作为一位无私奉献的人民教师,时常需要编写教案,教案是教学活动的依据,有着重要的地位。来参考自己需要的教案吧!这里的12篇实数教学设计是快回答小编为您分享的实数教案的相关范文,欢迎查看参考。
《实数》教学反思 篇一
上完《实数》这节课后,我常常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!比如明明重复了好多遍“a2的平方根是±a”,可是学生每次做题仍是按“a2的平方根是a”计算。也常听见学生这样的埋怨:巩固题做了几十遍,数学成绩却不见提高!这不能不引起我的反思了。确实,出现上述情况涉及方方面面,但我认为其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题归例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。
事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。我认为应从以下几方面做一些探讨:
一、在解题的方法规律处反思。
“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。通过例题的层层变式,培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。
二,在学生易错处反思。
学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错”。例题教学若能从此切入,进行解后反思,则往往能找到“病根”,进而对症下药,常能收到事半功倍的效果!
(1)计算常出现哪些方面的错误?
(2)出现这些错误的原因有哪些?
(3) 怎样克服这些错误呢?可让同学们各抒己见,针对各种“病因”开出有效的“方子”。
实践证明,这样的例题教学是成功的,学生在计算的准确率、以及速度两个方面都有极大的提高。
《实数》教学反思 篇二
本节课的内容不多,但这是学生平方根的关键,为后面学习立方根及运用平方根进行基本运算和解决实际问题打下基础,也是一个关键。从选择课题,到设计教案,板书设计,每一个环节都经历了反复的推敲和修改,只为达到课堂设计的最佳效果,令学生有收获。从教学环节的设计,例题练习题的选取,甚至是对学生设置的每一个问题每一个用词都是细心修改。最终这节课得以顺利完成。上完这节课后,我谈谈自己的几点看法:
1、通过生活中的实例引入,体现数学来源于生活,用于生活;并且设置悬念,激发了学生后续学习的兴趣。
2、最后小结的环节设置比较好,能够让学生自己主说出本节课学到的知识以及感受,这样不仅能够了解学生对本节课知识的掌握程度,还能锻炼学生的语言表述能力。
3、学生第一次接触到与乘方互为逆运算的“开方”,只要能突破这个难点,学生在意义上理解了解算术平方根,后面的计算也就容易多了。这也是这节公开课做得不足的地方,新课的容量有限,所以将绝大部分时间用在了帮助学生理解算术平方根的意义和求某一个非负数的算术平方根的计算上。在后面的课时,应该帮助学生理解乘方与开放互为逆运算。当然这节课还存在很多细节问题,以后有待改进。
最后,要感谢涂老师、龚老师课前耐心的帮我听课,帮我提出宝贵的意见;感谢前来听课的各位领导,各位老师!感谢课后童校长的精彩点评和细心指导!
通过这次公开课,我觉得自己学到了很多,比如课前应该做足功课,了解前后章节之间的联系,做大量的练习来领会要点等。每一次公开课的经历,都将成为我工作历程中重要的一笔,现在我也信心百倍,全力以赴迎接未来的挑战!
平方根教学反思
我执教了《平方根》一课。课后反思一节课的得失,感触颇多。
一、明确的学习目标是有效学习的前提
美国著名心理学家、教育家布鲁姆说:“有效的教学,始于期望达到的目标。学生开始时就知道教师期望他们做什么,那么他们便能更好地组织学习。”我校现在施行的以“导学案”为载体的“先学后教,当堂达标”的教学模式就突出了明确学习目标这一点。然而从课堂上来看,学生对学习目标的重视程度还远远不够。学生只是读了一下学习目标,学习目标并没有深入其内心深处,没有成为他学习行为的指南。在上课快结束时回扣目标做得不是很好。事实上出示目标和回扣目标都是一节课非常重要的环节。学习目标应贯穿整节课的始终。
二、充足的时间是探究学习质量的保证
所谓探究学习就是学生象科学家一样地去探索某个结论或规律。学生经历观察、猜想、验证、归纳等,使他们经历发现问题、提出问题、解决问题的过程,从而总结解决问题的方法,提高解决问题的能力,这需要充足的时间。在本节课中探究:对于正数a,
根号a的平方=______时,由于时间的关系,没有给予学生充足的时间。致使学生的探究学习只停留在了观察、猜想的层次,而没有达到预想的层次。在探究学习时,要舍得花费时间,正所谓“磨刀不误砍柴功”。
三、及时检查反馈是小组合作学习的保障
初中生自制力较差,小组合作学习涉及人多,若组织不当就会使学生精力分散。所以在小组合作学习前就要明确任务要求,并及时检查、评价。在本节课的自主学习1、2过程中,学生明确了学习的任务要求,在检查反馈时学生掌握很好,从而增强了学生的成功感,激发了学习的兴趣,为下一个环节的进行做了良好的准备。
“思考着往前走”,是教学改革中教师自我成长的现实之路。只要每一位教师善于发现、敢于承认自己教学中存在的不足,并执著探索解决的方法。相信“教得轻松,学得快乐”的教学境界会到来的。
实数 教学设计 篇三
实数 教学设计
§13.3实数(初中数学8年级)1.所在班级情况,学生特点分析
