日子如同白驹过隙,不经意间,前方等待着我们的是新的机遇和挑战,让我们一起来学习写计划吧。那么你真正懂得怎么制定计划吗?如下是快回答敬业的小编给家人们找到的13篇高二数学教学计划的相关内容,希望大家能够喜欢。
高二数学的教学计划 篇一
一、指导思想
以据高二数学学科备课组计划,认真落实普通高中高二阶段数学新课程,构建乐学高效课堂,努力提高教学质量,以学生发展为本,在教务处以及年级组等学校职能部门的领导下,严格执行学校的各项教育教学制度和要求,认真完成高二(3)班及高二(4)的数学教学任务。
二、目标
扎实完成高二下学期的教学任务,努力使所带班的数学期末全市统考成绩排名居年级同类班级前列。
三、学生知识现状分析
虽然大多数学生已有良好的学习习惯,但少数学生数学学习基础较差,学习起来难度较大。教学中要特别注意因材施教,同时深入学生,培养师生感情,增强学习的动力,进一步加强课堂各个环节的指导与探究,努力使乐学高效课堂的教学改革更加深入,更加落实到位。
四、措施
做好高二上学期基础知识的复习工作。并适当补充上学期内容,认真组织编写导学案。后期教学过程中适量打破模块式教学,使学生能顺利进行本学期的学习。新课改中教材只是学习数学知识的'一个载体,教师是新课程的实施者,同时也是新课程的研究者和构建者,要积极主动的优化整合教材和教学资料。
高二数学教学工作计划 篇二
一、学生基本情况
本学期我教高二数学文科班,学生的特点是:数学成绩尖子生比较少,成绩特差的学生有好些人,但若能杂实复习好基础,加上学生努力,将来我班的数学成绩将会有大的提高。学生中有一批思维相当灵活,但学习不够刻苦,学习成绩一般,但有较大的潜力,若能好好的引导,进一步培养他们的学习兴趣,将来一定大有进步。
二、教学要求
1、今日事,今日毕
(1)让学生能够按时完成每天的学习任务,养成今日事、今日毕的好习惯。
(2)每天上课都能够认真听讲,跟上老师的教学思路,尽量避免思想分散、犯困、说话等现象出现。
(3)每天布置作业量适中,让学生能积极完成每节课的课堂任务以及课下需要完成的思考任务,按时并且有效的完成每天的家庭作业。
2、培养学生的运算能力。
(1)通过不同的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)通过解析法的教学,提高学生运算过程具有明晰性、合理性、简捷性能力。利用数形结合,启发引导的教学方法,提高学生的理解能力和计算能力。
三、知识分布
高二第一学期主要学习必修五和选修1—1,主要包括数列、解三角形、不等式、常用逻辑用语、圆锥曲线与方程、导数等内容,要求学生对知识能够很好的掌握,并学会应用。
四、教学措施
1、注意研究学生,做好高二与高一学习方法的衔接。
2、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的。概括能力,使学生掌握数学基本学习方法、基本技能。培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
3、集中精力打好基础,分项突破难点。着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,讲难题。同时应放眼高中教学全局,坚持与高三联系,切实面向高考,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担,这样才能统筹安排,循序渐进。
4、定期进行单元测试,让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备。
5、抓好尖子生与后进生的辅导工作,提高全体学生的整体数学水平。
6、坚持向同行听课,取人所长,补己之短。相互研究,共同进步。
7、加强教育教学研究,坚持学生主体性原则,坚持循序渐进原则,坚持启发性原则。研究并采用以“发现式教学模式”为主的教学方法,全面提高教学质量。
8、注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
高二教学计划数学 篇三
本学期我担任高二xx、xx班的英语教学,这个两个班都是理科平行班,经过上学期的教学,学生已基本适应了上课的流程和掌握一定的学习方法,但是学生的语法基础普遍薄弱,单词记忆不是很理想,听说读写的英语能力也需要进一步提高。
注意根据我班学生实际,努力发展学生自主学习和合作学习的能力;形成有效的英语学习策略;培养学生的综合运用语言的能力;特别注重提高学生用英语进行思维和表达的能力。继续拓宽学生的知识面,全面培养听、说、读、写四会能力,理解、分析和阅读的能力,让学生有效改善自己的英语学习。
本学期要完成选修7和选修8的教学任务,共10个单元内容。每一单元用7-9课时,其中词汇2-3课时,阅读2课时,语法及写作1-2课时,习题1-2课时。两册书共需18周左右,最后二周左右进行考前复习。
(一)教学方面:
