,因为长方形的面积=长×宽,所以平行四边形的面积也应该是用这两条边的长度相乘。

根据该小组的分析,板书——猜测1:平行四边形的面积=底×与底相邻的边小组2:通过刚才数方格的数据,我们推测平行四边形的面积正好就等于它的底×高。

根据该小组的分析,板书——猜测2:平行四边形的面积=底×高

(三)动手操作,再次探究。

师:这两种猜测到底哪一种是正确的呢?根据提示,小组合作,动手试一试。探究提示:

1、拿出手中的平行四边形框架,小组合作,在纸上描出平行四边形。

2、将平行四边形框架拉成长方形框架,放在纸上,使长方形的长和平行四边形的底边重合,再描出长方形。

3、对比平行四边形的面积和拉成的长方形的面积,说一说你有什么发现?小组汇报结果,有的认为面积增大,有的认为面积减小,也有的认为面积不变。

(四)动手操作,深入探究

1、图形转换

通过小组合作,动手操作,学生汇报结果:生1:可以把平行四边形拼成长方形。

师:你们是如何拼的?把你的步骤和大家分享一下吧!(汇报时,引导说清楚“我是沿着平行四边形的……剪开,把它拼成……形”。)根据学生的汇报,在多媒体课件中进行展示。

在学生动手操作的过程中,可能有很多种剪拼方法,教师指导学生用最简单的方法进行剪拼,并把有代表性的作品在实物展台上给大家展示,并由学生自己上台进行描述,由其他学生进行评价。

师:把平行四边形剪拼成长方形时为什么要沿着平行四边形的高剪开?生:因为长方形里有四个直角,只有沿着高剪开才能剪成长方形。

2、探讨联系

师:同学们真能干,很快就把平行四边形转换成了长方形,再次观察平行四边形剪拼成长方形的过程,小组内思考、交流:

(1)平行四边形的底与拼成的长方形的长有什么关系?

(2)平行四边形的高与拼成的长方形的宽有什么关系?

(3)平行四边形的面积与拼成的长方形的面积有什么关系?

(小组讨论交流,引导学生边动手操作边观察,从中得出剪拼前平行四边形的面积、底和高分别与剪拼后的长方形的面积、长和宽相等。)

学生分小组汇报结果,其他小组进行评价,最终得出结论:这个长方形的面积与这原来的平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。

3、推导公式

师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?

生:平行四边形的面积等于底乘高。

(教师根据学生回答板书:平行四边形的面积=底×高)

师:自学课本81页,如何用字母表示平行四边形面积计算公式?生根据自学汇报结果:如果用S表示平行四边形的面积,a表示底,h表示高,用字母表示平行四边形面积计算公式S=a×h=ah(教师根据学生回答板书:S=ah)

4、提问质疑

师:刚才同学们的表现都不错,下面请大家阅读课本80—81页,还有什么疑问,请提出来。(学生阅读课本并质疑)

三、归纳总结,提高认识

通过今天的学习,你有什么收获?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?在计算平行四边形面积是应注意什么?师:同学们,现在我们再次回到阿凡提卖毯的故事中,用我们今天所学的知识来判断一下到底哪个毛毯大一些?

根据课件中展示的两块毛毯的相关数据,计算出它们的面积后汇报结果。生:这两个毛毯的面积一样大。所以巴依老爷输了。

平行四边形的面积教学设计 篇七

一、教学目标:

1. 使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2. 通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

二、教学重点、难点:

教学重点:平行四边形的面积的计算

教学难点:平行四边形的面积公式的推导过程

三、教具准备:课件、方格纸、信封、平行四边形若干个

四、学具准备:平行四边形四个,三角板,直尺,剪刀。

五、教学过程:

一、导入:

1.看点猜图形:

师:顾老师想考考大家的眼力。请看大屏幕。(出示一幅格子图淡、细;四个点依次闪烁出示)

师:如果把刚才的四个点依次相连,谁知道能组成什么图形?(问两个同学,大家都同意吗?)

2.说一说底和高:

师:看来你们都有一双火眼金睛。如果顾老师告诉你们,每一个小正方形的面积都是1平方厘米。那么这个平行四边形,底有几厘米,高有几厘米?[课件里出示,底( )厘米,高( )厘米]

3.导入新课:

师:早在上学期我们已经认识了平行四边形。今天这节课,我们继续研究平行四边形的有关知识。[板书:平行四边形]

二、新授:

(一)操作猜想

1.利用格子图画平行四边形,并说明底和高:

(1)师:同学们的手上都有这样一幅格子图,你能在上面像顾老师这样画一个平行四边形吗?(学生回答:能)画完以后,请你数一数底有几厘米,高有几厘米。(学生试画。)

(2)师:都画完的吗?请哪位同学上台展示自己的作品?(挑两个同学的作品上台展示。分别问生:你的底有几厘米,高有几厘米?对的打上勾)

2.利用格子图,数面积

(1)一起数。

师:大家继续看大屏幕。我们已经知道屏幕上的平行四边形,底是5厘米,高是3厘米。那你能数出它的面积有几平方厘米吗?……让我们一起看着大屏幕数一数。(先数出整格的,一块块点击,并显示红色。当数到不是满格的时候,停顿……也就是说这边的这个图形可以与那边那个拼成一格。是的,有些图形可以拼起来数。)

