1. 主页 > 知识大全 >

因数和倍数教案7篇6-17-88

作为一名默默奉献的教育工作者,往往需要进行教案编写工作,教案是教学活动的依据,有着重要的地位。写教案需要注意哪些格式呢?学而不思则罔,思而不学则殆,下面是小编帮家人们收集的7篇因数和倍数教案的相关内容,仅供参考,希望对大家有一些参考价值。

因数和倍数教案 篇一

教学目标

1、知识与技能

掌握因数、倍数的概念,明白因数、倍数的相互依存关系。

2、过程与方法

透过自主探究,使学生学会用因数、倍数描述两个数之间的关系。

3、情感态度与价值观

使学生感悟到数学知识的内在联系的逻辑之美。

教学重难点

教学重点

掌握找一个数的因数、倍数的方法。

教学难点

能熟练地找一个数的因数和倍数。

教学工具

课件、投影

教学过程

一、迁移引入

同学们,在我们的日常生活中,人与人之间存在着许多相互依存的关系,如:佳爸是佳佳的爸爸,佳佳是佳爸的儿子。其实在我们的数学王国里,数与数回见也存在着这种相互依存的关系,请看大平米,认识这些吗(课件出示:0,1,2,3,4,5) 这些自然数。(课件去0)

去0后这又是什么数(非零自然数中。)这节课我们就在非零自然数中来研究数与数之间的这种相互依存的关系。

板书:因数和倍数

二、情境创设,探究新知

1、理解整除的好处。

为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括0)。

5、做一做。

下面的4组数中,谁是谁的因数谁是谁的倍数

4和2436137525819

6、教学例2

18的因数有哪几个

18的'因数有1、2、3、6、9、18。

也能够这样用图表示。

18的因数

1,2,3,6,9,18

30的因数有哪些36呢

7、教学例3

2的倍数有哪些

2的倍数有2、4、6、8

2的倍数

2,4,6,8,10,12,14,3的倍数有哪些5呢

8、小组讨论,归纳总结

一个数的最小因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。

一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

课后小结

一个数的最小因数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。

一个数的因数的个数是有限的,最大的因数是它本身。一个数的倍数的个数是无限的。

课后习题

1、填空。

(1)36是4的(数。

(2)5是25的(。

(3)2.5是0.5的(倍。

2、下面各组数中,有因数和倍数关系的有哪些

(1)18和3(2)120和60(3)45和15(4)33和7

3、24和35的因数都有哪些

板书

一个数的最小因数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。

一个数的因数的个数是有限的,最大的因数是它本身。一个数的倍数的个数是无限的。

《因数与倍数》小学教案 篇二

教学目标:

1、 从操作活动中理解因数与倍数的意义,会判断一个数不是另一个数的因数或倍数。

2、培养学生抽象、概括与观察思考的能力,渗透事物之间相互联系,相互依存的辨证唯物主义观点。

3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。

教学重点:

理解因数和倍数的意义

教学难点:

因数和倍数等概念间的联系和区别。

教学过程:

一、认识因数与倍数,预习反馈

1、反馈主题图,根据主题图的不同情况写出乘法算式和除法算式。

反馈:

1×12=122×6=123×4=1212×1=126×2=124×3=1212÷1=1212÷2=612÷3=412÷12=112÷6=212÷4=3

2、观察并回答。

(1)这三组乘法、除法算式中,都有什么共同点?

(2)像这样的乘除法算式中的三个数之间还有另一种说法,你想知道吗?

(3)这样的三个数,我们也可以怎样说?(2和6是12的因数),请大家也像这样把其余的两组数也说一说。

请看教材12页,2和6与12的关系还可以怎么说?

(4)也就是说2和6与12的关系是因数和倍数的关系,这几组数中,谁和谁还有因数和倍数的关系?

(5)提问:能不能说12是12的因数呢?

(6)小结:上面这三组算式中,我们知道:1、2、3、4、6、12都是12的因数。

3.讨论:23÷4=5……3,提问:23是4的倍数吗?为什么?

谁能举一个算式例子,并说说谁是谁的倍数,谁是谁的因数?

4.讨论:0×3 0×10 0÷3 0÷10

提问:通过刚才的计算,你有什么发现?

