下面是快回答爱岗敬业的小编帮大伙儿分享的《对数函数》教学设计【优秀14篇】,希望对大家有一些参考价值。
对数函数教案学案一体化 篇一
对数函数课件
教学目标:
使学生掌握对数形式复合函数的'单调性的判断及证明方法,掌握对数形式复合函数的奇偶性的判断及证明方法,培养学生的数学应用意识;认识事物之间的内在联系及相互转化,用联系的观点分析问题、解决问题。
教学重点:
复合函数单调性、奇偶性的讨论方法。
教学难点:
复合函数单调性、奇偶性的讨论方法。
教学过程:
[例1]设loga23 <1,则实数a的取值范围是
A.0<a<23 B. 23 <a<1
C.0<a<23 或a>1D.a>23
解:由loga23 <1=logaa得
(1)当0<a<1时,由y=logax是减函数,得:0<a<23
(2)当a>1时,由y=logax是增函数,得:a>23 ,∴a>1
综合(1)(2)得:0<a<23 或a>1 答案:C
[例2]三个数60.7,0.76,log0.76的大小顺序是
A.0.76<log0.76<60.7 B.0.76<60.7<log0.76
C.log0.76<60.7<0.76 D.log0.76<0.76<60.7
解:由于60.7>1,0<0.76<1,log0.76<0 答案:D
[例3]设0<x<1,a>0且a≠1,试比较|loga(1-x)|与|loga(1+x)|的大小
解法一:作差法
|loga(1-x)|-|loga(1+x)|=| lg(1-x)lga |-| lg(1+x)lga |
=1|lga| (|lg(1-x)|-|lg(1+x)|)
∵0<x<1,∴0<1-x<1<1+x
∴上式=-1|lga| [(lg(1-x)+lg(1+x)]=-1|lga| lg(1-x2)
由0<x<1,得lg(1-x2)<0,∴-1|lga| lg(1-x2)>0,
∴|loga(1-x)|>|loga(1+x)|
解法二:作商法
lg(1+x)lg(1-x) =|log(1-x)(1+x)|
∵0<x<1 ∴0<1-x<1+x
∴|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x)11+x
由0<x<1 ∴1+x>1,0<1-x2<1
∴0<(1-x)(1+x)<1 ∴11+x >1-x>0
∴0<log(1-x) 11+x <log(1-x)(1-x)=1
∴|loga(1-x)|>|loga(1+x)|
解法三:平方后比较大小
∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga(1-x)-loga(1+x)]
=loga(1-x2)loga1-x1+x =1|lg2a| lg(1-x2)lg1-x1+x
∵0<x<1,∴0<1-x2<1,0<1-x1+x <1
∴lg(1-x2)<0,lg1-x1+x <0
∴loga2(1-x)>loga2(1+x)
即|loga(1-x)|>|loga(1+x)|
解法四:分类讨论去掉绝对值
当a>1时,|loga(1-x)|-|loga(1+x)|
=-loga(1-x)-loga(1+x)=-loga(1-x2)
∵0<1-x<1<1+x,∴0<1-x2<1
∴loga(1-x2)<0, ∴-loga(1-x2)>0
当0<a<1时,由0<x<1,则有loga(1-x)>0,loga(1+x)<0
∴|loga(1-x)|-|loga(1+x)|=|loga(1-x)+loga(1+x)|=loga(1-x2)>0
∴当a>0且a≠1时,总有|loga(1-x)|>|loga(1+x)|
[例4]已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为R,求实数a的取值范围。
解:依题意(a2-1)x2+(a+1)x+1>0对一切x∈R恒成立。
当a2-1≠0时,其充要条件是:
a2-1>0△=(a+1)2-4(a2-1)<0 解得a<-1或a>53
又a=-1,f(x)=0满足题意,a=1不合题意。
所以a的取值范围是:(-∞,-1]∪(53 ,+∞)
[例5]已知f(x)=1+logx3,g(x)=2logx2,比较f(x)与g(x)的大小
解:易知f(x)、g(x)的定义域均是:(0,1)∪(1,+∞)
f(x)-g(x)=1+logx3-2logx2=logx(34 x).