高二年级是高中的重要阶段,又是高中三年的承上启下阶段。因此,让学生在高二年级打好学科基础并有所发展是极其重要的。本学期应达到以下目标:巩固、扩大基础知识;培养口头和书面初步运用英语进行交际的能力,侧重培养阅读能力;发展智力,培养自学能力。具体来说:
1.加强学的研究,充分发挥学的主动性
只有当教与学形成了合力,教学才能取得最佳的效果。因此,要帮助学生养成良好的学习习惯,指导他们掌握有效的学习方法,使他们乐学更善学。 高中生应有的习惯和方法主要包括: (1)学会查英语词典并勤查词典;坚持每天朗读,学会背诵的有效方法;(2)利用每天的零碎时间反复多次记忆单词,学会记忆单词的多种方法;(3)学会观察语言现象,总结语言规律 ( 如通过某例句总结出某词的用法 ) ;(4)养成良好的作业习惯 ( 整洁、独立完成 ) ,掌握各种解题技巧;(5) 坚持预习,学会看书;(6) 积极思考、大胆质疑;(7)学会记笔记和整理笔记。
2.强化三关训练,夯实语言功底
词汇、阅读、语法是每个立志要学好英语的人必须过的三关,三者有联系但不能相互代替。
词汇教学主要是使学生掌握词义、词的搭配和用法。
(一)具体做法如下:
1.积累词语,对课文涉及的重要词语,要总结、查字典解释重点记忆。
2.每单元写一百字左右与课文内容相关的作文短文阅读是吸收信息、学习语言、提高水平的最有效途径。因此,提高学生的阅读理解能力是教学的重要目标之一。本学期将有计划地坚持每周补充几篇课外阅读文章并让学生阅读报刊文章写点评,让学生在大量阅读中提高阅读理解能力。
3.语法是英语的框架结构。高中英语语法项目较多,为帮助学生理清思路,准确表达思想,必须引导学生学好语法。本学期将在每周安排一节课,系统地和学生一起学习各项语法内容。
4.在阅读方面,阅读理解能力的培养是高中教学的重点,也是高考的重头戏。在单元教学中精心设计一节课阅读课,充分培养锻炼学生的阅读能力,阅读技巧,阅读速度和阅读效率,并且有计划的指导学生掌握科学的阅读方法。
5.在写作方面,坚持每周一次作文训练,训练题材、方法力求多样化,并能及时进行讲评。并针对我班学生的写作基础,给予英文写作的指导和误区分析,可适当让学生多背诵一些常用的句型,句式,词汇和短语,或是很有代表性的范文。鼓励学生写英文日记,对个别英语特差的学生尽量多批改、多指导。
(二)在教研方面:
1、认真研究新课程标准,尤其与旧大纲不同的地方,清楚哪些内容是新增加的,哪些内容是已经删掉的,哪些内容初中已经学的。认真研究新教材,在集体备课的基础上认真备课、上课,认真进行自习辅导和批改作业。
2、坚持每周互相听评课活动,相互取长补短,提高自己的教学能力 。
3、集体备课是提高教学质量和整体教学水平的有力保证,有利于教师互为补充、共同提高。作为高二英语组备课组长,除了安排好组内成员的各项任务和完成自己所负责的任务以外,我会按时参加集体备课,集体备课前先了解所教单元的重点、难点及在高考中的比重及为完成教学内容所用的教法,然后与全组人员共同探讨,最后确定下来。
高二数学教学计划方案 篇四
“解析几何初步”研究的问题是直线和圆,及其之间的关系,还有空间直角坐标系的概念。高中阶段解析几何内容的分布,除了“解析几何初步”外,在选修系列1,2中,都延续了解析几何的内容,设计了“圆锥曲线与方程”。在选修系列4的《几何证明选讲》中,还将继续研究圆锥曲线。研究圆锥曲线有两种方法:综合几何的方法和解析几何的方法。在选修系列4的《几何证明选讲》中,运用了综合几何的方法。
“解析几何初步”是要依托直线的方程与圆的标准方程,让学生把握用代数方法解决几何问题的基本步骤,初步形成代数方法解决几何问题的能力,帮助学生理解解析几何的基本思想。
①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;
②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;
③能根据斜率判定两条直线平行或垂直;
④根据确定直线位置关系的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;
⑤能用解方程组的方法求两直线的交点坐标;
⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程;
②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系;
③能用直线和圆的方程解决一些简单的问题。
①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会空间直角坐标系刻画点的位置;
②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。
《标准》中对“解析几何初步”的要求只是阶段性要求,在选修系列1,2中,还将进一步学习圆锥曲线与方程的内容。因此,对本部分内容的教学要把握好“度”,特别是对于解析几何思想的理解不能要求一步到位。
(