班额较大,学生在数学基础水平,数学理解能力、运算能力、应用能力等方面差异较大;
学习习惯差、方法差是直接原因。多数学生在数学学习过程中,由于缺乏良好的学习习
惯,不能认真地听课。缺乏正确的数学学习方法,仅仅是简单的模仿、识记。上课时,学习思
维迟延,跟不上教师的思路。平时学习中不注意对基础知识(定理、定义、公式等)的理解和
记忆,从而导致在解题时,缺乏条理和依据,造成解题思路的“乱”和“怪”。心理压力较大,
不敢去请教,怕被人认为“笨”,于是,数学便成了学习上的一只拦路虎。
2.教学内容分析
从《数学课程标准》看,关于数的内容,第三学段主要学习有理数和实数,它们是“数与
代数”领域的重要内容。对于有理数和实数,本套教课书安排3章内容,分别是7年级上册第1章
“有理数”,8年级上册第13章“实数”和9年级上册第21章“二次根式”。本章是在有理数的
基础上认识实数,对于实数的学习,除本章外,还要在“二次根式”一章中通过研究二次根式的
运算,进一步认识实数的运算。
本章的主要内容是平方根、立方根的概念和求法,实数的有关概念和运算。通过本章的学习,
学生对数的认识就由有理数范围扩大到实数范围,本章之前的数学内容都是在有理数范围内讨论
的,学习本章之后,将在实数范围内研究问题。虽然本章的内容不多,篇幅不大,但在中学数学
中占有重要的地位,本章内容不仅是后面学习二次根式、一元二次方程以及解三角形等知识的基
础,也为学习高中数学中不等式、函数以及解析几何等的大部分知识作好准备。
3.教学目标
4.教学难点分析
5.教学课时
2课时
6.教学过程
第1课时
教学目标:了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;
了解实数的运算法则及运算律,会进行实数的运算,会用计算器进行实数的运算
教学重点:实数的意义和实数的分类;实数的运算法则及运算律
教学难点:体会数轴上的点与实数是一一对应的;准确地进行实数范围内的运算
教学过程:
一、创设情景,导入新课
试一试 学生以前学过有理数,可以请学生简单地说一说有理数的基本概念、分类.
试一试
1、使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
动手试一试,说说你的发现并与同学交流.
(结论:上面的有理数都可以写成有限小数或无限循环小数的形式)
可以在此基础上启发学生得到结论:任何一个有理数都可以写成有限小数或无限循环小数的形式.
2、追问:任何一个有限小数或无限循环小数都能化成分数吗?
二、合作交流,解读探究
探究 使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即
归纳任何一个有理数都可以写成有限小数或无限循环小数的形式。反过来,任何有限小数或无限循环小数也都是有理数
观察通过前面的探讨和学习,我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数,
也是无理数
结论有理数和无理数统称为实数
试一试把实数分类
总结1、事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,
有些表示无理数
当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;
反过来,数轴上的每一个点都是表示一个实数
1、与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大
讨论 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?
总结数 的相反数是 ,这里 表示任意一个实数。一个正实数的绝对值是本身;一个负实数的绝对值是它的相反数;0的绝对值是0
三、应用迁移,巩固提高
例1把下列各数分别填入相应的集合里:
四、总结反思,拓展升华
小结1、什么叫做无理数?
2、什么叫做有理数?
1、有理数和数轴上的点一一对应吗?
2、无理数和数轴上的点一一对应吗?
3、实数和数轴上的点一一对应吗?
五、课堂跟踪反馈
六、作业
必做:课本第86页习题第1、2、3题;
选做:课本第87页习题第7题
第2课时
教学目标:
1、知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;
2、学会比较两个实数的大小;了解在有理数范围内的运算及运算法则、运算性质等在实数范围内仍然成立,
能熟练地进行实数运算;在实数运算时,根据问题的要求取其近似值,转化为有理数进行计算;
3、通过学习“实数与数轴上的点的一一对应关系”,渗透“数学结合”的数学思想。
教学难点:对“实数与数轴上的点一一对应关系”的'理解知识重点:实数与数轴上的点一一对应关系
教学过程
一、创设情景,导入新课
复习导入:1、用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律
2、用字母表示有理数的加法交换律和结合律
3、平方差公式、完全平方公式
4、有理数的混合运算顺序
二、合作交流,解读探究
自主探索 独立阅读,自习教材
总结 当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,
而且正数及0可以进行开方运算,任意一个实数可以进行开立方运算。在进行实数的运算时,
有理数的运算法则及运算性质等同样适用。
讨论 下列各式错在哪里?