①当x>1时,若34 x>1,则x>43 ,这时f(x)>g(x).
若34 x<1,则1<x<43 ,这时f(x)<g(x)
②当0<x<1时,0<34 x<1,logx34 x>0,这时f(x)>g(x)
故由(1)、(2)可知:当x∈(0,1)∪(43 ,+∞)时,f(x)>g(x)
当x∈(1,43 )时,f(x)<g(x)
[例6]解方程:2 (9x-1-5)= [4(3x-1-2)]
解:原方程可化为
(9x-1-5)= [4(3x-1-2)]
∴9x-1-5=4(3x-1-2) 即9x-1-43x-1+3=0
∴(3x-1-1)(3x-1-3)=0 ∴3x-1=1或3x-1=3
∴x=1或x=2 经检验x=1是增根
∴x=2是原方程的根。
[例7]解方程log2(2-x-1) (2-x+1-2)=-2
解:原方程可化为:
log2(2-x-1)(-1)log2[2(2-x-1)]=-2
即:log2(2-x-1)[log2(2-x-1)+1]=2
令t=log2(2-x-1),则t2+t-2=0
解之得t=-2或t=1
∴log2(2-x-1)=-2或log2(2-x-1)=1
解之得:x=-log254 或x=-log23
高中数学对数函数教案 篇二
教材分析
(1) 对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。
(2) 本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。
(3) 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。
教法建议
(1) 对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数 的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。
(2) 在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣。
《对数函数》教学设计 篇三
作为一名人民教师,编写教学设计是必不可少的,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那么大家知道规范的教学设计是怎么写的吗?以下是小编收集整理的《对数函数》教学设计(精选8篇),仅供参考,希望能够帮助到大家。
对数函数练习题 篇四
《对数函数及其性质》是人教版数学必修一的内容。有人说“课堂教学是学术研究的'实践活动,既像科学家进入科学实验室,又像艺术家登上艺术表演的舞台,教学是一种创造的艺术,一种遗憾的艺术。”回顾这节课有成功之处,也有遗憾之处。
成功之处:
1、通过盲生摸读理解函数图象,让学生更直观地归纳出对数函数的性质,对突破本节课的重、难点起了很大的帮助。
2、在引入新课时,根据我校学生的实际情况我重新设计了教学情境,从“细胞分裂”问题导入新课。由于问题具有开放性,又简单易行,学生表现得都很积极,课堂开始让学生动起来了。这样引入新课就自然了许多,学生接受起来也容易些。一堂成功的数学课,往往给人以自然、和谐、舒服的享受。所以设计恰当的情境引入新课是很重要的。
3、通过选取不同的底数a的对数图象,让学生类比研究指数函数图象及其性质分组探究对数函数的图象和性质。这个环节让学生合作学习,合作学习让学生感受到学习过程中的互助,还能让学生自己建构知识体系。不同数学内容之间的联系和类比,有助于学生了解与中学数学知识有关的扩展知识及内在的数学思想,促使学生认真思考其中的一些问题,加深对其理解。
遗憾之处:
1、在分组讨论如何画对数函数图象时,由于担心教学任务不能准确完成,我就直接找几位学生说出特殊点的坐标来列表,然后“描点、连线”一句话带过,整个过程太过精简,没有让学生真正的参与进来,对调动学生的积极性也没有起到好的作用,让学生失去一个展示自己成果的机会。
2、在讲完例题紧接着给出的练习题难易不当,这样学生做起来就有点吃力了,甚至有些学生觉得不知道该怎么做了,最后两道稍难的练习题应该留到下节课解决会更好些。
3、课堂小结只是带领学生复习了本节课所学的重点内容。如果能结合练习题提出问题,让学生思考解决这些问题的同时也为下节课的教学做准备,这样更有助于学生知识的扩展和延伸。
教育无止境,教育事业应该是一个常做常新的事业。为师无止境,教书生涯应该是一个不断常新不断前行的充满新奇的旅途。反思将让教师的生命变得五彩缤纷,反思将让我们的教育变成一支抑扬顿挫的交响乐。
对数函数教案 篇五
1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。
(1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。
(2) 能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。
2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。
3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。
《对数函数》教学设计 篇六
教学目标:
1.掌握对数函数的性质,能初步运用性质解决问题.