(2)独立数后同桌互查。

师:会数了吗?(生回答:会)请你反自己刚才自己画的平行四边形数一数,并把数出来的面积,填在图下面的括号里。

(生独立数,师巡视给予关注)

师:数完了吗?请同桌互相检查一下。(生互相检查)

(3)观察数据,交流发现。

师:请同学们观察一下你记录在图下面的三个数据,你有什么发现?(停顿稍许,等有学生一一举手了)把你的想法在四人小组里交流一下,看一下别人想的跟你是否是一样的?(四人小组交流)

师:请哪位同学代表小组汇报一下。(抽一生)说一说你的发现。(生:底和高乘在一起就是面积)(板书:平行四边形面积=底×高)你能用数据说明一下吗?(我的平行四边形,底是*,高是*,面积正好是它们的积*)

师:(另抽一生)你发现的结果跟他的一样吗?(一样)你是以哪些数据来证明的?(生回答后师评价)你的发现很有根据!

师:这些同学都发现了这个关系:底乘高等于面积。有没有不一样的?

(4)小结:

师:刚才同学们通过画图、数方格、观察等方法,发现平行四边形的底、高和面积之间有这样的关系。

(二)转化验证:

1.猜想:

师:如果屏幕中的图形去掉方格图(去掉屏幕中的方格图),你的图形中的方格图也去掉,底和高之间还会有这样的关系吗?(有些学生有有,有学生则漠然)

师:看大家的反应,我们有必要对这样的关系进行更进一步的验证。

2.验证:

(1)猜想将平行四边形变什么图形。

师:(手里出示一个平行四边形)这是一个平行四边形,你能不能剪一剪,再拼一拼,把它变成一个我们已经会算面积的图形?(生静静思考一下)你说。(后抽生回答:长方形)

师:你的想像能力很好。还有谁想到了把它剪拼成一个长方形?(生一一举手)很好,有越来越多的人想到了。

(2)动手操作,剪拼成长方形。

师:那好。请同学们利用手头的工具,把这个平行四边形剪拼成一个长方形。(学生独立操作,指点几个快的同学有没有其他方法,指明按中间的高剪。)

师:(一半人已经做好)完成以后,想一想,得到的长方形与原来的平行四边形,存在着怎样的关系?

师:把自己的发现,在四人小组内交流一下。(四人小组交流)

(3)上台展示,并说发现:

师:谁愿意展示一下自己的作品(摸好底,抽二生,一人沿顶点上的高剪拼,一人沿图中间的高剪拼)

师:请你介绍一下,你是怎么想的?(……)哦原来你是这样剪的。其实你刚才在剪的时候,是沿着平行四边形的什么在剪?(高,多媒体展示)请你继续说一说,剪拼后的长方形与原来的平行四边形有什么关系?(注意启发和关注)(长方形的面积与平行四边形的面积相等;长方形的长和平行四边形的底相等;长方形的宽和平行四边形的高相等。)(板书:长、宽、长方形面积)

师:看来你跟你们小组的活动是非常有成效的。

师:还有不一样剪拼的方法吗?……(沿中间的高剪的方法)你刚才沿着剪的那条线,其实也是什么?(高)你发现的联系,跟那位同学一样吗?(一样的)谢谢,你下去吧。还有不一样的吗?(说一说)

(4)归纳:

师:刚才同学们开动脑筋,用了多种不同的方法,把平行四边形剪拼成了一个长方形,让我们为自己的成功而鼓掌。(拍手)

师:而且我们还发现了后来长方形的面积相当于平行四边形的面积(用两向箭头)。(长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高)

师:我们早就知道,长方形的面积等于长乘以宽,现在我们可以理直气壮地说,平行四边形的面积等于(底乘以高)。

师:现在我们可以说我们刚才的发现是完全正确的,是具有普遍意义的。

(5)用字母表示公式:

(屏幕出示一开始的平行四边形)

师:如果面积我们用s表示,底和高和a和h表示。你能用字母公式表示平行四边形的面积计算方法吗?(文字公式上面写一个字母公式)

师:(手指字母和文字公式)这两个公式是同学们今天需要掌握的新知识,让我们再用心地读一读。

(6)练习:

(大屏幕中的字母全部去,换上数据底6厘米,高4厘米。)

师:这个平行四边形的面积大家会算吗?请你在自己的本子上计算一下。(生独立计算,选一个快的,正确的上台板书)

师:这个6是什么?(a),4呢?(h),那么底和高求出来的是什么?(s)。你后面用的单位为什么是平方厘米呀?

师:对的举手。……写错也没有关系,待会你订正一下。

三、小结:

师:一起告诉我,今天我们新认识了什么?(板书补充:的面积)你是用什么样的方法得到平行四边形的面积计算公式的?……哦,原来都是把我们的新知识转换成旧的知识。有没有什么疑问了?那么接下来让我们运用这个计算公式,来解决一些实际的问题。

四、练习:

1.猜一猜小精灵后面藏着谁(口答)?