解析几何初步的教学,要注重知识的发生与发展的过程,首先将几何问题代数化,用代数的语言描述几何元素及其关系,进而将几何问题代数化;处理代数问题;分析代数结果的几何含义,最终解决几何问题。同时,应强调借助几何直观理解代数关系的意义,即对代数关系的几何意义的解释。让学生在这样的过程中,不断地体会“数形结合”的思想方法。
数学课程应返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,要通过学生的自主探索活动,使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法。在解析几何初步的教学中,同样要通过观察、操作探索,确定直线与圆的几何要素,并由此探索掌握直线与圆的几种形式的方程,探索掌握一些距离公式。
比如如何在平面直角坐标系中描述直线,这是解析几何教学中遇到的第一个问题。在坐标系中,一条直线或者与x轴平行,或者与x轴相交。与x轴平行的直线的代数特征很简单,这条直线上的点的纵坐标是个常数,即y=a。除了x=a,还有什么方法可以刻画与x轴相交的直线?也就是如何用代数的方法刻画直线的斜率。
①用倾斜角的正切
这是传统教材的方式,由于倾斜角是大于等于0°小于180°,倾斜角与其正切一一对应的(90°除外);当然,也可以用倾斜角的余弦值表示直线的斜率,倾斜角与其余弦值是一一对应的,但这种表示要复杂一些,一般都选择使用倾斜角的正切。
这需要先引入0°到180°的正切函数的概念。
②用向量
高二数学教学计划方案 篇五
一、教材依据
本节课是湘教版数学(必修三)第二章《解析几何初步》第二节《1.2直线的方程》第一部分《直线方程的点斜式》内容。
二、教材分析
直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的。从初中代数中的一次函数引入,自然过渡到本节课想要解决的问题——求直线方程问题。在引入,过程中要让学生弄清直线与方程的一一对应关系,理解研究直线可以从研究方程和方程的特征入手。
在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线方程。
三、教学目标
知识与技能:(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;
(2)能正确利用直线的点斜式、斜截式公式求直线方程。
(3)体会直线的斜截式方程与一次函数的关系。
过程与方法:在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。
情态与价值观:通过让学生体会直线的斜截式方程与一次函数的。关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。
四、教学重点
重点:直线的点斜式方程和斜截式方程。
五、教学难点
难点:直线的点斜式方程和斜截式方程的应用。
要点:运用数形结合的思想方法,帮助学生分析描述几何图形。
六、教学准备
1.教学方法的选择:启发、引导、讨论。
创设问题情境,采用启发诱导式的教学模式引导学生探索讨论,学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的探究性学习活动。
2.通过让学生观察、讨论、辨析、画图,亲身实践,调动多感官去体验数学建模的思想;学生要学会用“数形结合”的方法建立起代数问题与几何问题间的密切联系。为使学生积极参与课堂学习,我主要指导了以下的学习方法:
①.让学生自己发现问题,自己通过观察图像归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。
②.分组讨论。
七、教学过程
问 题
师生活动
设计意图
1、在直线坐标系内确定一条直线,应知道哪些条件?
学生回顾,并回答。然后教师指出,直线的方程,就是直线上任意一点的坐标 满足的关系式。
使学生在已有知识和经验的基础上,探索新知。
2、直线 经过点 ,且斜率为 。设点 是直线 上的任意一点,请建立 与 之间的关系。
学生根据斜率公式,可以得到,当 时, ,即
(1)
教师对基础薄弱的学生给予关注、引导,使每个学生都能推导出这个方程。
培养学生自主探索的能力,并体会直线的方程,就是直线上任意一点的坐标 满足的关系式,从而掌握根据条件求直线方程的方法。
3、(1)过点 ,斜率是 的直线 上的点,其坐标都满足方程(1)吗?
学生验证,教师引导。
使学生了解方程为直线方程必须满两个条件。
(2)坐标满足方程(1)的点都在经过 ,斜率为 的直线 上吗?
学生验证,教师引导。然后教师指出方程(1)由直线上一定点及其斜率确定,所以叫做直线的点斜式方程,简称点斜式。
使学生了解方程为直线方程必须满两个条件。
4、直线的点斜式方程能否表示坐标平面上的所有直线呢?
学生分组互相讨论,然后说明理由。
使学生理解直线的点斜式方程的适用范围。
5、(1) 轴所在直线的方程是什么? 轴所在直线的方程是什么?