2.运用对数函数的图形和性质.
3.培养学生数形结合的思想,以及分析推理的能力.
教学重点:
对数函数性质的应用.
教学难点:
对数函数图象的变换.
教学过程:
一、问题情境
1.复习对数函数的定义及性质.
2.问题:如何解决与对数函数的定义、图象和性质有关的问题?
二、学生活动
1.画出 、 等函数的图象,并与对数函数 的图象进行对比,总结出图象变换的一般规律.
2.探求函数图象对称变换的规律.
三、建构数学
1.函数 ( )的图象是由函数 的图象
得到;
2.函数 的图象与函数 的图象关系是 ;
3.函数 的图象与函数 的图象关系是 .
四、数学运用
例1 如图所示曲线是对数函数=lgax的图象,
已知a值取0.2,0.5,1.5,e,则相应于C1,C2,
C3,C4的a的'值依次为 .
例2 分别作出下列函数的图象,并与函数=lg3x的图象进行比较,找出它们之间的关系
(1)=lg3(x-2);(2)=lg3(x+2);
(3)=lg3x-2;(4)=lg3x+2.
练习:1.将函数=lgax的图象沿x轴向右平移2个单位,再向下平移1个单位,所得到函数图象的解析式为 .
2.对任意的实数a(a>0,a≠1),函数=lga(x-1)+2的图象所过的定点坐标为 .
3.由函数= lg3(x+2), =lg3x的图象与直线=-1,=1所围成的封闭图形的面积是 .
例3 分别作出下列函数的图象,并与函数=lg2x的图象进行比较,找出它们之间的关系
(1) =lg2|x|;(2)=|lg2x|;
(3) =lg2(-x);(4)=-lg2x.
练习 结合函数=lg2|x|的图象,完成下列各题:
(1)函数=lg2|x|的奇偶性为 ;
(2)函数=lg2|x|的单调增区间为 ,减区间为 .
(3)函数=lg2(x-2)2的单调增区间为 ,减区间为 .
(4)函数=|lg2x-1|的单调增区间为 ,减区间为 .
五、要点归纳与方法小结
(1)函数图象的变换(平移变换和对称变换)的规律;
(2)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合).
六、作业
1.课本P87-6,8,11.
2.课后探究:试说出函数=lg2 的图象与函数=lg2x图象的关系.
对数函数说课稿 篇七
(提问)用什么方法来画函数图像?
(学生1)利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.
(学生2)用列表描点法也是可以的。
请学生从中上述方法中选出一种,大家最终确定用图像变换法画图.
(师)由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.
具体操作时,要求学生做到:
(1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).
(2) 画出直线 .
(3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近轴对称为逐渐靠近轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.
学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出
和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:
教师画完图后再利用电脑将 和 的图像画在同一坐标系内,如图:
然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)
3. 性质
(1) 定义域:
(2) 值域:
由以上两条可说明图像位于 轴的右侧.
(3)图像恒过(1,0)
(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.
(5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的
当 时,在 上是减函数,即图像是下降的.
之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:
当 时,有 ;当 时,有 .
学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.
最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)
对图像和性质有了一定的了解后,一起来看看它们的应用.
(三).简单应用
1. 研究相关函数的性质
例1. 求下列函数的定义域:
(1) (2) (3)
先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.
2. 利用单调性比较大小
例2. 比较下列各组数的大小
(1) 与 ; (2) 与 ;
(3) 与 ; (4) 与 .
让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.
三.拓展练习
练习:若 ,求 的取值范围.
四.小结及作业
案例反思:
本节的重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.
高中数学对数函数教案 篇八
教学目标
1. 在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.
2. 通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.
3. 通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性.
教学重点,难点
重点是理解对数函数的定义,掌握图像和性质.
难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.
教学方法
启发研讨式
教学用具
投影仪
教学过程
一。 引入新课
今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.
反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.
提问:什么是指数函数?指数函数存在反函数吗?
由学生说出 是指数函数,它是存在反函数的.并由一个学生口答求反函数的过程:
由 得 .又 的'值域为 ,
所求反函数为 .