(1)知道底和高;

(2)知道面积和底求高;你是怎么想的?如果知道面各和高,怎么求底?

(3)知道面积和高求底。

2.出示一个平行四边形,高与底不对应,求一求面积。

不能求,为什么?

给一个条件,求一条。

3.课件,长方形。变化成一个平行四边形?今天我们学了平行四边形的面积,根据你已经有的知识,判断这两个图形谁的面积大?

说一说为什么?班内分成两派,能不能说出充分的理由说服对方

根据自己的经验;相信自己的眼睛。

小结:数学学习要根据不同的情况得出灵活的判断。

五年级《平行四边形面积》教学设计 篇八

教学目标:

1、通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。

2、能正确地应用公式计算平行四边形的面积。

教学重点:

探索并掌握平行四边形面积计算公式。

教学难点:

理解平行四边形面积计算公式的推导过程,体会转化思想。

教学准备:

课件,一个框架式可以活动的平行四边形教具,剪刀,为学生准备一张底为6cm、高为4cm的平行四边形纸张和方格纸。

教学过程:

一、激趣引入

1、创设情景

师:九一小学学校内有两个花坛,同学们看看它们各是什么形状?(生:长方形和平行四边形)

师:这两个花坛哪个大,我们要知道什么呢?(生:它们的面积)

师:哪个花坛的面积你能解决?为什么?(生:长方形花坛,我们学过长方形的面积)

师:回忆一下,以前我们是用什么方法得出长方形的面积的。

2、稳固复习

师:我这里将两个花坛的图形按照相同的比例缩小成这两个图形纸片(出示长方形和平行四边形纸张),还有一张透明的方格塑料片(每一小格代表1平方米)和一把尺子(每厘米代表1米),你能用这些工具得出这个长方形的面积吗?说说你的想法。

生:用数方格的方法:把长方形纸放到方格纸上,用计算的方法:用尺子量出长和宽计算。

师:用了数方格和计算的方法,那你观察下面这个图形的面积是多少呢?

生:把右边那块割下来不到左边空白处,就变成了一个长方形,面积不变。是6平方米。

师:比较下面这个两个图形的面积?你是怎么想的?(生:也是割补法,面积一样。)

师:那这个平行四边形你准备用什么方法得出它的面积呢?(生:数方格、计算、割补法)

师:下面我们就用这些方法来研究一下平行四边形的面积。(板书课题)

二、新知探究

1、数方格

师:课本上已经把缩略后的图形画到了书上,先读:在方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。),需要注意什么?

生:一格代表1m2,不到一格按半个计算。

师:自己数一数两个面积一样大吗?各是多少?(生展示数格子的方法,得出两个面积都是24m2)

2、推导公式

师:上面我用了数格子得出了平行四边形的面积,如果不数格子,你能直接计算出来吗?猜猜平行四边形的面积计算方法。(由长方形引导)

生:相邻两边相乘,或者底乘高。

师:(展示由长方形变拉伸为平行四边形)你觉得图形变化中面积怎么了?什么没有变?

生:面积变小了,但四条边都没有发生变化。

师:那说明平行四边形面积能用相邻两边相乘来计算吗?(生:不能)

师:好,到底是不是用底乘高来计算呢?刚才我们已经数出了两个图形的面积都是24m2,请你完成这个表格到课本上,让后两个人讨论,你发现了什么?

生:长方形的长和宽分别和平行四边形的底和高相等,长方形的面积是长乘宽,所以平行四边形的面积是底乘高。

师:通过刚才的探究我们初步了解到了平行四边形的面积计算公式,到底是不是呢?是巧合还是必然呢?接下来我们用割补法验证一下。你准备把平行四边形转化什么图形来验证呢?

生:长方形。

师:请同学们根据前面的经验,两人一组,借助你们手中的平行四边形纸,可以画一画,剪一剪,拼一拼,看看能不能找到转化前后图形间的联系,并把你找到的联系在纸上写一写,让别人一眼就能看出你是如何推导出平行四边形面积计算方法的。联系下面几个问题进行探讨。

(1)面积还相等吗?

(2)转化后的长方形与原来的平行四边形有什么关系?

(3)长方形的长、宽与平行四边形的底、高有什么关系?

(4)怎么计算平行四边形的面积?

生:沿着一条高切下来,不到另一边就变成了长方形。

师:试着说说上面的四个问题。

生:面积不变,长方形的面积等于平行四边形的面积,长方形的长=平行四边形的底,长方形的宽=平行四边形的高,长方形的面积是长乘宽,所以平行四边形的面积是底乘高。

(生边说师边演示,并进行适当的引导)

师:这个在哪呢?是另一个底上的高吗?(生:不是,是这个底上的高,底和高要对应。)

师:还有其他的方法吗?

生:演示方法。(课件演示两种方法)

师:平行四边形的面积=底×高,如果用a表示底,h表示高,你能用字母表示出平行四边形的面积吗?(生:s=ah板书)

师:平行四边形的面积大小是由()和()决定的。共同决定的。

3、回顾总结

回顾刚才的学习过程,谁能说说我们是怎样学平行四边形的面积的计算方法的?