(2)经过点 且平行于 轴(即垂直于 轴)的直线方程是什么?
(3)经过点 且平行于 轴(即垂直于 轴)的直线方程是什么?
教师学生引导通过画图分析,求得问题的解决。
进一步使学生理解直线的点斜式方程的适用范围,掌握特殊直线方程的表示形式。
6、例2、例4的教学。
教师引导学生分析要用点斜式求直线方程应已知那些条件?题目那些条件已经直接给予,那些条件还有待已去求。在坐标平面内,要画一条直线可以怎样去画。
学会运用点斜式方程解决问题,清楚用点斜式公式求直线方程必须具备的两个条件:(1)一个定点;(2)有斜率。同时掌握已知直线方程画直线的方法。
7、例3的教学。
求经过点 ,斜率为 的直线 的方程。
学生独立求出直线 的方程:
(2)
在此基础上,教师给出截距的概念,引导学生分析方程(2)由哪两个条件确定,让学生理解斜截式方程概念的内涵。
引入斜截式方程,让学生懂得斜截式方程源于点斜式方程,是点斜式方程的一种特殊情形。
8、观察方程 ,它的形式具有什么特点?
学生讨论,教师及时给予评价。
深入理解和掌握斜截式方程的特点?
9、直线 在 轴上的截距是什么?
学生思考回答,教师评价。
使学生理解“截距”与“距离”两个概念的区别。
10、你如何从直线方程的角度认识一次函数 ?一次函数中 和 的几何意义是什么?你能说出一次函数 图象的特点吗?
学生思考、讨论,教师评价、归纳概括。
体会直线的斜截式方程与一次函数的关系。
11、课堂练习第65页练习第1,2,3题。
学生独立完成,教师检查反馈。
巩固本节课所学过的知识。
12、小结
教师引导学生概括:(1)本节课我们学过那些知识点;(2)直线方程的点斜式、斜截式的形式特点和适用范围是什么?(3)求一条直线的方程,要知道多少个条件?
使学生对本节课所学的知识有一个整体性的认识,了解知识的来龙去脉。
13、布置作业:第77页第5题
学生课后独立完成。
巩固深化
八、教学反思
直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的。
本节课的基本题形:
1、已知直线上一点及直线的倾斜角,求直线的方程并作图;
2、已知直线上两点,求直线的方程并作图。教学时应注意让学生明确直线的倾斜角与斜率的关系,掌握过两点的直线的斜率公式,训练学生求直线方程的书写格式及直线的规范作图。
高二数学教学计划 篇六
一、现状分析:
1、 本年级学生由25个班分成10个文科班和15个理科班,学生构成进行了重新组合。
2、 经过上期全组教师的共同努力,全年级的数学平均成绩由高一上期的与泸高相比相差7个百分点降为只差3个百分点。
3、 泸州市的其它学校在暑假都进行了补课,而我校没有,教学进度整整相差一个月。
4、 上学期年级组在教学时间的安排上对数、理、化、英进行了倾斜,练习和复习时间相对较多。
二、教学目标:
1、 顺利完成高二上期的教学内容,并完成下册《排列与组合》的教学。争取有二到三周的时间进行复习。
2、 高二联考平均成绩理科与市内国示高中相比相差不得超过3分,文科要高于5分,入围人数要达到年级的平均水平。
3、 数学竞赛要完成高一和高二上期所学内容的教学,争取能完成平面几何的教学。
三、教学措施。
1、认真落实,搞好集体备课。每周至少进行一次集体备课。将全组教师分成4个组(第一组:王兵,杨述刚,冷昌才;第二组:涂海,冯玉平,任利红;第三组:周钰,陈容芳,马骏峰;第四组:彭正楷,唐小琳,石庆洪)各组老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。
2、详细计划,保证练习质量。教学中用配备资料《聚焦课堂》,要求学生按教学进度完成相应的`习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容“滚动式”编两份练习试卷,做后老师要收齐批改,存在的普遍性问题要安排时间讲评。
3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。竞赛班的教学进度要加快,教学难度要有所降低,各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。
4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。
高二数学教学计划 篇七
一、指导思想:
在我校整体构建的和谐教学模式下,学生可以在九年义务教育数学课程的基础上,进一步提高作为未来公民的数学素养,以适应个人发展和社会进步的需要。具体目标如下。
1.获取必要的数学基础知识和技能,了解基本数学概念和结论的本质,了解概念和结论的背景和应用,了解其中包含的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习和探究活动,体验数学发现和创造的过程。
2.提高空间想象、抽象概括、推理论证、计算求解、数据处理等基本能力。
3.提高数学上提出问题、分析问题和解决问题(包括简单的实际问题)的能力,数学上表达和交流的能力,培养独立获取数学知识的能力。
4.培养数学应用和创新意识,努力思考和判断现实世界中包含的一些数学模型。
5.提高学习数学的兴趣,树立学好数学的信心,形成坚忍不拔的精神和科学的态度。
6.有一定的数学视野,逐渐了解数学的科学价值、应用价值和文化价值,形成批判性思维习惯,崇尚数学的理性精神,体验数学的审美意义,从而进一步树立辩证唯物主义和历史唯物主义的世界观。
二、教材的特点:
我们用的教材是人教版《普通高中课程标准实验教科书数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新的关系,体现基础、时代、典型性、可接受性等。并具有以下特征:
1.“亲和力”:以生动活泼的方式激发兴趣和美感,激发学习热情。
2.“问题”:用适时问题指导数学活动,培养问题意识,培养创新精神。
3.“科学”与“思想性”:通过不同数学内容的联系与启发,强调类比、通俗化、特殊化、转化等思想方法的应用,学会数学思维,提高数学思维能力,培养理性精神。
4.“时代性”和“适用性”:用具有时代性和现实感的材料创设情境,加强数学活动,培养应用意识。
三、教学方法分析:
1.选择内容典型、丰富、熟悉的材料,用生动活泼的语言,创造能反映数学、数学思想方法、数学应用的学习情境的概念和结论,让学生对数学产生亲切感,引发学生“看发生了什么”的冲动,以培养兴趣。
2.通过“观察”、“思考”、“探究”等栏目,可以激发学生的思考和探究活动,提高学生的学习效率。