那么我们今天就是研究指数函数的反函数-----对数函数.
高一数学对数函数教案 篇九
对数函数教案学案一体化
课题:高中数学必修(1) 2.2.2对数函数(二) 【教学任务】: (1)进一步理解对数函数的图象和性质; (2)熟练应用对数函数的图象和性质,解决一些综合问题; (3)通过例题和练习的讲解与演练,培养学生分析问题和解决问题的能力. 【教学重点】:对数函数的图象和性质. 【教学难点】:对对数函数的性质的综合运用. 【教学过程】: 一、回顾与总结 1 1、函数 的图象如图所示,回答下列问题. 2 (1)说明哪个函数对应于哪个图象,并解释为什么? 3 (2)函数 与 且 有什么关系?图象之间 又有什么特殊的关系? (3)以 的图象为基础,在同一坐标系中画出 的图象. (4)已知函数 的图象,则底数之间的关系: . 1 2 3 4 完成下表(对数函数 且 的图象和性质) 图 象 定义域 值域 性 质 2、根据对数函数的图象和性质填空. 1 已知函数 ,则当 时, ;当 时, ;当 时, ;当 时, . 1 已知函数 ,则当 时, ;当 时, ;当 时, ;当 时, ;当 时, . 二、应用举例 例1. 比较大小:1 , 且 ; 2 , . 解: 例2.已知 恒为正数,求 的取值范围. 解: [总结点评]:(由学生独立思考,师生共同归纳概括). . 例3.求函数 的定义域及值域. 解: 注意:函数值域的求法. 例4.(1)函数 在[2,4]上的最大值比最小值大1,求 的值; (2)求函数 的最小值. 解: 注意:利用函数单调性求函数最值的方法,复合函数最值的求法. 例5.(上海高考题)已知函数 ,求函数 的定义域,并讨论它的奇偶性和单调性. 解: 注意:判断函数奇偶性和单调性的方法,规范判断函数奇偶性和单调性的步骤. 例6.求函数 的单调区间. 解: 注意:复合函数单调性的求法及规律:“同增异减”. 练习:求函数 的单调区间. 三、课堂小结: 本小节的目的是掌握对数函数的概念、图象和性质。在理解对数函数的定义的基础上,掌握对数函数的图象和性质是本小节的重点。(引导学生自主归纳,教师点拨完善) 四、作业布置 1、必做题:教材 A组 ※基础达标 1.函数 的图象关于( ). A. y轴对称 B. x轴对称 C. 原点对称 D. 直线y=x对称 2.函数 的值域是( ). A. R B. C. D. 3.(全国卷。文理8)设 ,函数 在区间 上的最大值与最小值之差为 ,则 ( ). 0 x C1 C2 C4 C3 1 y A. B. 2 C. D. 4 4.图中的曲线是 的图象,已知 的值为 , , , ,则相应曲线 的 依次为( ). A. , , , B., , , C. , , , D., , , 5.下列函数中,在 上为增函数的是( ). A. B. C. D. 6. 函数 是 函数。 (填“奇”、“偶”或“非奇非偶”) 7.函数 的反函数的图象过点 ,则a的值为 . ※能力提高 8.已知 ,讨论 的单调性。 9.我们知道,人们对声音有不同的感觉,这与它的强度有关系。 声音的强度I用瓦/平方米( )表示。 但在实际测量中,常用声音的'强度水平表示,它们满足以下公式: (单位为分贝), ,其中 ,这是人们平均能听到的最小强度,是听觉的开端。 回答以下问题: (1)树叶沙沙声的强度是 ,耳语的强度是 ,恬静的无限电广播的强度为 . 试分别求出它们的强度水平。 (2)在某一新建的安静小区规定:小区内的公共场所声音的强度水平必须保持在50分贝以下,试求声音强度I的范围为多少? ※探究创新 10. 已知函数 其中 .(1)求函数 的定义域; (2)判断 的奇偶性,并说明理由;(3)求使 成立的 的集合。对数函数教案 篇十
对数函数教案模板
教学目标:
(一)教学知识点:1.对数函数的概念;2.对数函数的图象和性质。
(二)能力训练要求:1.理解对数函数的概念;2.掌握对数函数的图象和性质。
(三)德育渗透目标:1.用联系的观点分析问题;2.认识事物之间的互相转化。
教学重点:
对数函数的图象和性质
教学难点:
对数函数与指数函数的关系
教学方法:
联想、类比、发现、探索
教学辅助:
多媒体
教学过程:
一、引入对数函数的概念
由学生的预习,可以直接回答“对数函数的概念”
由指数、对数的定义及指数函数的'概念,我们进行类比,可否猜想有:
问题:1.指数函数是否存在反函数?