三、练习巩固

(一)基础练习

1、平行四边形花坛的底是6m,高是4m,它的面积是多少?

2、下面哪个平行四边形的面积是2×3=6c㎡?(图见课件)

3判断:

①平行四边形的底是7米,高是4米,面积是28米。()

②a=5分米,h=2米,s=100平方分米。()

③平行四边形的底越长,面积就越大。()

④平行四边形的高越长,面积就越大。()

4、把一个用木条钉成的的长方形拉成一个平行四边形,它的()。

a、周长和面积都不变b、周长不变,面积变大c、周长不变,面积变小

5、一个平行四边形的高是5cm,底是高的1。4倍,这个平行四边形的面积是()cm。

(二)拓展提升

1、计算下面每个平行四边形的面积。

2、下面图中两个平行四边形的面积相等吗?它们的面积各是多少?

四、总结提示

师:回忆一下,今天这节课有什么收获?

总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。

板书设计平行四边形的面积

数方格

长方形的面积=长×宽

计算平行四边形的面积=底×高(底高对应)

s=ah

割补法(转化)

平行四边形的面积教学设计 篇九

[教学目标]

1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。

2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;

3、情感目标:通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。

[教学重点、难点]

教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

[教具、学具准备]

多媒体课件、长方行纸、平行四边形纸、剪刀、三角板等。

[教学过程]

一、复习旧知,导入新课。

1、让学生回顾以前学习了哪些平面图形。老师根据学生的回答,依次出示相应的图形。

2、老师总结多边形的概念,并让学生回答长方形、正方形的面积公式。

师板书:长方形的面积=长×宽

师:由于正方形是特殊的长方形,所以正方形的面积公式也可以归入到长方形的面积公式里面去。到目前为止,我们已经会求长方形、正方形的面积,但还有平行四边形、三角形、梯形的面积不会求。今天,我们就来继续学习多边形面积的计算。

二、动手实践,探究发现。

1、剪拼图形,渗透转化。

(1)小组研究

老师提出要求,让学生们以小组为单位,利用桌上的材料剪拼成一个平行四边形。

(2)汇报结果

第一种是把长方形关剪成了一个三角形和一个梯形,然后拼成一个平行四边行;第二种是把长方形剪成了两个三角形,然后拼成一个平行四边形;第三种是把长方形剪成了两个梯形,然后拼成一个平行四边形。

板节课题:平行四☆www.kuaihuida.com☆边形面积计算

2、动手实践,探究发现。

(1)老师提出新的要求,让学生以组为单位从这三种方法中任选一种重新剪拼,并思考:把长方形转化成平行四边形,什么变了,什么没变?根据长方形与转化后的平行四边形的联系,又能有什么发现?

(2)学生重新剪拼,互相探讨。

(3)汇报讨论结果。

师板书:平行四边形的面积=底×高

(4)让学生齐读:平行四边形的面积等于底乘以高。

(5)让学生明白如果要计算平行四边形的面积,必须知道哪些条件?

(必须知道平行四边形的底和高)

课件展示讨论题:平行四边形的底和高是否相对应。

(6)总结平行四边形面积的字母代表公式:S=ah(师板书S=ah)

(7)比较研究方法。

三、分层训练,理解内化。

课件显示练习题

第一层:基本练习

第二层:综合练习

第三层:扩展练习

下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?

四、课堂小结,巩固新知

小结:这节课我们学习了什么?你学会了什么?

平行四边形的面积教学设计 篇十

教学目标:

1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

教学重点:

理解公式并正确计算平行四边形的面积。

教学难点:

理解平行四边形面积公式的推导过程。

教学方法:

动手操作、小组讨论、启发、演示等教学方法。

教学准备:

1、学具:每组两个平行四边形模型,剪刀,透明方格纸,直尺。

2、课外延伸思考题。

3、平行四边形转化为长方形的课件。

教学过程

一、创设情境,导入新课:

1、同学们,唐僧师徒去西天取经,唐僧想考考猪八戒和沙和尚谁更聪明些,便分派任务让他们去收割稻谷。唐僧说:“有两块地,一块是长方形,长9米,宽4米;另一块地是平行四边形,底是6米,高是6米。你们随便挑一块吧。”猪八戒心想挑一块面积小一点的地,可以做少一点,所以他急忙说:“我挑长方形那块地,可以做少一点”,孙悟空听了笑着说:“老猪你的如意算盘打错了。”,猪八戒怎么都不明白,同学们想知道为什么吗?

2、师:比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?

师:这节课我们就带着这些问题一起来研究《平行四边形的面积计算》(板书课题)

二、合作交流,探究新知

1、数方格比较两个图形面积的大小。

(1)提出要求:每个方格表示1平方米,不满一格的都按半格计算。

(2)学生用数方格的方法计算两个图形的面积

(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

2、引导:我们用数方格的方法得到了一个平行四边形的面积,但是方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

学生讨论,鼓励学生大胆发表意见。

3、归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于它的底乘高;是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下,因为我们已经计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?想不想亲自动手来验证、验证,请同学们试一试,小组商量。

学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

请学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?生:因为长方形是特殊的平行四边形,它的面积等于长乘宽)

教师用课件演示剪——平移——拼的过程。(多种方法)

4、我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

小组讨论。可以出示讨论题。

(1)拼出的长方形和原来的平行四边形比,面积变了没有?