高一班学习不错,但是学生自我意识差,自控力弱,需要时不时提醒学生培养自我意识。上课最大的问题是计算能力差。学生不喜欢算题。他们只关注想法。因此,在未来的教学中,重点是培养学生的计算能力,进一步提高他们的思维能力。同时,由于初中课程改革,高中教材与初中教材衔接不够强,需要在新的教学时间补充一些内容。所以时间可能还是比较紧。同时它的基础比较薄弱,只能在教学中先注重基础再注重基础,力求每节课落实一个知识点,掌握一个知识点。
四、教学措施:
1.激发学生的学习兴趣。通过数学活动、故事、吸引人的课堂、合理的要求、师生对话等方式,可以建立学生的学习信心,在主观行动下提高和提高学生的学习兴趣。
2.注意从实例出发,从感性走向理性;注意运用比较的方法反复比较相似的概念;注意结合直观的图形来说明抽象的知识;关注已有知识,启发学生思考。
3.加强学生逻辑思维能力的培养,就是解决实际问题,培养和提高学生的自学能力,养成善于分析问题的习惯,进行辩证唯物主义教育。
4.掌握公式的推导和内部联系;加强审查和检查工作;掌握典型例题的分析,讲解解题的关键和基本方法,注重提高学生分析问题的能力。
5.自始至终实施整体建设,和谐教学。
6.注重数学应用意识和能力的培养。
课标解读 篇八
1。整体定位
“解析几何初步”研究的问题是直线和圆,及其之间的关系,还有空间直角坐标系的概念。高中阶段解析几何内容的分布,除了“解析几何初步”外,在选修系列1,2中,都延续了解析几何的内容,设计了“圆锥曲线与方程”。在选修系列4的《几何证明选讲》中,还将继续研究圆锥曲线。研究圆锥曲线有两种方法:综合几何的方法和解析几何的方法。在选修系列4的《几何证明选讲》中,运用了综合几何的方法。
“解析几何初步”是要依托直线的方程与圆的标准方程,让学生把握用代数方法解决几何问题的基本步骤,初步形成代数方法解决几何问题的能力,帮助学生理解解析几何的基本思想。
2。具体要求
(1)直线与方程
①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;
②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;
③能根据斜率判定两条直线平行或垂直;
④根据确定直线位置关系的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;
⑤能用解方程组的方法求两直线的交点坐标;
⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
(2)圆与方程
①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程;
②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系;
③能用直线和圆的方程解决一些简单的问题。
(3)在平面“解析几何初步”的学习过程中,体会用代数方法处理几何问题的思想。
(4)空间直角坐标系
①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会空间直角坐标系刻画点的位置;
②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。
《标准》中对“解析几何初步”的要求只是阶段性要求,在选修系列1,2中,还将进一步学习圆锥曲线与方程的内容。因此,对本部分内容的教学要把握好“度”,特别是对于解析几何思想的理解不能要求一步到位。
3。课标解读
(1)要注重知识的发生与发展的过程
解析几何初步的`教学,要注重知识的发生与发展的过程,首先将几何问题代数化,用代数的语言描述几何元素及其关系,进而将几何问题代数化;处理代数问题;分析代数结果的几何含义,最终解决几何问题。同时,应强调借助几何直观理解代数关系的意义,即对代数关系的几何意义的解释。让学生在这样的过程中,不断地体会“数形结合”的思想方法。
数学课程应返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,要通过学生的自主探索活动,使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法。在解析几何初步的教学中,同样要通过观察、操作探索,确定直线与圆的几何要素,并由此探索掌握直线与圆的几种形式的方程,探索掌握一些距离公式。
比如如何在平面直角坐标系中描述直线,这是解析几何教学中遇到的第一个问题。在坐标系中,一条直线或者与x轴平行,或者与x轴相交。与x轴平行的直线的代数特征很简单,这条直线上的点的纵坐标是个常数,即y=a。除了x=a,还有什么方法可以刻画与x轴相交的直线?也就是如何用代数的方法刻画直线的斜率。
(2)在高中阶段,直线的斜率一般一般有三种表示方式
①用倾斜角的正切
这是传统教材的方式,由于倾斜角是大于等于0°小于180°,倾斜角与其正切一一对应的(90°除外);当然,也可以用倾斜角的余弦值表示直线的斜率,倾斜角与其余弦值是一一对应的,但这种表示要复杂一些,一般都选择使用倾斜角的正切。
这需要先引入0°到180°的正切函数的概念。
②用向量
高二数学教学计划 篇九
一、指导思想:
在学校教学工作意见指导下,在级部工作的框架下,认真落实学校对备课组工作的各项要求,严格执行学校的各项教学制度和要求,强化数学教学研究,提高全组老师的教学、教研水平,明确任务,团结协作,圆满完成教学教研任务。具体目标如下。
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、学生基本情况:
高二理可学生共有926人,多数学生学习积极性强,部分学生学习数学的气氛不浓、基础较差。学生对学过的知识内容复习不及时,致使对高二的数学学习有很大的影响,成绩充分反映尖子生少,成绩特差的学生也有不少,有一批思维相当灵活的学生,但学习不够刻苦,学习成绩一般,但有较大的潜力,以后好好的`引导,进一步培养他们的学习兴趣,从而带动全体同学的学习热情,提高学生的数学成绩。
三、教法分析:
1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。
2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其的习惯。
四、教学:
1、认真落实,搞好集体备课。每周至少进行一次集体备课。各组老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、等。