2.求指数函数的反函数.
①;
②;
③指出反函数的定义域.
3.结论
所以函数与指数函数互为反函数.
这节课我们所要研究的便是指数函数的反函数——对数函数.
二、讲授新课
1.对数函数的定义:
定义域:(0,+∞);值域:(-∞,+∞)
2.对数函数的图象和性质:
因为对数函数与指数函数互为反函数.所以与图象关于直线对称.
因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.
研究指数函数时,我们分别研究了底数和两种情形.
那么我们可以画出与图象关于直线对称的曲线得到的图象.
还可以画出与图象关于直线对称的曲线得到的图象.
请同学们作出与的草图,并观察它们具有一些什么特征?
对数函数的图象与性质:
图象
性质(1)定义域:
(2)值域:
(3)过定点,即当时,
(4)上的增函数
(4)上的减函数
3.图象的加深理解:
下面我们来研究这样几个函数:,,,.
我们发现:
与图象关于X轴对称;与图象关于X轴对称.
一般地,与图象关于X轴对称.
再通过图象的变化(变化的值),我们发现:
(1)时,函数为增函数,
(2)时,函数为减函数,
4.练习:
(1)如图:曲线分别为函数,,,,的图像,试问的大小关系如何?
(2)比较下列各组数中两个值的大小:
(3)解关于x的不等式:
思考:(1)比较大小:
(2)解关于x的不等式:
三、小结
这节课我们主要介绍了指数函数的反函数——对数函数.并且研究了对数函数的图象和性质.
四、课后作业
课本P85,习题2.8,1、3
对数函数数学教案 篇十一
一、内容与解析
(一)内容:对数函数的性质
(二)解析:本节课要学的内容是对数函数的性质及简单应用,其核心(或关键)是对数函数的性质,理解它关键就是要利用对数函数的图象。学生已经掌握了对数函数的图象特点,本节课的内容就是在此基础上的发展。由于它是构造复杂函数的基本元素之一,所以对数函数的性质是本单元的重要内容之一。的重点是掌握对数函数的性质,解决重点的关键是利用对数函数的图象,通过数形结合的思想进行归纳总结。
二、目标及解析
(一)教学目标:
1.掌握对数函数的性质并能简单应用
(二)解析:
(1)就是指根据对数函数的两类图象总结并理解对数函数的定义域、值域、单调性、奇偶性、函数值的分布特征等性质,并能将这些性质应用到简单的问题中。
三、问题诊断分析
在本节课的教学中,学生可能遇到的问题是底数a对对数函数图象和性质的影响,产生这一问题的原因是学生对参量认识不到位,往往将参量等同于自变量。要解决这一问题,就是要将参量的取值多元化,最好应用几何画板的快捷性处理这类问题,其中关键是应用好几何画板。
四、教学支持条件分析
在本节课的教学中,准备使用(),因为使用(),有利于().
五、教学过程
问题1.先画出下列函数的简图,再根据图象归纳总结对数函数 的相关性质。
设计意图:
师生活动(小问题):
1.这些对数函数的解析式有什么共同特征?
2.通过这些函数的图象请从值域、单调性、奇偶性方面进行总结函数的性质。
3.通过这些函数图象请从函数值的分布角度总结相关性质
4.通过这些函数图象请总结:当自变量取一个值时,函数值随底数有什么样的变化规律?