(2)拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

(3)能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?

小组汇报,教师归纳:

我们把一个平行四边形转成为一个长方形,它的面积与原来的平行四边形面积相等。

同学们在验证时真不简单,经过努力你们终于发现并验证了平行四边形面积计算公式,老师为你们感到骄傲。

板书:

平行四边形面积= 底 × 高。

5、根据长方形的面积公式得出平行四边形面积公式并用字母表示。

平行四边形的面积还可以用什么来表示。教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示高,请同学们把平行四边形的面积计算公式用字母表示出来。

板书:S=a×h=ah=ah

6、活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

三、分层运用新知,逐步理解内化

1、(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?

2、那同学们知道孙悟空为什么笑猪八戒吗?谁来说说?(让学生讨论)

3、我们一起来听听孙悟空是怎样说的?(因为长方形面积是长9米乘以宽4米得36平方米;另一块地是平行四边形,底是6米乘以高是6米得36平方米,两块都一样大,猪八戒占不了便宜。)

4、 求下列平行四边形的面积 。

(2)判断对错:

师强调:在求平行四边形的面积时,要注意底和高是互相对应的(课件点击)

(3) 观察下面的平行四边形,形状相同吗?再仔细观察两个平行四边形,它们之间有什么关系?(课件出示等底等高的平行四边形)

生读题。

师:等底等高的平行四边形面积一定相等。

3. 思考题:你有几种方法求下面图形的面积?

四、总结全课,深化认识

通过今天的学习,你一定都有很多收获,谁愿意让大家来分享你收获的果实?

今天,我们用转化割补法学习了平行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学习致用。

五年级《平行四边形面积》教学设计 篇十一

教学目标:

1、经历动手操作、讨论、归纳等探索平行四边形面积公式的过程。

2、探索并掌握平行四边形的面积公式,会用公式计算平行四边形的面积。

3、在探索平行四边形面积公式的过程中,感受转化的数学思想;感受面积公式推导过程的条理性和数学结论的确定性。

教学重难点:

总结出平行四边形的面积公式。灵活运用平行四边形面积公式。

教具准备:

教师准备长方形一个、平行四边形两个;学生准备三个平行四边形。

教学过程:

一、复习导入

师:同学们,我带来了长方形和平行四边形,说一说你都知道长方形的哪些知识。

(学生说出长方形面积板书出来)

师:你还知道哪些平行四边形的知识?

(如有学生说不出高,师提醒)

师:长方形和平行四边形有哪些相同点,又有哪些不同点?

(平行四边形没有直角)

师:刚有同学说到了面积,那你知道这两个图形哪个面积大吗?

(学生说,比较)

师:那有同学说将这个平行四边形剪拼以后,它们两个的面积就相等了,这个想法非常棒。那我这还有一个平行四边形,这两个比较呢?

(学生说自己的想法)

师:那既然我们不能这样比较出它们的面积,那你们想不想知道还有没有其他的方法可以知道平行四边形的面积?

师:那我们这节课就一起来探索平行四边形的面积。(板书课题)

二、讲授新知

师:我们知道长方形有面积公式,能很快的算出它的面积,那平行四边形有没有呢?

师:有,那我们又如何来探究呢?我们学过长方形的面积,可不可以像刚才那位同学说的,将平行四边形转化成长方形我们再来探究呢?

师:那接下来我们就一起来探究平行四边形的面积公式,先将平行四边形转化成长方形。先不要动,请带着老师的几个要求去做。(课件)

师:(关注学生的剪法。让学生说说自己是怎样剪的,沿着什么剪的?如有很多同学剪的不标准,叮嘱沿着高剪以后,再让同学们剪一剪。多叫些学生来说想法。)

师:通过同学们的探究你发现了什么,找到平行四边形的面积公式了吗?

(生:说想法)

(课件在演示一下平行四边形的底和高相当于转化后长方形的长和宽)

师:那我有个问题,是不是平行四边形的面积就等于长方形的面积?

(不是,并不是所有的平行四边形面积都等于长方形的面积)

师:如果用S表示面积,那平行四边形的面积公式的字母表达是?

(板书:S=ah)

师:同学们今天很了不起,通过自己探索得到了平行四边形的面积公式,那就下来带着这个知识我们来完成几道题好吗?

三、巩固练习

师:1、计算下面平行四边形的面积,快速列算式不计算。

师:2、同学们答得很快,都正确。那接下来将这两题写在本上。

(集体订正答案)

师:如果要想求平行四边形的面积的必备条件是什么?

师:哦,也就是知道高和底就能求出它的面积,是吗?

师:3、让我们一起来看看这道题。

(让学生说说想法)

师:也就是我们要找到相对应的底和高才能求出平行四边形的面积,那这条底边的高在哪?(课件出示)那能求出这条高的长度吗?