5.注意:(1)为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数,但不包括0。(2) 这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式名称的“因数”,两者不能搞混淆。

二、巩固新知

1.下面每一组数中,谁是谁得因数,谁是谁得倍数?

16和2 4和24 72和8 20和5

2.下面得说法对吗?说出理由。

(1)48是6的倍数

(2)在13÷4==3……1中,13是4的倍数

(3)因为3×6=18,所以18是倍数,3和6是因数。

3.在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。

4、完成P15第2题

学生自己独立完成,讲评时让学生说一说,是怎么想的?

三、思维训练

1、判断

(1)12的因数有:1、2、3、4、6、12。

(2)整数32的因数共有4个。

(3)自然数a的最大因数是a,最小因数是1。

(4)一个数的因数都小于这个数。

2.游戏。记住自己的学号,听老师说要求,符合要求的同学请举手。

(1)( )是4的倍数 (2)( )是60的因数

(3)( )是5的倍数 (4)( )是36的因数

四、课后小结:

五、 布置作业

《因数与倍数》小学教案 篇三

一、谈话导入,激发兴趣

1、回顾学过的数

2、明确学习主题

二、自主学习,探究新知

1、自主学习

自学指导:阅读课本P12和P13例1

(1)2脳6=12,表示的意义是什么?在这个乘法算式中,谁是谁的因数,谁是谁的倍数?

(2)想一想:什么情况下,两个不是零的自然数之间是因数(倍数)的关系?

(3)怎样找出18的全部因数?你是怎样想的?

怎样表示出18的因数?

要求:1、独立学习

2、时间6分钟

3、全班交流

问题一:初建模型

在图式结合中构建因数、倍数的概念,并从中感受因数和倍数是相互依存的,有着互逆关系的一组概念。

问题二:深化模型

明确因数与倍数的外延,进一步认识、内化因数、倍数的内涵,从中提炼出因数、倍数模型的本质意义。

ab=c(a、b、c为非零自然数)

问题三:应用模型

①交流找一个数的因数的方法及表示方法。

②找30、36的因数。

3、议一议

(1)今天学习的因数与乘法算式中的因数一样吗?倍数与倍一样吗?

(2)通过找一个数的因数,你有什么发现?

三、检测反馈,拓展运用

四、板书设计

因数和倍数

2脳6=12

2和6是12的因数。

12是2和6的倍数。

3脳4=12

ab=c(a、b、c为非零自然数)

a和b是c的因数,c是a和b的倍数。

《人教版:五年级下册《因数与倍数》教学设计》

《因数和倍数》数学教案 篇四

一、教学内容

1.因数和倍数

2.2、5、3的倍数的特征

3.质数和合数

二、教学目标

1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

2.使学生通过自主探索,掌握2、5、3的倍数的特征。

3.逐步培养学生的数学抽象能力。

三、编排特点

精简概念,减轻学生记忆负担。

四、方面的调整:

A.不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。

B.不再正式教学“分解质因数”,只作为阅读性材料进行介绍。

C.公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。

注意体现数学的抽象性。

数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。

五、具体编排

1.因数和倍数

因数和倍数的概念

过去:用÷=表示能被整除,÷=表示能被整除。

现在:用=直接引出因数和倍数的概念。

(1)用2×6=12给出因数和倍数的概念。

(2)用3×4=12进一步巩固上述概念。

(3)让学生利用因数和倍数的概念自主发现12的其他因数。

(4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。

(5)说明本单元的研究范围。

注意以下几点:

(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。

(2)因数和倍数是一对相互依存的概念,不能单独存在。

(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。

(4)注意区分“倍数”与前面学过的“倍”的联系与区别。

例1(一个数的因数的求法)

(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。

(2)用集合圈表示因数,为后面求两个 www.kaoyantv.com 数的公因数作铺垫。

一个数的因数的特点

(1)因数是其自身,最小因数是1。

(2)因数个数有限。

(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

例2(一个数的倍数的求法)