2、详细计划,保证练习质量。教学中用配备资料《学案导学》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容“滚动式”编两份练习试卷,做后老师要收齐批改,存在的普遍性问题要安排时间讲评。
3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。竞赛班的教学进度要加快,教学难度要有所降低,各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生的指导。
4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。
高二数学教学计划 篇十
一、教材分析
1、教材地位、作用
本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3。2。1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。
2、学情分析
学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。
二、教学目标
1、知识与技能目标
⑴、理解等可能事件的概念及概率计算公式;⑵、能够准确计算等可能事件的概率。
2、过程与方法
根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。
3、情感态度与价值观
概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。
三、重点、难点
重点:理解古典概型的概念及利用古典概型求解随机事件的概率。
难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
四、教学过程
1、创设情境提出问题
师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?
【设计意图】通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。
2、抽象思维形成概念
师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?
生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。
师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。
师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?
生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。
师:那基本事件有什么特点呢?
问题:(1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?
(2)事件“出现偶数点”包含了哪几个基本事件?
由如上问题,分别得到基本事件如下的两个特点:
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。(让学生交流讨论,教师再加以总结、概括)
【设计意图】让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力
例1从字母中任意取出两个不同字母的试验中,有哪些基本事件?
师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果。
解:所求的基本事件共有6个:
【设计意图】由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。
师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)
试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;
试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;
例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;
经概括总结后得到:
①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。
我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。
【设计意图】学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的'同时,训练了学生观察和概括归纳问题的能力。
3、概念深化,加深理解
试验“向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?
生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。
试验“某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?
生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。
【设计意图】这两个问题的设计是为了让学生更加准确的把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻性与批判性。
4、观察比较推导公式
【设计意图】学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。
师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:
①要判断该概率模型是不是古典概型;
②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。
【设计意图】深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。
5、应用与提高
【设计意图】本题通过学生的观察比较,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐使学生养成自主探究能力。同时培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣。
6、知识梳理课堂小结
1、本节课你学习到了哪些知识?