(板书:S=ahh=S/aa=S/h)

四、知识拓展

师:同学们现在请比较一下这两个平行四边形的面积。

(学生说想法)

师:那这个呢?对它们的都是相等的,因为它们等底等高。

五、小结

师:本节课你学会了哪些知识?

五年级《平行四边形面积》教学设计 篇十二

【设计理念】

本课以新课程理念为指导,以学生发展为根本,以问题引领为指向,让学生亲身经历探究平行四边形面积计算公式的推导过程。通过猜测验证、转化变形、联系比较、迁移推理、回顾总结、实践应用等数学活动,掌握平行四边形面积的计算方法,感悟数学的思想方法,获得基本的数学活动经验,养成良好的数学学习品质。教学内容

【教学内容】

《义务教育教科书》人教版数学课本五年级上册87——88页。

【教材、学情分析】

平行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习平面图形面积计算的进一步拓展。应用转化的数学思想方法推导平面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。

学生对平行四边形的特征有了一定的了解,但对平行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。

【教学目标】

1、经历平行四边形面积公式的探究推导过程,掌握平行四边形面积计算方法。能应用公式解决实际问题。

2、在探究的过程中感悟“转化”的数学思想和方法。

3、通过猜测、验证、观察、发现、推导等活动,培养学生良好的数学品质。

4、引领学生回顾反思,获得基本的数学活动经验。

【教学重点】

推导平行四边形面积计算公式。应用公式解决实际问题。

【教学难点】

理解平行四边形的面积计算公式的推导过程。

【教学准备】

平行四边形纸片若干,直尺、剪刀、。

【教学过程】

一、创设情境,激发兴趣。

讲述阿凡提智斗巴依老爷的故事,激发学生的好奇心。

【设计意图:创设生动的故事情境,加强了数学与生活的联系,让学生感受到数学就在身边,学习平行四边形的面积是有价值的,从而诱发学习的欲望。】

二、组织探究,推导公式。

1、联系旧知,做出猜想。

看到这个题目,你想到了我们学过哪些有关面积的知识?

大胆猜想:平行四边形的面积可能和哪些条件有关呢?该怎样计算?

【设计意图:引导学生回顾长方形、正方形的面积公式,让学生在已有知识经验的基础上,进而猜测平行四边形的面积公式。】

2、初步验证,感悟方法。

根据自己的猜想,测量并计算面积,然后选择合适的工具进行验证。

引导学生:可以用数方格的方法试一试。(出示方格纸中的平行四边形)

学生数方格并来验证自己的猜想。

【设计意图:让学生在算、数、观察的基础上进行比较,让学生初步领悟到平行四边形和长方形的关系,放手让学生自主探索、研究、比较,验证自己的猜想。】

3、剪拼转化,发现规律。

除了数方格,我们还能用什么方法来验证呢?(学生思考)

能否将平行四边形转化成我们学过的图形再来进行计算呢?

(1)请大家先以小组进行讨论,然后动手实践,比一比哪个小组完成的更快。

(2)展示交流。(演示)

【设计意图:把平行四边形转化成长方形,剪、拼的方法是关键,通过剪、拼方法的交流,凸显了剪、拼方法的本质,训练了学生思维的灵活性。动手剪拼,进一步强化了对转化过程的认识与理解,初步感受到底和高相乘就是面积,为下一步教学起到了承上启下的作用。】

4、观察比较,推导公式。

剪拼后的长方形与原来的平行四边形有什么关系?平行四边形的面积怎样计算?为什么?用字母怎样表示?

小结: 长方形面积 = 长 × 宽

平行四边形面积 = 底 × 高

S = a × h

【设计意图:让学生观察发现转化前、后图形之间的联系,找共同点,自主推导平行四边形面积的计算公式,表达推导过程,发挥了学生的主体作用,发展了学生抓住关键有序表达的数学能力,有效的突出了教学重点。】

5、展开想象,再次验证。

是不是所有的平行四边形都可以转化成长方形?面积都可以用底乘高来计算呢?

学生先闭眼想象,再借助手中的工具加以验证。

6、回顾反思,总结经验。

回顾我们推导平行四边形面积计算公式的'探究过程,我们是怎样推导出面积计算公式的,从中可以获得哪些经验。

把平行四边形转化成长方形面积。(剪拼—转化)

然后找到转化前、后图形之间的联系。(寻找—联系)

根据长方形面积公式推导出平行四边形面积公式。(推导—公式)

【设计意图:引导学生反思学习过程,总结活动经验,体现了新的课程理念,培养了学生的反思意识和反思能力,为学生的终身发展奠定基础。】

三、实践应用,解决问题。

1、解决实际问题

平行四边形花坛底是6米,高是4米,它的面积是多少?

2、出示如下图

算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)

3、下面是块近似平行四边形的菜地(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)

王大爷:43×23 李大爷43×20,请你判断一下,谁对?谁错?

4、现在你明白阿凡提是怎么打败巴依的了吗?

引导学生明白:阿凡提利用了平行四边形易变形的特性调整了篱笆。

思考:阿凡提调整篱笆后的菜地面积变为100平方米,底20米,你知道高是多少吗?