问题2.先画出下列函数的简图,根据图象归纳总结对数函数 的相关性质。
问题3.根据问题1、2填写下表
图象特征函数性质
a>10<a<1a>10<a<1
向y轴正负方向无限延伸函数的值域为R+
图象关于原点和y轴不对称非奇非偶函数
函数图象都在y轴右侧函数的定义域为R
函数图象都过定点(1,0)
自左向右,图象逐渐上升自左向右,图象逐渐下降增函数减函数
在第一象限内的图象纵坐标都大于0,横坐标大于1在第一象限内的图象纵坐标都大于0,横标大于0小于1
在第四象限内的图象纵坐标都小于0,横标大于0小于1在第四象限内的图象纵坐标都小于0,横标大于1
[设计意图]发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成
例1.比较下列各组数中两个值的大小:
(1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7
(3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )
变式训练:1. 比较下列各题中两个值的大小:
⑴ log106 log108 ⑵ log0.56 log0.54
⑶ log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4
2.已知下列不等式,比较正数m,n 的大小:
(1) log 3 m 》 log 3 n (2) log 0.3 m 》 log 0.3 n
(3) log a m 》 loga n (0 log a n (a》1)
例2.(1)若 且 ,求 的取值范围
(2)已知 ,求 的取值范围;
六、目标检测
1.比较 __和__ 的大小:
2.求下列各式中的x的值
(1)
演绎推理导学案
2.1.2 演绎推理
学习目标
1.结合已学过的数学实例和生活中的实例,体会演绎推理的重要性;
2.掌握演绎推理的基本方法,并能运用它们进行一些简单的推理。
学习过程
一、前准备
复习1:归纳推理是由 到 的推理。
类比推理是由 到 的推理。
复习2:合情推理的结论 .
二、新导学
※ 学习探究
探究任务一:演绎推理的概念
问题:观察下列例子有什么特点?
(1)所有的金属都能够导电,铜是金属,所以 ;
(2)一切奇数都不能被2整除,是奇数,所以 ;
(3)三角函数都是周期函数, 是三角函数,所以 ;
(4)两条直线平行,同旁内角互补。如果A与B是两条平行直线的同旁内角,那么 .
新知:演绎推理是
的推理。简言之,演绎推理是由 到 的推理。
探究任务二:观察上述例子,它们都由几部分组成,各部分有什么特点?
所有的金属都导电 铜是金属 铜能导电
已知的一般原理 特殊情况 根据原理,对特殊情况做出的判断
大前提 小前提 结论
新知:“三段论”是演绎推理的一般模式:
大前提—— ;
小前提—— ;
结论—— .
新知:用集合知识说明“三段论”:
大前提:
小前提:
结 论:
试试:请把探究任务一中的演绎推理(2)至(4)写成“三段论”的形式。
※ 典型例题
例1 命题:等腰三角形的两底角相等
已知:
求证:
证明:
把上面推理写成三段论形式:
变式:已知空间四边形ABCD中,点E,F分别是AB,AD的中点, 求证:EF平面BCD
例2求证:当a》1时,有
动手试试:1证明函数 的值恒为正数。
2 下面的推理形式正确吗?推理的结论正确吗?为什么?
所有边长相等的凸多边形是正多边形,(大前提)
菱形是所有边长都相等的凸多边形, (小前提)
菱形是正多边形。 (结 论)
小结:在演绎推理中,只要前提和推理形式是正确的,结论必定正确。
三、总结提升
※ 学习小结
1. 合情推理 ;结论不一定正确。
2. 演绎推理:由一般到特殊。前提和推理形式正确结论一定正确。
3应用“三段论”解决问题时,首先应该明确什么是大前提和小前提,但为了叙述简洁,如果大前提是显然的,则可以省略。
※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 因为指数函数 是增函数, 是指数函数,则 是增函数。这个结论是错误的,这是因为
A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误
2. 有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”
结论显然是错误的,是因为
A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误
3. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线平面 ,直线平面 ,直线 ∥平面 ,则直线 ∥直线 ”的结论显然是错误的,这是因为
A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误
4.归纳推理是由 到 的推理;
类比推理是由 到 的推理;
演绎推理是由 到 的推理。
后作业
1. 运用完全归纳推理证明:函数 的值恒为正数。
直观图
总 课 题空间几何体总课时第4课时
分 课 题直观图画法分课时第4课时
目标掌握斜二侧画法的画图规则.会用斜二侧画法画出立体图形的直观图.