(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。

(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。

做一做

与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。

一个数的倍数的特点

(1)最小倍数是其自身,没有的倍数。

(2)因数个数无限。

(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

2.2、5、3的倍数的特征

因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。

2的倍数的特征

(1)从生活情境“双号”引入。

(2)观察2的倍数的个位数,总结出2的倍数的特征。

(3)介绍奇数和偶数的概念。

(4)可让学生随意找一些数进行验证,但不要求严格的证明。

5的倍数的特征

(1)编排方式与2的倍数的特征类似。

(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。

3的倍数的特征

(1)强调自主探索,让学生经历观察――猜想――猜想――再观察――再猜想――验证的过程。

(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。

(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。

3.质数和合数

质数和合数的概念

(1)根据20以内各数的因数个数把数分成三类:1、质数、合数。

(2)可任出一个数,让学生根据概念判断其为质数还是合数。

例1(找100以内的质数)

(1)方法多样。可以根据质数的概念逐个判断,也可用筛法。

(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。

六、教学建议

1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。

从因数和倍数的含义去理解其他的相关概念。

2.要注意培养学生的抽象思维能力。

《因数和倍数》数学教案 篇五

教学目标:

1、学生掌握找一个数的因数,倍数的方法;

2、学生能了解一个数的因数是有限的,倍数是无限的;

3、能熟练地找一个数的因数和倍数;

4、培养学生的观察能力。

教学重点:

掌握找一个数的因数和倍数的方法。

教学难点:

能熟练地找一个数的因数和倍数。

教学过程:

一、引入新课。

1、出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为26=12

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?学生写算式。

师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数 倍数)

齐读p12的注意。

二、新授

(一)找因数

1、出示例1:18的因数有哪几个?

从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

学生尝试完成:汇报

(18的因数有: 1,2,3,6,9,18)

师:说说看你是怎么找的?(生:用整除的方法,181=18,182=9,183=6,184=;用乘法一对一对找,如118=18,29=18)

师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有: 1,2,3,4,6,9,12,18,36

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

仔细看看,36的因数中,最小的是几,最大的是几?

看来,任何一个数的因数,最小的一定是( ),而最大的一定是( )。

《因数和倍数》数学教案 篇六

教学目标

让学生能利用最大公因数知识解决生活中的实际问题。

教学重难点

教学重点

利用最大公因数知识解决生活中的实际问题。

教学难点

利用最大公因数知识解决生活中的实际问题。

教学工具

课件

教学过程

一、导入新课

1. 什么是公因数?什么是最大公因数?

2. 找出每组数的最大公因数。

5和15 21和28 30和18 8和9 11和33 12和42

过渡:在现实生活中,有的问题需要用最大公因数的知道来解决,这就是我们今天要学习的内容。

二、新课教学

出示教材第62页例3。

(1)引导学生审题,理解题意。在贮藏室的长方形地面上铺正方形地砖。要求既要铺满,又要都用整块的方砖。

(2)学生以小组为单位,探究如何拼摆。

每组4人,在课前印好画有长方形的方格纸,每人选择一种边长的方砖,试一试,只要画满一条长边,一条宽边就可以。

教师巡视指导,辅导学生。

(3)多媒体演示拼摆过程,进一步验证学生动手操作的情况。

(4)教师:应该怎样选择方砖来铺地呢?

通过交流,得出结论:要使所用的正方形地砖都是整块的,地砖的边长必须既是16的因数,又是12的因数。

(5)12和16的公因数有1、2、4,其中最大公因数是4。所以可选边长是1 dm、2 dm、4 dm的地砖,边长最大的是4dm。

三、巩固练习

1.教材第63页练习十五第5题。

此题是有关两数最大公因数的实际问题。教师要引导学生理解题意,要剪成“同样大小的正方形而没有剩余”。正方形的边长必须既是70的因数又是50的因数,要使正方形的边长最大,所以要找70和50的最大公因数。学生弄清题意后,由学生独立完成,然后全班反馈。

2.教材第63页练习十五第6题。

此题也是有关两数最大公因数的实际问题,“要使每排的人数相等”则每排的人数必须既是48,又是36的因数,要使每排的人数最多,所以要找48和36的最大公因数,学生理解题意即可完成。

3.教材第64页练习十五第9题。

此题检查学生当两数是倍数关系、互质关系、一般关系情况下求最大公因数的能力。

参考答案:

5.长方形的边长是70和50的最大公因数是10 cm,所以小正方形的边长最长是10cm。

6.每排人数是36和48的最大公因数,是12人。

男生:48÷12=4(排) 女生:36÷12=3(排)

9.(1)A (2)C (3)C

四、课堂小结

今天你学习了什么?有什么收获?