【设计意图:解决实际问题,增强学生的应用意识。突出对应,明确计算面积的关键所在,感悟对应思想的价值和作用。面积大小的比较,培养学生发现规律,表达想法,解释现象,阐明道理的能力。】

四、总结全课,拓展延伸。

转化思想是一种重要的解决数学问题的方法,它是连接新旧知识的桥梁,合理利用,不仅可以掌握新知,还可以巩固旧知。希望同学们能把它作为我们的好朋友,帮助我们探索更多数学奥秘。

通过本节课的学习,同学们一定收获很多,下课以后,把自己的收获用日记记录下来,主动地到生活中去发现和解决一些关于平行四边形面积计算的问题。

【设计意图:试图把学生带入更加广阔的学习空间。】

《平行四边形的面积》教学设计 篇十三

一、 案例背景:

执教班级是五(3)班和五(5)班,这两个班的学生思维都比较活跃,知识面较广。

教学内容是北师大版六年制小学数学第九册第25-26页探索活动(一)《平行四边形的面积》。课前,学生只学了长方形、正方形面积计算,而平行四边形在他们的头脑中还是个直观模型,有关平行四边形特征等知识一无所知。鉴于上述种种情况,对教学进行必要的知识铺垫,以利于这次探索活动有效地开展。从事数学教学工作以来,我崇尚在课堂教学中,尽量为学生创设“合作交流,自主探索”的空间。

二、教材简析:

平行四边形面积的计算,是在学生掌握了长方形和正方形的面积计算,对平行四边形有了初步的认识,清楚了其特征及底和高的概念的基础上进行教学的。若想使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外,掌握平行四边形面积公式的推导方法,对后面学习其他图形的面积计算会起到积极的迁移作用。

三、教学诠释与研究。

“ 平行四边形的面积”我教学不止一次。以前教的是人教版教材,我把教学的重点放在:借助剪、拼的方法。利用形变积不变的道理,把平行四边形转化为长方形,从而推导出平行四边形的计算公式。教学时,我让学生动手剪、拼,把平行四边形拼成了长方形之后,我就开始下面的启发式提问:①平行四边形的底与长方形的长有什么关系?②平行四边形的高与长方形的宽有什么关系?③转化前后两图形之间什么没有变?启发学生讨论,回答。这样组织教学,学生一般都能得出正确结论,课堂教学进程是一帆风顺的,“效果”是好的。

现在再来审视一下以前的这一节课堂教学,我发现在这种看似良好的效果背后,却潜伏着大的危机:在这样的课堂中,问题由老师提出,思维的路线由老师操纵,学生究竟有多少自主学习的成分?这样的课堂教学貌似“启发式”,实则是由教学操纵的“包办婚姻”,学生是没有“自主权”的。若长此以往,学生只能成为解决问题的高手,而不是发发现问题、提出问题的高手。我们知道,创造源自问题,这样的教育培养出的学生还有创造性吗?

如今,我又开始教学这一内容。不同的现在使用的是北师大版的新教材。这一内容出现在五年级数学上册,标题是“探索活动(一)平行四边形的面积”。教材首先展示了这样一个情境:公园准备在一块平行四边形的空地上铺草坪,如何计算这块空地的面积?教材这样安排的目的是让学生面对一个新的问题,思考如何去解决,从而使学生感到学习新知识的必要性;随后,教材提供了两种解决问题的方法:一种是通过数格子的方法,数出这个平行四边形的面积,一种是通过剪与拼的活动,将平行四边形转化为长方形,然后计算出面积,最后,教材安排了观察平行四边形与长方形的关系,从中推导出计算平行四边形面积的公式。教材的编排意图是重在让学生自主探索,在探索活动中,使学生发现并理解平行四边形面积的计算方法。课堂教学时如何体现文本的这一“真谛”呢?新课程提倡教师要依据教材教,而不是教教材。在这一理念指导下,我对教材进行了重组。我根据班上学生的学习习惯和认识基础来创设问题情境。下面是课堂教学中的开始片断:

小黑板出示:

师:每个小方块的面积是1平方厘米,你能知道上面每个图形的面积是多少吗?

生:图1的面积是12平方厘米。

师:你们是怎么想的?

生1:我是一块块数的。

生2:我发现长方形长是4㎝,宽是3㎝,所以面积是4×3=12(平方厘米)。

师:谁能很快知道图2这个图形的面积吗?

生1:它的面积还是12平方厘米,因为还是由12个小正方形组成的。

生2:把中间的一排往左推一格,所以还是12平方厘米。

生3:把多的一块剪下来拼过去,正好是一个长方形,面积还是12平方厘米。

师:同学们真会动脑筋!我们可用割下来补过去的方法,将图形转变为长方形,很快知道它的面积。谁能很快说出图3的面积?

生1:在图形中间划出一个正方形,面积是9平方厘米,再把两边的三角形拼在一起,面积是3平方厘米,一共是12平方厘米。

生2:把左边的两个小三角形剪下来补在右边也正好是个长方形,面积是12平方厘米。

师:对于这个图形,我们用割补的方法能很快知道它的面积。

接下来,小黑板出示:

比较一下,图中的平行四边形的面积与长方形面积大小如何?