重点难点用斜二侧画法画图.
引入新课
1.平行投影、中心投影、斜投影、正投影的有关概念.
2.空间图形的直观图的画法——斜二侧画法:
规则:
(1)____________________________________________________________.
(2)____________________________________________________________.
(3)____________________________________________________________.
(4)____________________________________________________________.
例题剖析
例1 画水平放置的正三角形的直观图.
例2 画棱长为 的'正方体的直观图.
巩固练习
1.在下列图形中,采用中心投影(透视)画法的是__________.
2.用斜二测画法画出下列水平放置的图形的直观图.
3.根据下面的三视图,画出相应的空间图形的直观图.
课堂小结
通过例题弄清空间图形的直观图的斜二侧画法方法及步骤。
高中数学对数函数教案 篇十二
一。 引入新课
一。 对数函数的概念
1. 定义:函数 的反函数 叫做对数函数。
由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发。如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?
教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 .
在此基础上,我们将一起来研究对数函数的图像与性质。
二。对数函数的图像与性质 (板书)
1. 作图方法
提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图。同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图。
由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图。
具体操作时,要求学生做到:
(1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).
(2) 画出直线 .
(3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近轴对称为逐渐靠近轴,而 的图像在翻折时可提示学生分两段翻折,在左侧的先翻,然后再翻在 右侧的部分。
学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出
和 的图像。(此时同底的指数函数和对数函数画在同一坐标系内)如图:
2. 草图。
教师画完图后再利用投影仪将 和 的图像画在同一坐标系内,如图:
然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)
3. 性质
(1) 定义域:
(2) 值域:
由以上两条可说明图像位于 轴的右侧。
(3) 截距:令 得 ,即在 轴上的截距为1,与 轴无交点即以 轴为渐近线。
(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称。
(5) 单调性:与 有关。当 时,在 上是增函数。即图像是上升的
当 时,在 上是减函数,即图像是下降的。
之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:
学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来。
最后教师在总结时,强调记住性质的关键在于要脑中有图。且应将其性质与指数函数的性质对比记忆。(特别强调它们单调性的一致性)
对图像和性质有了一定的了解后,一起来看看它们的应用。
《对数函数》教学设计 篇十三
一、说教材
1、教材的地位和作用
函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数在生产、生活实践中都有许多应用.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识.
2、教学目标的确定及依据
根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:
(1) 知识目标:理解对数函数的意义;掌握对数函数的图像与性质;初步学会用
对数函数的性质解决简单的问题.
(2) 能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、
分析、归纳等逻辑思维能力.
(3) 情感目标:通过指数函数和对数函数在图像与性质上的对比,使学生欣赏数
学的精确和美妙之处,调动学生学习数学的积极性.
3、教学重点与难点
重点:对数函数的意义、图像与性质.
难点:对数函数性质中对于在a1与01两种情况函数值的不同变化.
二、说教法
学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:
1、教学方法:
(1)启发引导学生实验、观察、联想、思考、分析、归纳;
(2)采用“从特殊到一般”、“从具体到抽象”的方法;
(3)渗透类比、数形结合、分类讨论等数学思想方法.
2、教学手段:
计算机多媒体辅助教学.
三、说学法
“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)类比学习:与指数函数类比学习对数函数的图像与性质.
(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,
归纳得出对数函数的图像与性质.
(3)主动合作式学习:学生在归纳得出对数函数的图像与性质时,通过小组讨论,
使问题得以圆满解决.
四、说教程
1、温故知新
我通过复习细胞分裂问题,由指数函数 引导学生逐步得到对数函数的意义及对数函数与指数函数的关系:互为反函数.
设计意图:既复习了指数函数和反函数的有关知识,又与本节内容有密切关系,
有利于引出新课.为学生理解新知清除了障碍,有意识地培养学生分析问题的能力.
高中数学对数函数教案 篇十四
1. 研究相关函数的性质
例1. 求下列函数的定义域:
(1) (2) (3)
先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制。
2. 利用单调性比较大小 (板书)
例2. 比较下列各组数的大小
(1) 与 ; (2) 与 ;(3) 与 ; (4) 与 .
让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小。最后让学生以其中一组为例写出详细的比较过程。