2、本节课渗透了哪些数学思想方法?
7、作业布置
1、阅读本节教材内容
2、必做题课本130页练习第1,2题,课本134页习题3。2A组第4题
3、选做题课本134页习题B组第1题
8、教学反思
本节课的教学设计以“问题串”的方式呈现为主,教学过程中师生共同合作,体验古典概型的特点,公式的生成、发现,把“数学发现”的权力还给学生,让学生感受知识形成的过程,获得数学发现的体验。将学习的主动权较完整地交还给学生。本节课始终本着在教师的引导下,学生通过讨论、归纳、探究等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习的有效教学情境,较好地拓展师生的活动空间,符合新课程的理念。
高二数学的教学计划 篇十一
一、指导思想
1、获得必要的基本知识和技能,反复复习前面所学知识,加深印象。通过不同形式的自主学习,探究活动,培养学生对数学的兴趣。
2、发展数学应用意识,学会将数学知识运用于生活。
3、树立学生能学好数学的信心。
二、基本情况分析
本学期学的内容是拓展模块的数学知识,主要包括三角函数、二次曲线、概率与统计的相关知识点,与基础模块、职业模块相比,知识变的有一定的难度,并且更系统化,教学中估计困难不少,数学基础的差异程度加大,为教学的因材施教增加了难度。
我校的生源对象一般都是中考落榜生。学习上的挫折使他们失去了学习的信心和进取心。为了求职的需要,有部分学生自愿选择进入中职学校学习,但有相当一部分学生是迫于外界某种压力,如父母的强烈要求等,而不得不进入职业学校学习的;还有一些学生初中都没有念完,是家长为避免其子女在社会上出乱子,把孩子送到学校,学习知识则放在次要的位置。由于学生入学时,初中阶段的文化基础差,年龄小,对专业知识生疏,因此,接受能力、分析能力、思维能力偏低,综合素质普遍不高,学习能力差异较大等,给学校的教育管理和组织教学带来了很大的困难。
学生自身数学基础薄弱,基本概念模糊不清,基本方法掌握不扎实,知识积累量不够多,遗忘速度快,对问题的分析能力差,在上课时要尽可能的放慢讲课速度,反复及时督促学生复习已学知识和预习新知识,多练习,以加深印象。
三、教学目标
理解所学知识的'概念,能够通过数学语言描述,掌握新知识的灵活应用,熟练新知识的性质特征的实际应用。
着眼于数学教学的实际,通过“低起点、巧衔接”,力求实现学生乐于学,遵循学生认知发展的规律,降低知识的起点,由已知到未知,由浅入深,由具体到抽象。
四、方法措施
1、选取贴近学生生活的数学实例引导新知识,使学生产生生活中处处存在数学,以达到培养数学兴趣的目的。
2、通过实堂演练,引发学生的思考和探索,培养自主学习,形成逻辑思维习惯
五、课程安排及教学进度
余弦
周活动安排
周次
时间
活动安排
备注
1
2.28-3.6
两角和与差的正弦公式
2
3.7-3.13
两角和与差的余弦公式
3
3.14-3.20
正弦型函数
4
3.21-3.27
正弦定理,
5
3.28-4.3
余弦定理
6
4.4-4.10
三角公式及应用复习
7
4.11-4.17
椭圆
8
4.18-4.24
双曲线
9
4.25-5.1
期中考试
10
5.2-5.8
抛物线
11
5.9-5.15
二次曲线及应用复习
12
5.16-5.22
概率与统计
13
5.23-5.29
排列与组合
14
5.30-6.5
二项式定理
15
6.6-6.12
离散型随机变量及其分布
16
6.13-6.19
二项分布,正态分布
17
6.20-6.26
本章复习
18
6.27-7.3
期末考试
19
7.4-7.10
总结
高二数学教学工作计划 篇十二
根据本学期学校教务处工作方针与计划,以提高数学学科教学质量为核心,全面提高自身业务水平,努力做到:求真务实、保质高效,力求突破,促进自身的全面发展。
具体工作计划如下:
1、认真学习新课标,转变教学理念加强自身教育教学的理论学习。以学习新课标为主要的学习内容,组织切实有效的学习活动,用先进的教育理念支撑深化教育改革,改变传统的教学模式。
2、转变教学方式转变学生的学习方式教师要以新理念指导自己的教学工作,牢固树立学生是学习的主人,以平等、宽容的态度对待学生,在沟通和"对话"中实现师生的共同发展,努力建立互动的师生关系。本学期要继续以改变学生的学习方式为主,提倡发现性学习、参与性学习和实践性学习。
3、改变备课方式,提高备课质量