生1:我用数方格的方法:长方形有5×3=15个小方格,而平行四边形有11整格,加上8个半格拼成的4个整格,也是15个方格,平行四边形面积和长方形面积同样大。

生2:我把平行四边形左边的割下一个三角形,补到右边,就得到一个长方形,得到的长方形面积是15个方格,所以,平行四边形的面积也是15个方格,两个图形的面积大小相同。

师:把平行四边形割补成长方形,图形的什么变了,什么没有变?

生:图形的形状变了,面积大小没有变。

师:说得好!我们把割下的一块没有扔掉,而补在这里,正好得到一个长方形,图形的形状变了,但面积没有变。所以,原来的平行四边形的面积是15个小方格。两个图形的面积一样大。

反思:现代建构主义认为,知识并不能简单地由教师或其他人传授给学生而只能由每个学生依据自身已有的知识和经验主动地加以建构。所谓对新的学习材料的“理解 ”,就是学习者依据自身的已有知识和经验(认知绘声绘色)去解释新材料,使新材料与主体的已有知识、经验之间建立起实质性的、非任意的联系。在上述片断中,我设计了三个图形让学生直接说出它们的面积,并对学生用割补的方法给予肯定,为的是学生去探究平行四边形的面积计算方法时能产生学习的正迁移。接着,又设计了面积相等的两个图形,一个是长方形,一个是平行四边形,特别是两个图是在画有小方格的背景上画出的,我还暗示性的画出了平行四边形的高,让学生比较两个图形面积的大小,学生很快就能用数小方格的方法和“割补”法,为下面的推导出平行四边形的面积公式奠定了关键性的一步课后反思时,我觉得这节课在引导学生推导平行四边形面积公式时铺垫、暗示还是多了点,如果抽掉那些铺垫,直接让学生把一个平行四边形剪拼成长方形,这时课堂上又会是怎样的情景呢?我期待着下一次的教学实践。

几经思考,第二天在另一个班上这一内容时,我决定我觉得该给学生更多的自主探索的空间。请看下面的教学片断:

师:刚才同学们用“割补”法将平行四边形转化成长方形,比出了两个图形面积的大小,是不是所有的平行四边形都能用割补的方法转化成长方形呢?请同学们拿出各自的平行四边形纸片,动手剪剪拼拼,看看行不行?

学生进行操作实践,加验证。

师:你们手中的平行四边形能不能转化成长方形?谁愿意上讲台前演示给大家看?

学生争着前来演示,沿着平行四边形地高剪开,拼成长方形。

学生演示时,师追问学生:是沿着哪一条线剪的?

生:沿着平行四边形地高剪开的。

师:为什么要沿着高剪?

生:因为长方形的四个角都是直角,不沿着高剪,就拼不成一个长方形。

师:由此看来,对于任何一个平行四边形都可以转化成一个长方形,长方形的面积你们已经会计算了,现在,你们能算出你们手中的平行四边形的面积吗?

有的学生在量着,有的则愣着,有的忍不住抱怨着:它没有告诉什么呀,怎么算?我悄悄地走过去,小声地问:你希望告诉你什么,你就能算了,你有办法自己去知道需要的条件吗?得到启发,该生也拿尺量了起来。

全班交流自己的结果。

生:我量得我手中的平行四边形的底是6㎝,高是4㎝,所以面积是6×4=24(平方厘米)。

师:你能不能告诉大家,计算平行四边形的面积为什么用平行四边形的底乘高?

生:因为用割补的方法把平行四边形转化成长方形,面积不变。我发现长方形的长相当于平行四边形地底,宽相当于平行四边形的高,所以平行四边形的面积是底乘高。

结合学生的回答,板书:

长 方 形 面 积 = 长×宽

平行四边形面积 = 底×高

师:用字母s表示平行四边形的面积,a表示它的底,h表示它的高,计算平行四边形面积的字母公式是怎样的?

生1:s=a×h

生2:还可以用小圆点代替乘号。

生3:还可以省略小圆点,写作:s=ah

……

师:这节课,你们学到了什么?

生:学会了计算平行四边形的面积。

师:是怎么学会的呢?

部分学生沉默,估计是学生不善于表达。

师:面对着求平行四边形面积的新问题,我们用割补的方法转化成学过的长方形,用旧知识解决了新问题。以后,我们还可以用这种思想方法去获取三角形,梯形面积计算等新知识。你们说这种思想方法重要吗?

反思:对于如何概括出求平行四边形面积的公式?我没有像以前那样由教师提出一个个小问题,然后学生回答,从而得出公式,而是直接先让学生计算手中的平行四边形的面积。如何计算平行四边形的面积呢?这一问题对学生来说具有极大的挑战性。学生居然算出来了,这说明学生的潜力是巨大的。课堂上一定要让学生积极地独立思考,自主探究。如果教师牵着学生走,铺垫太多,会妨碍学生独立思考,不利于学生的发展。平行四边形的面积学生既然求出来了,归纳求平行四边形面积的公式也就水到渠成了。