五、布置作业

教材第64页练习十五第7、8、10题。

《因数和倍数》数学教案 篇七

教学内容:

义务教育课程标准小学数学五年级下册第二章《因数和倍数》第1节例1(教材第13页)及练习二的第2题,第四题的前部分。

教材分析:

本节教学是在学生学习掌握了因数和倍数两个概念的基础上,在教师的引导下,让学生运用乘法算式及除法中的整除自主尝试、探究“求一个数的因数”的方法。同时,通过多种形式的训练,使学生能熟练找全一个数的因数。另外,通过引导学生用集合的形式表示一个数的因数,一方面给学生渗透集合思想,更重要的是为后面教学求两个数的公因数做准备。

教学目标:

1、应用尝试教学法鼓励学生自主尝试探究求一个数的因数的方法及规律特点,并能熟练找全一个数的因数;

2、逐步培养学生从个别到全体、从具体到一般的抽象归纳的思想方法。

教学重点:

探究求一个数的因数的方法及规律特点。

教学难点:

用求一个数的因数的方法熟练找全一个数的因数。

教具准备:

投影仪、小黑板、卡片

教学课时:一课时

教学设想:

运用尝试教学法,从学生已有的知识经验出发,通过教师引导、学生自学例1,自主尝试、探究求一个数的因数的方法方法,并能运用所获得的方法、经验找全一个数的因数。

教学过程:

一、复习旧知

师:同学们,前面学习了因数和倍数的概念,老师很想考考你们学得怎么样,可以吗?

生:(预设)可以!

师:出示小黑板。

1、利用因数和倍数的相互依存关系说一说下面各组数的相互关系。

21和7 2×7=14 30÷6=5

2、判断。

(1)12是倍数,2是因数。 ( )

(2)1是14的因数,14是1的倍数。 ( )

(3)因为6×0.5=3,所以,6和0.5是3的因数,3是6和0.5的倍数。( )

教师根据学生完成练习的情况对学生进行恰当的表扬激励,同时进入新课教学:……

二、新课教学

过程一:尝试训练。

(一)出示问题

师:同学们,老师有一个新问题,想请大家帮助解决,行吗?

生:行!(预设)

尝试题:14的因数有哪几个?

(二)学生解决问题,教师巡视并根据实际适时辅导学困生。

(三)信息反馈。

板书:

1×14

14 2×7

14÷2

14的因数有:1,2,7,14

过程二:自学课本(P13例1)。

(一)学生自学例1。

教师提出自学要求(投影):

1、18有哪些因数?

2、文中的小朋友是怎样找出18的因数的?他们找完了吗?如果没有,请帮助他们完成。

3、你还有别的找法吗?请试一试,并用自己喜欢的方式写出18所有的因数。

(二)信息反馈

1、反馈自学要求情况;

板书:

1×18

18 2×9

3×6

18的因数有1,2,3,6,9,18。

还可以这样表示: 18的因数

2、知识对比,探索发现规律。

(1)师:同学们,根据求14和18的因数时获得的体验,再思考下面问题:

投影出示问题:

思考一:你用什么方法找出?

(2)学生思考,教师适时引导。

(3)同桌交流思考结果。

(4)师生互动。总结方法、点出课题。

求一个数的因数的方法:用乘法计算或除法计算(整除)

过程三:尝试练习

(一)用小黑板出示练习题

1、找出30的因数有哪些?36的因数有哪些?

2、结合14、18、30、36的因数个数,请你谈谈一个数的因数有什么特点?〖提示:一个数的最小因数是( ),的因数是( )。〗

(二)信息反馈:师生互动总结特点。

板书:

一个数的因数的个数是有限的。它的最小因数是1,的因数是它本身。

三、课堂作业

练习二第2题和第4题前半部分。

四、课堂延伸

猜一猜:(卡片)只有一个因数的数是谁?

五、课堂小结

师:今天你学会了求一个数的因数的方法吗?你知道一个数的因数特点吗?

生:……

板书设计:

求一个数的因数的方法

1×14

14 2×7 方法:用乘法计算或除法计算(整除)

14÷2

14的因数有:1,2,7,14

1×18

18 2×9

3×6

18的因数有:1,2,3,6,9,18 特点:一个数的因数的个数是有限的。

还可以表示为:

它的最小因数是1的因数是它本身。