三、应用迁移,巩固提高
例1 为何值时,下列各式有意义?
五、课堂跟踪反馈
六、作业
必做:课本第87页习题第4、5、6、7题;
选做:课本第87页习题第9题
8.课堂练习见教学过程
9.作业安排 见教学过程
10.附录(教学资料及资源)
八年级人教版教材
八年级人教版教材全解
八年级数学教师教学用书
11. 自我问答
波利亚认为,“头脑不活动起来,是很难学到什么东西的,也肯定学不到更多的东西”
“学东西的最好途径是亲自去发现它”“学生在学习中寻求欢乐”.在本节课的教学设计
中注意从学生的认知水平和亲身感受出发,创设学习情境,提高学生学习数学的积极性和
学习兴趣,设计系列活动让学生经历不同的学习过程.在活动过程中让学生动手试一试,
说说自己的发现并与同学交流结论,在交流中尝试得出结论:任何一个有理数都可以写成
有限小数或无限循环小数的形式.进一步地提出问题:任何一个有限小数或无限循环小数
都能化成分数吗?引入了无理数和实数的概念后要求学生对所学过的数按照一定的标准进
行分类.分类思想是解决数学问题的常用的思想,在教学过程中,教师应该创造条件,让
学生体会分类标准与分类结果之间的关系.本课提出的问题“你能尝试着找出三个无理数
来吗?”具有较大的开放性,给学生提供了思维空间,能促使学生积极主动地参与到数学
学习过程中,亲自体验知识的形成过程.
数学实数复习教学设计 篇四
数学实数复习教学设计
一、知识疏理,形成体系。(课前要求学生对本章知识进行总结)
师:本章的主要内容是开方运算。下面,我们以组为单位小结一下本章的知识点。
生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系。
开方包括开平方与开立方。通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根。依据这一思路,我们画出的知识结构图是:
师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗?
生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要。因此我们是这样总结的`:
师:同样是开方运算,算术平方根,平方根,立方根有哪些区别和联系呢?
生:比较算术平方根,平方根,立方根的概念和性质,我们总结出了如下表的区别与联系。
师:同学们总结的非常好!不仅全面而且重点突出。下面我们针对刚才总结的内容做几道练习。
二、强化基础,巩固拓展。(也可以由学生提出典型薄弱题型进行讲解)
1.求下列各数的平方根:
(1) ;(2) ;(3) .
师:本题要审清是求哪个实数的平方根,只有非负实数才有平方根。
生:
(1)是求 的平方根;
(2)是求16的平方根;
(3)是求 的平方根。
由学生独立完成。
2.x取何值时,下列各式有意义。
(1) ; (2) ;
(3)
师: 在什么情况下有意义?
生:对于 ,必须满足a≥0,它才有意义,所以被开方数必须是非负数。
(1)4+x≥0;
(2)4+x ≥0;
(3)2x-1取任意实数。
师:如何求出x的范围呢?
生:我们讨论后,得出如下结论:
(1)x≥4;
(2)不论x取什么实数,x ≥0,4+x ≥0,即x的取值范围是:x为全体实数。
(3)2x-1取任意实数,即x的取值范围是全体实数。
3.已知:|x-2|+ =0,求:x+y的值。
师:认真审题,考虑一下所给的这些数有什么特点。
生:|x-2|和 都是非负数。
师:两个非负数的和可能是0吗?
生:只有当两个非负数都取0时,其和才为0,其他情况下,都大于0.
由学生独立完成。
师:哪些数为非负数呢?
生:实数a的绝对值,表示为|a|,|a|是非负数;实数a的平方,表示为a2,a2是非负数;非负实数a的算术平方根表示为 , 是非负数。
师:非负数有什么特点?
生:(1)几个非负数的和仍为非负数;
(2)若几个非负数的和为0,则每一个非负数都必须为0.
4.掌握规律
那么:0.17201的平方根是多少呢?师:同学们仔细观察这道题,你发现了什么规律?如果是立方根呢?
由学生自己观察归纳。
三、查缺补漏,归纳提升。
1.通过今天的探究学习,你们有哪些收获?
2.非负数的和等于零的条件是:当且仅当每个非负数的值都等于零。此性质在解题时经常会被用到。
3.对于本章的内容你还有那些疑问?