例题的`选择,习题的配备与要求,可根据每个班级学生的实际,灵活处理。重视教学过程的反思,尽可能做到每节课后教师要反思教学过程,及时地把教学中点点滴滴的感受写下来,重视"二备"和反思,要从深层次上去考虑自己的教学工作。同时,根据班级的具体情况,适当进行调整,以适应学生的实际。
情况为标准,让学生学会并且掌握,不搞教条主义和形式主义。教案应体现知识体系、思维方法、训练应用,以及渗透运用等,要对重点、难点有分析和解决方法。作业要求分组,学生可根据自己的情况完成相应的作业,并注重作业反馈。
教学工作计划的制定能有效提升自己的教学能力,改良教学方法和掌握学生的学习情况,从而实现本学期的教学目的。
高二数学教学计划 篇十三
教学目标;
(1)了解频数、频率的概念,了解全距、组距的概念;
(2)能正确地编制频率分布表;会用样本频率分布去估计总体分布;
(3)通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法、
教学重点:正确地编制频率分布表、
教学难点;会用样本频率分布去估计总体分布
内容分析
1、在统计中,用样本的有关情况估计总体的相应情况大体上有两类:一是用样本的频率分布去估计总体分布;二是用样本的某种数字特征去估计总体相应数字特征。本节课解决前者的问题。
2、讨论样本频率分布的内容在初中”统计初步”中进行了简要的介绍,由于很长时间没有接触这方面知识,因此有必要通过一例重温频率分布有关知识,突出掌握解决问题的步骤,使学生了解处理数据的具体方法。
3、介绍历史上从事抛掷硬币的`几个案例,学习科学家对真理执着追求的精神。
4、频率分布的条形图与直方图是有区别。条形图是用高度来表示频率,直方图是用面积来表示频率。
教学过程
1、引入新课
(1)介绍对“抛掷硬币”试验进行研究的科学家。
(2)本次试验结果。
(3)画出频率分布的条形图。
(4)注意点:①各直方长条的宽度要相同;②相邻长条之间的间隔要适当。
(5)结论:当试验次数无限增大时,两种试验结果的频率大致相同。
2、总体分布
精确地反映了总体取值的概率分布规律。研究概率分布往往可以研究其频数分布、频率分布,及累积频数分布和累积频率分布。后者作为阅读教科书内容。
3、复习频率分布
(演示)问题:有一个容量为20的样本,数据的分组及各组的频数如下:
[12、5,15、5) 2 [15、5,18、5) 3 [18、5,21、5) 5
[21、5,24、5) 4 [24、5,27、5) 1 [27、5,30、5] 5
(1)列出样本的频率分布表和画出频率分布直方图。
(2)频率直方图的横轴表示___________;纵轴表示___________。频率分布直方图中,各小矩形的面积等于___________,各小矩形面积之和等于___________。频率直方图的主要作用是___________。
讲解例题
为了了解学生身体的发育情况,对某重点中学年满17岁的60名男同学的身高进行了测量,结果如下:
身高 1、57 1、59 1、60 1、62 1、64 1、65 1、66 1、68
人数 2 1 4 2 4 2 7 6
身高 1、69 1、70 1、71 172 1、73 1、74 1、75 1、76 1、77
人数 8 7 4 3 2 1 2 1 1
(1)根据上表,估计这所重点中学年满17岁的男学生中,身高下低于1、65m且不高于1、71m的约占多少?不低于1、63m的约占多少?
(2)画出频率分布直方图,说出该校年满17岁的男同学中身高在哪个范围内的人数所占比例最大?如果该校年满17岁的男同学恰好是300人,那么在这个范围内的人数估计约有多少人?
(过程略)
注意点:主要包括两部分:前面重点讲解如何根据数据画出频率分布的直方图,后面重点讲解如何根据样本的频率分布去估计总体的相关情况。
(a)计算最大值与最小值的差
(b)确定组距与组数。
组距的确定应根据数据总体情况,自主选择。本题将组距定为2较为合适,因而组数为11。
(c)决定分点。
分点要比数据多一位小数,便于分组。分组区间采用左闭右开。
(d)列出频率分布表(见教科书)。
(e)画出频率分布图(见教科书)。
4、得到样本频率后,应对总体的相应情况进行估计
5、课堂练习
教科书习题 1、2第2题。
板书设计
一、概念理解 二、应用
1、频数、频率的容量的关系 例
2、频率的取值范围 三、小结
3、分布频率分布表
四、作业