《实数》教学反思 篇五
我执教了《平方根》一课。课后反思一节课的得失,感触颇多。
一、明确的学习目标是有效学习的前提
美国著名心理学家、教育家布鲁姆说:“有效的教学,始于期望达到的目标。学生开始时就知道教师期望他们做什么,那么他们便能更好地组织学习。”我校现在施行的以“导学案”为载体的`“先学后教,当堂达标”的教学模式就突出了明确学习目标这一点。然而从课堂上来看,学生对学习目标的重视程度还远远不够。学生只是读了一下学习目标,学习目标并没有深入其内心深处,没有成为他学习行为的指南。在上课快结束时回扣目标做得不是很好。事实上出示目标和回扣目标都是一节课非常重要的环节。学习目标应贯穿整节课的始终。
二、充足的时间是探究学习质量的保证
所谓探究学习就是学生象科学家一样地去探索某个结论或规律。学生经历观察、猜想、验证、归纳等,使他们经历发现问题、提出问题、解决问题的过程,从而总结解决问题的方法,提高解决问题的能力,这需要充足的时间。在本节课中探究:对于正数a,
根号a的平方=______时,由于时间的关系,没有给予学生充足的时间。致使学生的探究学习只停留在了观察、猜想的层次,而没有达到预想的层次。在探究学习时,要舍得花费时间,正所谓“磨刀不误砍柴功”。
三、及时检查反馈是小组合作学习的保障
初中生自制力较差,小组合作学习涉及人多,若组织不当就会使学生精力分散。所以在小组合作学习前就要明确任务要求,并及时检查、评价。在本节课的自主学习1、2过程中,学生明确了学习的任务要求,在检查反馈时学生掌握很好,从而增强了学生的成功感,激发了学习的兴趣,为下一个环节的进行做了良好的准备。
“思考着往前走”,是教学改革中教师自我成长的现实之路。只要每一位教师善于发现、敢于承认自己教学中存在的不足,并执著探索解决的方法。相信“教得轻松,学得快乐”的教学境界会到来的。
北师大版《实数》教学设计 篇六
知识与技能:
①了解无理数和实数的概念以及实数的分类; ②知道实数与数轴上的点具有一一对应的关系。 过程与方法:
在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,从而总结出实数的分类,接着把无理数在数轴上表示出来,从而得到实数与数轴上的点是一一对应的关系。
情感态度与价值观:
①通过了解数系扩充体会数系扩充对人类发展的作用;
②敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。
2. 教学重点/难点
教学重点:
①了解无理数和实数的概念; ②对实数进行分类。 教学难点:对无理数的认识。
3. 教学用具 4. 标签
教学过程
一、复习引入无理数:
归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式, 反过来,任何有限小数或者无限循环小数也都是有理数。
通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数, 把无限不循环小数叫做无理数。
二、实数及其分类:
1、实数的概念:有理数和无理数统称为实数。
2、实数的分类:
按照定义分类如下:
按照正负分类如下:
3、实数与数轴上点的关系:
我们知道每个有理数都可以用数轴上的点来表示。物理是合乎是否也可以用数轴上的点表示出来吗?
活动1:直径为1个单位长度的圆其周长为π,把这个圆放在数轴上,圆从原点沿数轴向右滚动一周,圆上的一点由原点到达另一个点,这个点的坐标就是π,由此我们把无理数π用数轴上的点表示了出来。
活动2:在数轴上,以一个单位长度为边长画一个正方形,则其对角线的长度就是以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示 ,与负半轴的交点就是 。事实上通过这种做法,我们可以把每一个无理数都在数轴上表示出来,即数轴上有些点表示无理数。
归纳:实数与数轴上的点是一一对应的。即没一个实数都可以用数轴上的点来表示;反过来,数轴上的每一个点都表示一个实数。
三、应用:
1、下列实数中,无理数有哪些?
注:①带根号的数不一定是无理数,
②无限小数不一定是无理数,无限不循环小数一定是无理数。
2.判断下列说法是否正确:
⑴无限小数都是无理数; ⑵无理数都是无限小数; ⑶带根号的数都是无理数;
⑷所有的有理数都可以用数轴上的点来表示,反过来,数轴上所有的点都表示有理数; ⑸所有实数都可以用数轴上的点来表示,反过来,数轴上的所有的点都表示实数。
3、任意写出三个合适的数填在相应的集合里:
四、课堂小结
1、无理数、实数的意义及实数的分类。
2、实数与数轴的对应关系 .
五、布置作业习题6.3第
1、
2、3题;
《实数》教学反思 篇七
1.本节是在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数范围。从有理数到实数,这是数的范围的一次重要扩充,对今后学习数学有重要意义。在中学阶段,多数数学问题是在实数范围内研究。例如,函数的自变量和因变量是在实数范围内讨论,平面几何、立体几何中的几何量(长度、角度、面积、体积等)都是用实数表示等。实数的知识贯穿于中学数学学习的始终,学生对于实数的运算,以后还要通过学习二次根式的运算来加深认识,因此本节的作用十分重要。
2.在本节课中为了突出重点,突破难点,我将教学分层次进行,先从从一个探究活动开始,活动中要求学生把几个具体的有理数写成小数的形式,并分析这些小数的共同特征,从而得出任何一个有理数都可以写成有限小数和无限循环小数的形式。把有理数与有限小数和无限循环小数统一起来以后,指出在前两节学过的很多数的平方根和立方根都是无限不循环小数,它们不同于有限小数和无限循环小数,也就是一类不同于有理数的数,由此给出无理数的概念。无限不循环小数的概念在前面两节已经出现,通过强调无限不循环小数与有限小数和无限循环小数的区别,以使学生更好地理解有理数和无理数是两类不同的数。帮助学生建立有意义的知识联结,顺应认知结构中的原有体系,以逐步探究的思路实现对问题的深层次理解,增强思维的深刻性。
3.在探究有理数规律的过程中,使学生在探究时,经历了观察、实验、归纳、总结以及由具体到抽象、由特殊到一般的学习过程,体会到了研究问题、解决问题的方法,加深了对无理数的理解。在处理这段教材时,没有刻意地增加难度,而是立足教材,紧紧围绕课本,尊重教材,挖掘教材,从情境设计—例题选择—课堂引申都是以教材内容为载体,充分开发教材的功能。循序渐进地引导学生去学习新知,使学生能准确地把握学习重点,突破学习难点。
4.本节课通过学生的主动智力参与,动手实践、自主探索与合作交流等活动,使学生在教师的主导作用下,实现对实数概念的自我建构。特别是在数轴上表示无理数,以探究题卡的形式让学生自主完成,充分体现了自主探究教学法。
5.教师在培养学生学习兴趣,激发良好学习动机中承担一定的责任。恰当地提出问题和恰当地运用课堂互动策略十分重要。在课堂的准备与指导阶段充分了解学生,进行有效提问,为学生提供及时适当的反馈,运用课堂竞争、合作策略来促进良性课堂互动,实现教学目标。
但本节课存在许多不足,对于学生对无理数概念的理解估计不足,而且课堂气氛相当沉闷,教学效果不是很好。在今后的教学中自己在备学生时应着重考虑学生可能出现的这样或那样的情况,在教学手段和教学方法上应力求做到更新,以吸引学生的注意力,达到最佳效果。
总之,自己在教学中需要学习和改正的地方还很多很多,我将继续不断探索,不断研究,虚心求教,尽快提高自己的教育教学能力。
北师大版《实数》教学设计 篇八
一、教材分析:
本节课选自浙教版七年级上册第三章第二节(3.2实数)。目标是让学生经历无理数的产生过程;了解无理数、实数的概念,了解实数的分类;知道实数与数轴上的点一一对应;理解相反数、绝对值、数的大小比较法则同样适用于实数。
在中学阶段,大多数问题是在实数范围内研究的。本节课是在学生学习了平方根、立方根以后,接触过如“《3.2实数》教学设计”、“π”等具体的无理数的基础上,引入无理数的概念,使数从有理数扩展到实数,对今后数学学习有着非常重要的意义,是进一步学习方程、复数、函数等知识的基础,同时也是学习自然科学等学科所不可缺少的。
二、教学设计:
本课的教学设计遵循新课程教学理念,以建构主义理论为指导,积极落实新课程理念。倡导“合作与探究学习”,充分调动学生学习的主动性、积极性,让学生成为课堂学习的主人,注重学生情感、态度、价值观的培养,在教学设计中,既要关注学生的认知水平,又要关注学生的可挖掘潜能情况。
基于以上的认识,在本课的设计过程中充分体现了“数学源于生活又服务于生活”,非常重视直观形象的教学方法。新课引入中利用正方形的边长及面积之间的关系回顾平方根及算术平方根的知识并顺势引入面积是a时正方形的边长是多少?为后面的《3.2实数》教学设计 的得出做好铺垫,之后利用“剪一剪,拼一拼”让学生在动手实践中得出《3.2实数》教学设计 ,进而借助EXCEL工作表来探索 《3.2实数》教学设计 到底有多大?发现 《3.2实数》教学设计 原来是一个无限不循环小数,从而给出无理数的概念结合前面学过的有理数将数的范围进一步扩充到了实数。这里多媒体技术的恰当运用充分扩大了课堂的容量。之后利用练习得出“实数与数轴上的点一一对应”的关系,让学生体会到“做中学”的乐趣。整堂课让学生在认可,理解,探讨中感受概念与性质的由来和应用。在教学过程中,学生始终是问题的发现者和解决者,而教师始终是学生学习的组织者、引导者。因此,在本节课的教学设计上,具备了如下特色:
特《3.2实数》教学设计色一:问题的设置源于生活、贴近生活,充分给予学生动手实践发现问题的机会,让学生时刻感受“做中学”的乐趣。
特色二:在设计理念和思路上。本节课突出课程设计的矛盾统一性,内容设计层层递进,在内容上以“温故知新→合作探究(动手剪一剪,拼一拼)→探索发现(借助EXCEL工作表)→发现归纳→小试牛刀→大显身手(练习拔高,发现性质)→实践发现→知识拓展→小结分享”作为流程,,使整节课一气呵成。
特色三:在教学模式和组织形式上。突出学生的主体地位,课堂中,以学生的独立思考,动手实践,合作探究为主。尤其在对《3.2实数》教学设计 的大小探索时借助EXCEL工作表使得计算时能够随机灵活让无理数概念的得出更为自然,顺利,突破了本节课的重难点。利用数学课堂对学生的合作探究能力,思维创新及良好数学素养的形成起到了较好的作用。
三、亮点与反思:
通过动手实践操作,师生互动交流探究,教给学生学习数学的切实方法,精心设问,设置悬念,适时、适度采用激励性语言,提高学生学习积极性,使学生主动、愉快地参与到教学的全过程中来,从而较好地完成实数概念的建构,达到教学目标。在教学过程中,充分发挥学生的主观能动性,让学生动手、动脑、动口,培养学生阅读质疑,以及抽象概括等思维方法。
采用计算机辅助教学手段显示在数的发展历史上曾作出过巨大贡献的科学家的图片,让学生在数学中看到人的存在,培养人文主义精神,也让学生了解数学发现的过程,同时营造了良好的课堂教学氛围。运用多媒体演示剪拼动态过程有利于数形结合,体现直观性。借助EXCEL工作表来探索《3.2实数》教学设计 到底有多大?有利于激趣质疑,增大课堂教学容量,提高课堂教学效率。利用投影进行集体交流,及时反馈信息。
1.数学周长教学设计
2.数学教学设计步骤
3.数学教学设计推荐
4.日历中的数学 教学设计
5.初二英语优秀教学设计
6.奥运中的数学教学设计
7.数学教学设计模板
8.章建跃:教学设计与好数学教学
9.小学数学学科教学设计
10.数学广角鸽巢问题教学设计
《实数》教学反思 篇九
《实数》教学反思
《实数》这一章我对概念的处理上,重点抓住主要概念,注重概念的形成过程,让学生在具体的活动中获得认识,增强理解;对内容的安排上,联系实际情境,导入新知识,注意前后知识间的对比,同时让学生在运用中促进对知识的理解和掌握。例如:在引入无理数这个概念时,我先通过具体的活动求面积为2的正方形的边长,提出问题:它可能是整数吗?它可能是分数吗?让学生亲身经历这些活动,在讨论中引起认知冲突,感知生活中确实存在不同与有理数的数,产生探求的欲望:它不是有理数,那它是什么数?再让学生进一步借助计算器充分探索,得出它是一个无限不循环小数,从而给出无理数的概念。这与历史上无理数的产生和发展过程是一致的,符合人的认识规律,同时让学生体会到抽象的数学概念在现实世界中有其实际背景。
无理数有很多,开方开不尽的数是其中的一种,也是我们计算中经常接触到的。在课堂教学时我选取了一些生动的素材,引入平方根和立方根的概念和开方运算。由于在实际情境中的开平方运算结果取的都是算术平方根,而且正数有两个平方根与学生长期的经验不符,学生不易接受,因此教科书先引入算术平方根的概念,然后再引入一般的平方根的概念。
在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值。又安排了一节内容:公园有多宽,介绍估算的方法,包括通过估算比较大小,检验结果的合理性等等,其目的是发展学生的数感。
当无理数的概念和表示形式为学生熟知以后,实数概念的引入就水到渠成了。本章最后总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的。概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很必要的。例如:无理数的引入,先让学生亲身经历活动,感受引入的必要性,初步认识无理数是无限不循环小数这一意义。在教学时,鼓励了学生动手、动脑、动口,与同伴进行合作,并充分地开展交流。再如,平方根的概念,对正数有两个平方根学生不太容易接受,往往丢掉负的平方根,因为这与他们以前的运算结果唯一的经验不符。对此,在平方根的引入时,多提了一些具体的问题,例如:9的算术平方根是3,也就是说,3的平方是9。还有其他的`数,它的平方也是9吗?等等,旨在引起学生的思考,特别是负数的情况,让学生从具体的例子中抽象出初步的平方根的概念。接着让学生去讨论:一个正数有几个平方根?0有几个平方根?负数呢?引导学生更深刻地理解平方根的概念,然后再通过具体的求平方根的练习,巩固新学的概念。
类比法是应该是本章的重要方法之一。最主要的就是类比于有理数建立起实数中的相反数和绝对值的概念。当然类比的对象间可能会表现出差异,这在进一步的类比――有理数与数轴的关系时表现出来了:有理数与数轴上的点不是一一对应的,而实数与数轴上的点是一一对应的。对于实数的运算律、运算性质等,也是通过类比得出的。
在课堂教学中我注意了以上的种种,根据计划,以新课标、新理念为教学策略逐步实施教学计划,而由于开学初制定各种计划和班主任工作忙,无暇紧盯学生作业,课外辅导没时间,以致单元检测成绩不够理想,达不到课堂教学的预期效果。再一次证明了绝大多数教师所讲的话:理念新不如紧盯再紧盯。
《实数》教学反思 篇十
本课例通过问题1学生会发现:有些数不属于有理数,从而比较自然地给出无理数和实数的概念,使学生感受到把有理数扩展到实数的必要性。由于在前面已经见过无限不循环小数,很自然引出“无理数”的概念。无理数和实数是本课的重点之一。
通过问题2让学生类比有理数的分类方法,讨论如何对实数进行分类对实数进行分类,让学生进一步领会分类的思想,培养学生的思维的灵活性和严谨性,同时也能使学生加深对无理数和实数的理解,通过学生互相的讨论和交流,可以深刻体验知识之间的内在联系,初步形成对实数系整体性的认识。问题3通过对实数分类的练习与巩固,加深学生对各种数的认识,加深对实数概念的理解。问题4是从学生已有的知识出发,克服困难,创造性地找到数轴上π、的具体位置,体会无理数的存在性。借助数轴对无理数进行研究,从形的角度,再一次体会无理数。
本节课的教学设计中注重从学生已有的知识经验出发,如学生在有理数章节中已经学习了有理数可以用数轴上的点表示,所以在教学中充分发挥学生的主体意识,让学生主动参与学习活动,除了让学生看课件演示外,更通过让学生动手实验操作,感悟知识的生成、发展和变化,自己探索得到结论:实数与数轴上的点的一一对应关系,从而培养学生自主探索的学习方法,同时也感受实数与数轴上点的一一对应关系,进一步体会数形结合思想。
在处理这段教材时,没有刻意地增加难度,而是立足教材,紧紧围绕课本,尊重教材,挖掘教材,从“情境设计——例题选择——课堂引申”都是以教材内容为载体,充分开发教材的功能。循序渐进地引导学生去学习新知,使学生能准确地把握学习重点,突破学习难点。整节课安排层次分明,条理清晰,特别是问题6设计的几个小问题,层层递进,分散了难点。问题5、问题6更进一步让学生明白了无理数也可以表示在数轴上这一事实,并且学会了在数轴上表示一个无理数和找出数轴上的点所表示的实数。从学生的表情可以看出,他们挺得意的,又认识了一种数。
但问题6还是有一定困难,有的学生看到题目不知所措,通过老师的层层设问,学生的眉头展开了,有了感谢老师的表情,从这里可以看出,教师的“画龙点睛”是必要的'。在另一个班讲的时候,我在课堂上取消了问题6,作业6画上*号,只供学有余力的学生做。
建议:给可以推荐学生学习一篇文章《无理数的由来》,了解一点数学史,激发读书热情。
北师大版《实数》教学设计 第十一篇
教学目标:
知识与能力
1、了解无理数和实数的意义,能对实数按要求进行分类。
2、了解实数和数轴上的点一一对应,会用数轴上的点表示实数。
3、了解有理数范围内的运算法则、运算律、运算公式和运算顺序在实数范围内同样适用。
4、会进行实数的大小比较,会进行实数的简单运算。 过程与方法
1、通过计算器与计算机的应用,形成自觉应用的意识,从而能应用与实数有关的运算。
2、经历作图和观察的过程,掌握实数与数轴一一对应的关系。 情感与态度
1、感受数系的扩充,通过自主探究,感受实数与数轴上点的一一对应的关系,体验数形结合的优越性,发展学生的类比与归纳能力。
2、学生经历数系扩展的过程,体会到数系的扩展源于社会实际,又为社会实际服务的辩证关系。 教学重难点及突破 重点
1、了解实数的意义,能对实数进行分类;
2、了解数轴上的点与实数一一对应,并能用数轴上的点来表示无理数。 难点
1、用数轴上的点来表示无理数;
2、能准确无误地进行实数运算。 教学突破
通过让学生对比有理数和无理数的特点,总结无理数的概念,以加深对无理数的概念的记忆。同时,让学生动手作图,直观展现实数和数轴的一一对应关系。教学中通过回忆有理数的运算规则过渡到实数的运算,学生容易接受和掌握。 教学准备:直尺,圆规。 教学过程
一、创设情境,导入新课
1、小学学习阶段,我们学习了整数、分数和小数,均为整数,进入初一阶段,引入负数,从而把数的范围扩充到了有理数。下面 使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
3、1/4 2/5 1/3 学生计算后举手回答,教师将答案书写出来。 3=3.0 0.25 0.4
2、问题:你发现了什么?
学生回答:有理数都可以写成有限小数或者无限循环小数的形式(或任何有限小数或无限循环小数也都是无理数)。
问题:那我们前面所学的许多平方根和立方根都是无限不循环小数,那这些小数是不是有理数?
学生很自然的回答不是,从而引入新的数——无理数,把数扩充到实数范围也就顺利成章。
二、自主探索,领悟内涵
由前面我们知道,任何一个有理数都可以写成有限小数或无限循环小数的形式。反过来,任何有限小数或无限循环小数也都是有理数。无限不循环小数又叫无理数;有理数和无理数统称为实数。分类如下: 整数 实数
有限小数或无限循环小数
有理数分为正有理数和负有理数,那么无理数呢?是无理数吗?
学生回答:可化为无限不循环小数,所以也只能化为无限不循环小数,可见与均是无理数。可知,无理数也有正、负之分,因此把正有理数、正无理数和在一起形成正实数,同样,负有理数、负无理数合在一起称为负实数,而0既不是正数也不是负数。从而得到实数的另一种分类方法: 正有理数 负有理数 0
三、拓展延伸,操作感知
探究1 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少? O1 学生之间互相交流、讨论,一段时间后请学生回答:点01的坐标是π。 肯定学生的回答,说明:无理数π可以用数轴上的点表示出来。 探索2 你能在数轴上找到表示的点,这说明一个什么问题? 学生讨论交流,并举手回答。教师肯定学生的表现,并总结:
每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点,有些表示有理数,有些表示无理数,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。
四、练习巩固,应用提高
例1 整数有: { } 无理数有:{ } 有理数有:{ } 学生认真完成,并举手回答。根据学生的回答,适当讲解。
五、课堂总结,作业布置
1、什么叫做无理数?什么叫做有理数?
2、有理数和数轴上的点一一对应吗?无理数和数轴上的点一一对应吗?实数和数轴上的点一一对应吗?
P86-87习题14.3第
1、
2、3题; 板书设计: 实数
1、有理数和无理数统称为实数。
2、实数分类结构图(略)
3、实数与数轴上的点一一对应。 课后反思
本节课,结合前面的有理数,能使学生在给出的一些数中判断出哪些是有理数,哪些是无理数是本节难点,再通过多的举例练习,让他们找到判断的关键,达到了设计的目标。
初二数学实数教学设计 第十二篇
算术平方根在教材中所处的位置是七年级下册第六章实数的第一节,学生对数的认识要从有理数扩大到实数的范围,而本课是无理数的前提,是学生实数的衔接与过渡,并且是以后学习实数运算的基础,对后面学习的平方根起着至关重要的作用。
本节课的内容不多,但这是学生平方根的关键,为后面学习立方根及运用平方根进行基本运算和解决实际问题打下基础,也是一个关键。从选择课题,到设计教案,板书设计,每一个环节都经历了反复的推敲和修改,只为达到课堂设计的最佳效果,令学生有收获。从教学环节的设计,例题练习题的选取,甚至是对学生设置的每一个问题每一个用词都是细心修改。最终这节课得以顺利完成。上完这节课后,我谈谈自己的几点看法:
1、通过生活中的实例引入,体现数学来源于生活,用于生活;并且设置悬念,激发了学生后续学习的兴趣。
2、最后小结的环节设置比较好,能够让学生自己主说出本节课学到的知识以及感受,这样不仅能够了解学生对本节课知识的掌握程度,还能锻炼学生的语言表述能力。
3、学生第一次接触到与乘方互为逆运算的“开方”,只要能突破这个难点,学生在意义上理解了解算术平方根,后面的计算也就容易多了。这也是这节公开课做得不足的地方,新课的容量有限,所以将绝大部分时间用在了帮助学生理解算术平方根的意义和求某一个非负数的算术平方根的计算上。在后面的课时,应该帮助学生理解乘方与开放互为逆运算。当然这节课还存在很多细节问题,以后有待改进。
最后,要感谢涂老师、龚老师课前耐心的帮我听课,帮我提出宝贵的意见;感谢前来听课的各位领导,各位老师! 感谢课后童校长的精彩点评和细心指导!
通过这次公开课,我觉得自己学到了很多,比如课前应该做足功课,了解前后章节之间的联系,做大量的练习来领会要点等。每一次公开课的经历,都将成为 我工作历程中重要的一笔,现在我也信心百倍,全力以赴迎接未来的挑战!
书到用时方恨少,事非经过不知难。以上这12篇实数教学设计是来自于快回答的实数教案的相关范文,希望能有给予您一定的启发。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。